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We investigate whether the force and torque exerted by light pressure on an irregularly shaped dielectric
resonator allow to detect resonant frequencies, delivering information complemental to the scattering cross
section by mechanical means. The peak-to-valley ratio in the torque signal can be many times larger than in the
scattering cross section, and, furthermore, depends on the structure of the resonance wave pattern. The far-field
emission pattern of the associated quasibound states can be tested by the angular dependence of the mechanical
mechanical probes at finite amplification rate. We relate the force and torque to the scattering matrix and
present numerical results for an annularly shaped dielectric resonator.
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I. INTRODUCTION

Waves confined in irregularly shaped geometries of opti-
cal microresonators(such as micro-optical lasers made of
semiconductors[1], microcrystals[2], or laser dye droplets
[3]) pose practical and theoretical challenges, as an intricate
interference pattern arises from the multiple coherent scatter-
ing off the confining boundaries. This is especially true at
resonant conditions, when the multiple scattering results in
systematic constructive interference. The most direct probes
of these microresonators are scattering experiments: The sys-
tems are illuminated with a coherent light source, and the
scattering cross section is detected. The resonant peaks ob-
served in the cross section are related to quasibound states
(found at complex energies or frequencies), which can be
observed as the working modes of micro-optical lasers. Ir-
regular geometries are favored because they offer a rich
mode structure and permit highly anisotropic modes with
well-defined directed emission[4]. The resonance pattern in
the total scattering cross section does not reflect this richness
in the mode structure—according to Breit-Wigner theory, the
weight and width of a resonance is determined by the life-
time of the mode; the wave pattern itself is of no concern[5].
In this paper, we show that complemental information about
the quasibound states is contained in the directly accessible
optomechanical response of the system, which actuallydoes
distinguish between modes of different degree of anisotropy.

The optomechanical probes of the resonances and the as-
sociated quasibound states that we discuss in this paper are
the force and the torque exerted on the dielectric microreso-
nator by the light pressure of an illuminating beam. We focus
on the practically most useful case of irregular but effec-
tively two-dimensional geometries, and also allow for a finite
amplification rate. Over the past decade, optomechanical
tools based on light pressure have found various applications
in the manipulation of microscopic objects, for which usually
simple shapes have been assumed, and precision detection of

the acting forces have become commonplace[6]. For in-
stance, dielectric objects of micrometer dimensions have
been brought into rotation by light pressure, and the acting
torque has been determined from the rotation of the object in
a viscous medium[7–13]. Typical torques are of the order of
10−17 N m for micrometer-sized objects at 500 nm wave
length and 10 mW intensity. These dimensions and operation
parameters are also typical for optical microresonators and
microlasers. The rotation rate depends on the viscosity of the
ambient medium and is of order of several hertz(typical
forces are of the order of 10–100 pN). In some of these
experiments torques as small as.10−19 N m proved to be
sufficient to induce rotation. The rotation technique can be
used not only to determine the torque, but also to determine
the viscosity once the torque has been obtained by indepen-
dent (e.g., optical) means[14–16]. Microelectromechanical
systems[17] have not been applied in this context so far, but
in principle are also sensitive enough to detect the optom-
echanical response.

