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Band-center anomaly of the conductance distribution in one-dimensional Anderson localization

H. Schomerus and M. Titov
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We analyze the conductance distribution function in the one-dimensional Anderson model of localization,
for weak disorder but arbitrary energy. For energy at the band center the distribution function deviates from the
form that is assumed to be universal in single-parameter scaling theory. A direct link to the breakdown of the
random-phase approximation is established. Our findings are confirmed by a parameter-free comparison to the
results of numerical simulations.
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The spatial localization of waves in a disordered poten
can be considered as the most dramatic effect of mult
coherent wave scattering.1,2 Due to systematic constructiv
interference in some part of the medium, the wave funct
is spatially confined and decays exponentially as one mo
away from the localization center.3,4 The localization length
l loc can be probed noninvasively from the decay of the tra
mission coefficient~the dimensionless conductance5! g, in
terms of the average

C1[^2 lng&52L/ l loc1O~L0! ~1!

for system lengthL@ l loc .6 Localization results in insulating
behavior of disordered solids at low temperatures,3,4 and also
can be realized in electromagnetic waveguides.7

One of the cornerstones of the theoretical understand
of localization is the universal approach of single-parame
scaling~SPS!.8–11 In this theory, it is assumed that the com
plete distribution functionP(g) of the conductance can b
parametrized by the single free parameterC1. The depen-
dence ofC1 @and hence ofP(g)] on L is then found from
solving a scaling equationdC1 /d(lnL)5b(C1), where the
universal scaling functionb does not depend onL, nor
on any microscopic parameter~such as the Fermi wave
length lF , the transport mean free pathl tr , or the lattice
constanta).

The distribution functionP(g) is completely determined
by the cumulants

Cn[^^~2 lng!n&&, ~2!

which are obtained as the expansion coefficients of the g
erating function

h~j!5 ln^g2j&5 (
n51

`

Cn

jn

n
. ~3!

The first three cumulants are given by Eq.~1! for C1 , C2
5var lng, andC35Š(^ lng&2lng)3

‹. The SPS hypothesis ca
then be phrased like this:All cumulants are universal func
tions of C1. In the localized regime (C1@1) and for weak
disorder, a one-dimensional calculation of the distribut
function within the random-phase approximation implies
simple relations9

Cn /C15d1n12d2n1O~L21!. ~4!
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SPS then assumes that these conditions are universal.
assumption is much more restrictive than the general up
bound Cn5O(L/ l loc) from the theory of large-deviation
statistics:12,13 SPS assumes a lognormal distribution ofg,
with the variance of lng determined by the mean via th
universal relation varlng522^lng&. It is the violation of this
relation which frequently is used to indicate the breakdo
of SPS theory~see, e.g., Refs. 14 and 15!.

In this paper, we investigateP(g) in the most-studied and
best-understood paradigm of localization, the on
dimensional Anderson model defined by the Schro¨dinger
equation

c l 211c l 115~Vl2E!c l ~5!

on a linear chain ofL sites ~lattice constanta51) and a
random potential witĥ Vl&50 and ^VlVm&52Dd lm . The
strengthD of the potential fluctuations is taken to be sma
We analytically calculate the cumulantsCn in the localized
regime, with main focus on the energy regionuEu!1 around
the band center of the disorder-free system. ForE50, we
find the values

C2 /C152.094, C3 /C150.568. ~6!

The ratiosCn /C1 with the higher cumulants also are finite
HenceP(g) complies with the restrictions of large-deviatio
statistics, but deviates from the special lognormal form
sumed in SPS theory~this form is restored foruEu*D).