We suggest to use the optomechanical response for ana-
lyzing the internal wave dynamics in complicated geom-
etries. We demonstrate that the mechanical response contains
information which is analogous to the scattering cross sec-
tion and the delay time(the conventional probes for reso-
nances), but is sensitive to other, complemental aspects of
the quasibound states, such as their degree of anisotropy
(which is reflected by the torque). Consequentially, the me-
chanical probes help to distinguish between different wave
patterns. At finite amplification rate within the medium, they
contain information on the far-field emission pattern. Our
general argumentation is supported in a practical setting by
numerical computations for the annularly shaped dielectric
disk shown in Fig. 1, which displays a multifaceted set of
wave patterns due to its non-integrable classical ray dynam-
ics [18,19]. We use two different numerical procedures, the
wave-matching method(see, e.g., Ref.[19]) and the bound-
ary element method[20].
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The organization of this paper is as follows: In Sec. II, we
briefly discuss resonances, quasibound states, and conven-
tional probes of their detection(the Wigner delay time and
the scattering cross section) in the framework of scattering
theory. Section III contains the principal results of this paper.
Section III A provides the kinematical relations for the force
and torque in terms of the information provided by the scat-
tering matrix. In Sec. III B we compare the conventional and
mechanical probes for the annular resonator and show that
the anisotropy of the wave pattern is tested by the torque.
Rounding up the considerations, in Sec. III C we discuss
how the far-field emission pattern can be inferred by means
of amplification. Our conclusions are collected in Sec. IV.
The Appendix contains details on the derivation of the kine-
matical relations.

II. RESONANCES AND QUASIBOUND STATES
IN SCATTERING THEORY

A. Scattering approach

In this paper we apply standard scattering theory to the
effectively two-dimensional systems in question. We sepa-
rate the two polarizations of the electromagnetic field, with
either the electric field

Ez = Refexps− ivtdcg s1d

or the magnetic field

Bz = c−1Refexps− ivtdcg s2d

polarized perpendicular to the plane. In both cases, the com-
plex wave functionc fulfills the two-dimensional Helmholtz
equation

sD + n2k2dc = 0, s3d

wheren is the position-dependent refractive index,k=v /c is
the wave number, andc is the speed of light in vacuum.

Amplification is modeled by a complex refractive index with
Im n,0.

We choose a circular regionA of radiusR.R, contain-
ing the resonator, and decompose the wave function in the
exterior ofA in the usual Hankel function basis,

c = o
m

fam
sindHm

s2dskrd + am
soutdHm

s1dskrdgeimf, s4d

where r and f are polar coordinates.(Here and in the fol-
lowing, all sums run from −̀ to `.) The angularly resolved
radiation in the far field is given by

Isfd =
2

puku Uom am
soutdeimsf−p/2dU2

. s5d

Below the laser threshold, the expansion coefficientsam
soutd

of the outgoing wave are related to their incoming counter-
partsam

sind by linear relations

am
soutd = o

m8

Smm8am8
sind, s6d

where the coefficientsSmm8 form the scattering matrix. The
scattering matrix fulfills the time-reversal symmetry

Sm,n = S−n,−ms− 1dm+n, s7d

and is unitary for realk andn. For complex values, unitarity
is replaced by

S−1sk,nd = fSsk * , n * dg†. s8d

B. Poles and quasibound states

Quasibound states are found at complex valueskc of k
that permit nontrivial solutionsasoutd=ac in the case of no
incident radiation,

asind = S−1asoutd = 0. s9d

It follows that the valueskc are the poles of the scattering
matrix, which (for real n) all reside in the lower complex
plane as a consequence of causality.

For the annular resonator, complex valueskc are shown in
the bottom panel of Fig. 2, and some typical wave patterns
are presented in the right panels of Fig. 3. For this system
with a reflection symmetry about thex axis, the quasibound
states occur with even and odd parity[21], and further can be
divided into whispering-gallery modes localized at the inte-
rior interface(classWint) or at the exterior interface(class
Wext), and more extended modes that we group into two
classesA (inside the interior circle, these modes are of
whispering-gallery character) andC (the remaining modes).
Close to resonance in the complexk-plane fk
<kc

sevend ,kc
sodddg, the scattering matrix can be approximated by

[22]

S<
ac

sevend
^ ãc

sevend

k − kc
sevend +

ac
soddd

^ ãc
soddd

k − kc
soddd , s10d

whereãc,m=s−1dmac,m due to time-reversal symmetry and we
accounted for the potentially quasidegenerate partner of op-
posite parity(indicated by the superscripts).

FIG. 1. The annular resonator used in the numerical investiga-
tions of this paper is composed of two circles with radiiR andR8
=0.6 R, and eccentricityd=0.22R. The refractive index isn=1
outside the resonator,n=1.8 in the annular region between the
circles, andn=3.3 inside the interior circle.
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In general, the quasibound states found for complexkc
and realn can be transported to real values ofk.Rekc by
setting Imn. Im kc Ren/Rekc, corresponding to an active,
amplifying medium close to threshold[23]. Above threshold,
poles formally move into the upper complex plane, which
physically indicates instability, and the linear relation be-
tween asind and asoutd breaks down. Yet, in homogeneously
amplifying media the lasing modes are well approximated by
the cold-resonator modes[24–26]. The far-field emission
pattern of the laser

Icsfd =
2

puku Uom ac,m
soutdeimsf−p/2dU2

, s11d

is then given by Eq.(5), evaluated with the quasi-bound state
ac that wins the mode competition(the first mode that be-
comes unstable).

C. Resonances and their conventional probes

The valueskc are the poles ofS where this matrix is
singular, and are reflected by resonances of the system at real
valuesk=Rekc. Conventional probes for resonances are ob-
tained from the total scattering cross section

FIG. 2. (Color) The top panels show four quantities(in arbitrary
units) as a function ofk that probe for resonances in the annular
resonator: The Wigner delay timetW, the angle-of-incidence aver-
aged scattering cross-sections0, the angle-of-incidence averaged
force in forward directionF0, and the variance of the torque varN.
The lower panel shows the complex resonance wave numberskc of
quasibound states, classified by their wave patterns as described in
the text:Wint (s), Wext (n), A (h), C (L). Open symbols indicate
modes of even parity, full symbols are modes of odd parity. The
complex resonances are also indicated by the spikes in the top pan-
els, located atk=Rekc with height proportional to the life time
1/s−2c Im kcd. Additionally, the resonances of Fig. 3(a)–3(e) are
indicated by the arrows at the very top.

FIG. 3. (Color) The panels(a–e) show results for various com-
binations of k and Imn tuned very close to resonance with the
quasibound states of odd parity shown on the right, with(a) kc

=6.009−i0.008(classWint), (b) kc=6.228−i0.116(classC), (c) kc

=7.554−i0.063(classWext), (d) kc=7.847−i0.145(classC), (e) kc

=9.026−i0.022(classA). In the top graph of each panel, the angu-
lar dependence of the far fieldIc (red) on the radiation directionf
is compared to the angular dependence on the illumination direction
f0 (note Ref.[28]) of the scattering cross-sections (green), the
weighted delay timet (blue), and thex component of the force,Fx

(purple)—the four lines are almost indistinguishable. In the bottom
graph of each panel, the(squared) torqueN2 (red) is compared to
the interference termIc8

2 (green), defined in Eq.(25). The blue curve
is N2 evaluated at realn. All quantities are in arbitrary units.
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s =
4

k
o
m

uam
soutd − am

sindu2, s12d

and the weighted delay time[27]

t = 4 Imo
m

am
soutd*dam

soutd/dv. s13d

Clearly, the quantitiess andt depend on the incoming wave,
which we now specify as a plane wave coming from direc-
tion f0 [28], corresponding to

am
sind =

1

2
e−imsp/2+f0d. s14d

Both s andt then provide angularly resolved information as
a function off0. A global characterization of the system is
obtained by an average over the incident radiation direction
f0, giving

s0 = kslf0
=

1

k
o
m
S1 + o

m8

uSm8mu2 − 2 ReSmmD , s15d

tW = ktlf0
= Im trS† dS

dv
, s16d

wheretW is known as the Wigner delay time.
Both the delay time(of predominantly theoretical virtue)

and the (more practical) scattering cross-section display
peaks at resonance, as is illustrated for the annular resonator
in the two topmost graphs of Fig. 2. Note that the signals0
is, in general, of low contrast and, apart from a relatively
strong background modulation, rather featureless. Still, the
enhanced scattering of the light field at resonance promises a
marked mechanical response, which we investigate in the
remainder of this paper. Indeed, the signal of the mechanical
response will display a much better contrast for a set of sys-
tematically selected resonances.

III. MECHANICAL DETECTION OF RESONANCES

A. Kinematics

In this subsection we provide general kinematic relations
for a two-dimensional resonator in a light field, which in the
following Secs. III B and III C will be used to characterize
resonances and wave patterns.

The mechanical forces exerted by the light field on a di-
electric medium originate from the refraction and diffraction
at the dielectric interfaces—ultimately, from the deflection
(and creation, at finite amplification) of the photons. The
kinematics in the combined system of light field and medium
can be obtained from the conservation laws of total angular
and linear momentum, which equate the torque and force
acting on the medium to the deficit of the angular and linear
momenta carried by the electromagnetic field into and out of
the circular regionA. (The center of this region is identified
with the point of reference for the torque, and in our example
is taken as the center of the exterior circle.) Note that the
conservation laws also hold in an amplifying medium, due to
the recoil of each created photon. The kinematic relations

hence follow from integrals of Maxwell’s stress tensor[29]
over the boundary ofA. After some algebra(for details see
the Appendix), we find the time-averaged force and torque
(per unit of thickness of the resonator) in the compact form
[30]

Fx + iFy =
2«0i

k
o
m

fam
sindam+1

sind* − am
soutdam+1

soutd*g, s17d

N =
2«0

k2 o
m

mfuam
sindu2 − uam

soutdu2g. s18d

In absence of amplification and for plane-wave illumination,
it is easily seen that the direction-averaged force and torque
vanish from the unitarity constraints of the scattering matrix

kFx + iFylf0
=

− i«0

2k
o

m,m8

Smm8Sm+1,m8
* = 0, s19d

kNlf0
=

«0

2k2o
m

mS1 − o
m8

uSmm8u
2D = 0. s20d

Two simple quantities that do not vanish are the mean of the
force componentFi=Fxcosf0+Fysinf0 in forward direc-
tion,

F0 = kFilf0
=

«0

2k
Reo

m,m8

sdmm8 − Sm8mSm8+1,m+1
* d, s21d

and the variance varN=kN2lf0
of the torque

var N =
«0

2

4k4 o
m,m8,ni

8
mm8Smn1

* Smn2
Sm8n3

* Sm8n4
. s22d

Here, the prime at the sum enforces the restrictionn1+n3
=n2+n4.

B. Resonances

Because scattering is enhanced at resonance, we expect
that varN andF0 are global characteristics of the resonances
comparable tos0 andtW, while N andFi provide angularly
resolved information as a function of the incident radiation
direction f0, analogously tos and t. The results in Figs. 2
and 3 demonstrate this promise to hold true.

Figure 2 shows the global characteristicss0, tW, var N,
andF0 for the annular resonator as a function ofk. The plot
demonstrates a clear correspondence of the resonant peaks in
all four quantities. Evidently, each quantity probes another
aspect of the resonances, such that their relative weights are
different. As usual, the delay timetW displays the largest
peaks for the very narrow resonances associated to long-
living quasibound states. Presently, the longest-living states
are those of classWint, followed by those of classWext andA,
while the states of classC are hardly visible here. The scat-
tering cross-sections0 displays smaller peaks(sometimes,
dips) on a modulated background, and does not provide a
distinctive discrimination between the different states.

The force and torque are sensitive to the wave pattern
itself, and for the annular resonator display a marked re-
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sponse especially for the quasibound states of classWext and
A (for small k, also for classC). The peak-to-valley ratio in
the variance of the torque(e.g.,<5 for the peak atk<6.2)
can take much larger values than in the scattering cross sec-
tion (where the ratio rarely exceeds 1.2) for resonances with
a rather anisotropic internal wave pattern.

This principal conclusion of the present paper is sup-
ported in more detail by the five examples in Fig. 3. The
wave patterns shown in the right panels are inhomogeneous
to various extent, even though the inhomogeneity does not
automatically translate into very anisotropic far-field emis-
sion patterns for these rather low values of RekcR. Let us
inspect the associated resonance peaks in Fig. 2. For the
quasibound state of Fig. 3(a), force, torque, and scattering
cross section detect the resonance with comparable contrast;
the best signal is given by the delay time, which, however,
must be remembered to be an inconvenient tool for practical
considerations. Figure 3(b) pertains to a comparatively short-
living mode(with large uIm kcu). This mode is hard to detect
by the conventional probes, but gives a very clear signal in
the mechanical probes, especially, in the torque. For the case
of Fig. 3(c), the best signals are provided by the force and by
the delay time, followed by the scattering cross section,
while the torque is insensitive to this resonance. The case of
Fig. 3(d) illustrates that resonances with both a short life
time and a rather homogeneous wave pattern are hardly de-
tected by any of the four probes—such modes, however, are
also of subordinate interest in the practical applications. The
mode of Fig. 3(e) gives a torque signal with a much higher
contrast than the force or the scattering cross section; only
the delay time signals the resonance to a similar extent.

The most remarkable difference in Fig. 3 is between pan-
els (b) and(d)—both modes of classC displayed there have
a short lifetime, which inhibits their detection by conven-
tional means, but the mode of panel(b) is detectable by
optomechanical means, in keeping with the larger anisotropy
displayed by its wave pattern(note the regions of concen-
trated intensity above and below the interior circle).

C. Far field

In the practical application of micro-optical lasers, the
anisotropy of the internal wave pattern is a desired design
goal since it is the prerequisite for directed emission in the
far field. To which extent can the far field be inferred from
the angularly resolved information contained inN, F, s, and
t? This rather innocent question turns out to be surprisingly
subtle in view of the following observation: In absence of
amplification(realk andn), the angle-of-incidence averaged
far field

I0sfd = kIsfdlf0
s23d

is independent off. Here, we average over the angle of
incidencef0 since the quasibound states are defined without
reference to any excitation mechanism. The angle of inci-
dencef0 enters the far field(5) via Eq.(14), and after taking
the average the earlier statement follows from the unitarity of
the scattering matrix. In other words, in the absence of am-
plification, the angle-of-incidence averaged far-field radia-

tion pattern does not carry any intrinsic information about
the quasibound states, even at resonant conditions.

Can the far field of the quasibound states be inferred from
a more sophisticated analysis ofIsf ;f0d, i.e., by taking the
dependence of the angle of incidence into account? This
would require the delicate task to discard the component of
the light that is directly reflected at the first encounter of the
boundary from the outside. The direct contribution is essen-
tially independent of the quasibound states: the latter are
determined by a constructive-interference condition for re-
flection from the inside of the system while the directly re-
flected radiation never ever enters the medium. For instance,
in our model system, the directly reflected wave component
contains no information on the interior circle, which, how-
ever, is crucial in the formation of all quasibound states.

The situation changes significantly atfinite amplification:
Then, already the angle-of-incidence averaged intensity
I0sfd is modulated, and is influenced by the quasibound
states closest ink. At exact resonance in the complex
k-plane, approximation(10) of the scattering matrix entails
asoutd~ac with a large proportionality constant due to the
resonant denominator. Hence, the contributionasind of the
incident radiation can be neglected, andIsfd~ Icsfd as de-
fined in Eq. (11), independent of the mode of excitation.
Furthermore

ssf0d ~ tsf0d ~ uFxsf0du ~ Icsf = f0d, s24d

since againasoutd~ac dominates overasind in Eqs.(12), (13),
and(17). Equation(24) entails a duality between the illumi-
nation directionf0 and the radiation directionf. This dual-
ity relies on the time-reversal symmetry[28], which is incor-
porated in Eq.(10) by the relation betweenac and ãc. For a
representative set of resonances at realk and complexn, the
far field Icsfd is shown in the left panels of Fig. 3, along with
the angular dependence ofs, t, uFxu, andN on the direction
of incident radiation,f0. The wave pattern of the corre-
sponding quasibound states is shown in the right panels.

Due to the reflection symmetry of the annular resonator
about thex axis, uFyu! uFxu while Fi <cossf0dFx. The reflec-
tion symmetry also suppressesN compared to nonsymmetric
systems: The otherwise dominant contribution fromasoutd

=ac vanishes for each given quasibound state,ommuac,mu2
=0, because of pairwise cancellation of the terms with oppo-
site m. However,N is still enhancedcompared to the non-
resonant situation: A nonvanishing result(of order uk−kcu−1)
is obtained from the interference between the resonant state
(with large coefficients) and the nonresonant states(with
moderate coefficients). In the typical case of quasidegen-
eracy, ac

sevend interferes withac
soddd, and from Eq.(10) we

obtain

N2sf0d ~ Ic
sevendsf0dIc

sodddsf0d ; Ic8
2sf0d. s25d

This relation is indeed obeyed to good extent in the numeri-
cal computations(see Fig. 3). Even at realn, N2 (the blue
curve in the bottom graph of each panel) roughly corre-
sponds to Ic8

2. In nonsymmetric geometries the sum
ommuac,mu2Þ0 for a given quasibound state, and hence the
proportionality N, Ic (and Fy, Ic) is restored(moreover,
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quasidegeneracies are then lifted, and the system more easily
is tuned to resonance with individual quasibound states).

IV. CONCLUSIONS

In summary, the force and torque exerted by light pressure
on a dielectric resonator allow to detect resonances and help
to characterize the wave patterns of the associated quasi-
bound states. For anisotropic wave patterns that support a
high angular-momentum transfer, the peak-to-valley ratio in
the mechanical probes(notably the torque) exceeds by far
the moderate values observed in the scattering cross section,
which is notoriously insensitive to the wave pattern.

We put our work in the context of directed transmission
from micro-optical lasers, and took amplification into ac-
count. Enhanced sensitivity to internal structure is also de-
sired in several applications involving simpler passive or ab-
sorbing media, such as cells with organelles or liquid drops
polluted with inclusions.

Since resonance provides a very effective scattering
mechanism by constructive interference, the typical forces
and torques estimated for common micrometer sized dielec-
tric resonators under typical radiation conditions are in the
range of the optomechanical experiments mentioned in the
introduction. In the viscous rotation experiments, the reso-
nances will depend on the refractive index of the surrounding
liquid, which may not be desirable for a precise characteriza-
tion of the resonator, but also introduces an additional poten-
tially useful control parameter. Detection by microelectrome-
chanical systems offers the advantage to control the
resonator orientation with respect to the incoming radiation.

The numerical part of this work concentrated on the
wave-optical regime, in which the wave length is not much
smaller than the geometric features of the system and inter-
ference patterns are most complex. Some micro-optical la-
sers operate at smaller wave lengths(larger values of the
wave numberk) than accessed in our numerics. In this re-
gime, semiclassical relations between the internal wave pat-
tern and the far-field emission pattern can be formulated,
which also relate the directed emission desired for micro-
optical laser to the underlying anisotropy of the internal
wave pattern. The results of this work hold the promise that
in this semiclassical regime, modes with directed emission
can be identified by the torque. The selectivity of the torque
for anisotropic modes should be even enhanced for these
larger values ofk by the following mechanism: Isotropic
modes frequently arise from a large collection of unstable
ray trajectories[31], and can be described as a superposition
of random waves[32]. As k is increased, more and more
random-wave components become available, and hence, the
mechanical response is suppressed by self-averaging. Aniso-
tropic modes are guided by just a few trajectories such that
the self-averaging mechanism does not apply to them, and
consequently they remain well detectable by their optom-
echanical response.

APPENDIX: DERIVATION OF THE KINEMATICAL
RELATIONS

The calculation of the force

F =E
S

dSnT sA1d

and the torque

N =E
S

dSsnTd 3 r sA2d

(where n is the unit vector in normal direction to the surface
S) starts with the stress tensor

T = «0SE ^ E −
1

2
E21D +

1

m0
SB ^ B −

1

2
B21D . sA3d

In the two-dimensional case, we integrate over the circle]A
of radiusR (the physical force and torque are obtained by a
multiplication with the thickness of the sample), and it is
natural to work in polar coordinates.

Depending on the polarization, we insert the electromag-
netic field

HE = Ree−ivtcez,

B = Im v−1e−ivtsR−1]fcer − ]rcefd,J sTMd,

HB = c−1 Ree−ivtcez,

E = − c Im v−1e−ivtsR−1]fcer − ]rcefd,J sTEd,

sA4d

where the wave function fulfills the Helmholtz equation(3)
and is decomposed in the basis of Hankel function, Eq.(4).

After a time average, the radial component of the stress
tensor then is given in terms ofc by

nT =
«0

4
fsZ−2u]fcu2 − ucu2 − u]Zcu2der

− 2Z−1 Re]fc]Zc * efg, sA5d

with Z=kR, ]Z=]krur=R, k=v /c, c=1/Îm0«0. (Note thatk is
real andn=1 on ]A, since refraction and amplification is
restricted to the resonator.)

The force components can now be expressed as

Fx + iFy =
«0R

4
E

0

2p

dfeifS 1

Z2u]fcu2 − u]Zcu2 − ucu2

−
i

Z
]fc]Zc * −

i

Z
]fc * ]ZcD . sA6d

Here we insert Eq.(4) [indicesm, j for c, indicesm8 , j8 for
c*, where the second indexj , j8=s1d;out or s2d; in] and
integrate overf. Next, we use the identities

]ZHm
j =

m

Z
Hm

j − Hm+1
j , sA7d
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]ZHm+1
j8* = −

m+ 1

Z
Hm+1

j8* + Hm
j8* sA8d

(here and in the following, we suppress the argumentZ of
the Hankel functions). This gives

Fx + iFy =
p«0R

2 o
m,j ,j8

am
j am+1

j8* FSHm+1
j −

m

Z
Hm

j D
3SHm

j8* −
m+ 1

Z
Hm+1

j8* D +
msm+ 1d

Z2 Hm
j Hm+1

j8*

− Hm
j Hm+1

j8* −
m+ 1

Z
Sm

Z
Hm

j − Hm+1
j DHm+1

j8*

+
m

Z
Hm

j S−
m+ 1

Z
Hm+1

j8* + Hm
j8*DG . sA9d

Between the square brackets, most terms cancel, giving

Fx + iFy =
p«0R

2 o
m,j ,j8

am
j am+1

j8* Aj ,j8,

Aj ,j8 = sHm+1
j Hm

j8* − Hm
j Hm+1

j8* d. sA10d

With Hs1d* =Hs2d and the identities

A11 = − A22 = 2i Im Hm+1
s1d Hm

s2d = −
4i

pZ
, sA11d

A12=A21=0, we arrive at the final expression(17).
The calculation for the torque is less involved. We find

N =E df
«0R
2k

Re]fc]Zc * ez =
p«0R

k
ez Im o

m=−`

`

m

3fam
s1d*Hm

s2d + am
s2d*Hm

s1dgfam
s2dHm

s2d8 + am
s1dHm

s1d8g. sA12d

The final result(18) follows from Hs1d* =Hs2d and

Im Hm
s2dsZdHm

s1d8sZd =
2

pZ
. sA13d
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