The conditions for validity of SPS have been a const
subject of intense debate.10,11,15Originally, SPS was derived
within the random-phase approximation~RPA! for the scat-
tering phase between consecutive scattering events.9 In the
Anderson model, the RPA is known to fail around the en
giesE562 ~the band edges of the disorder-free system!,16

wherelF* l tr . Indeed, the SPS relations~4! are violated for
all cumulants when one comes close to the band edge
2uEu&D2/3),17 in coincidence with the expectations.15,16,18

The RPA is also known to break down for the band-cen
caseE50.19 However, the only consequence observed so
has been a weak anomaly in the energy dependence ol loc
~hence, also ofC1),20–22which differs atE50 by about 9%
from the predictions of perturbation theory.23 Surprisingly,
the violation ~6! of the SPS relations~4! has not been
noticed—quite the contrary, the relevance of the RPA
SPS recently has been contested15 within an investigation of
©2003 The American Physical Society01-1
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the Lloyd model, given by Eq.~5! with a Cauchy distribution
for the potential.16,24However, results obtained for the Lloy
model are not conclusive for the Anderson model and S
because in the Lloyd model formally the variance of t
disorder potentialD5` and one encounters the modifie
relation C2 /C154Þ2, while l loc varies smoothly with en-
ergy even aroundE50.16 Moreover, the higher cumulant
have not been investigated. In previous numerical stud
the violations may have passed unnoticed because the s
deviation of C2 /C1 from the SPS value probably was n
considered to be significant, and again the higher cumul
have not been investigated. In this paper, we also will es
lish a direct link between SPS and RPA.

We now present the analytical calculation of the cum
lants Cn of 2 lng in the vicinity of the band-center energ
E50 of the Anderson model, Eq.~5!. As pointed out many
years ago by Borland,6 the dimensionless conductanceg in
the localized regime is statistically equivalent tocL

22 , where
cL is the solution of the Schro¨dinger equation~5! with ge-
neric initial conditionsc0 , c15O(1). BecauselF.4a, it is
useful to introduce two slowly varying fieldsf( l )5c l
(21)l /2 when l is even,x( l )5c l(21)( l 11)/2 when l is odd,
which can be considered as continuous functions w
Langevin equations

df

dL
5

1

2
~U2E!x,

dx

dL
5

1

2
~W1E!f. ~7!

Here U and W independently fluctuate witĥ U&50,
^U(L1)U(L2)&54Dd(L12L2), and analogously forW.

In order to calculate the wave-function decay and its fl
tuations, it is convenient to switch to the variables

u5 ln~f21x2!, sina5S f

2x
1

x

2f D 21

, ~8!

which are symmetric inf and x. In the localized regime
u52 lng characterizes the global decay of the wave fu
tion, while the variablea ~parametrizing the local fluctua
tions! is identical to the scattering phase of the reflect
amplituder 5(cL211 icL)/(cL212 icL). This parametriza-
tion allows us to draw a direct relation between SPS a
RPA: SPS will turn out to be valid whena is uniformly
distributed over (0,2p).

The Langevin equations~7! now can be translated into
Fokker-Planck equation for the joint distribution functio
P(u,a;x). For the sake of a compact presentation, we
shorthand notations for the functionssa5sina, ca5cosa,
and introduce the rescaled positionx5DL, as well as the
rescaled energy«5E/D. The Fokker-Planck equation the
takes the form

]xP~u,a;x!

5@L a
21]u~sa

2]u2ca
212]asaca!2«]a#P~u,a;x!, ~9!

with the linear differential operatorLa5]a(11ca
2)1/2.

The behavior ofP(u,a;x) for largex can be analyzed by
introducing into Eq.~9! the ansatz
10020
S,

s,
all

ts
b-

-

h

-

-

d

e

P~u,a;x!5E
2 i`

1 i` dj

2p i (
k50

`

exp@mk~j!x2ju# f k~j,a!,

~10!

where we require periodicity off k(j,a) in a. It then follows
that the functionsf k(j,a) solve the eigenvalue equation

mkf k5@L a
22«]a1j~ca

222]asaca!1j2sa
2 # f k , ~11!

in which j appears as a parameter andmk(j) is the kth
eigenvalue~arranged in descending order!. In the vicinity of
j50, there is a finite gap between the largest eigenvaluem0
@which vanishes forj50, because of the normalization o
P(u,a;x)] and m1. According to Eq.~10!, the asymptotic
behavior of the distribution functionP(u,a;x) for large x
hence is governed bym0, up to exponentially small correc
tions. A formal calculation of the moments ofu ~i.e., of
2 lng) shows that the cumulant-generating function~3! is
directly given byh(j)5xm0(j). Hence,

Cn5m (n)n!DL, ~12!

where we expandedm0(j)5(n51
` m (n)jn into a power series.

The expansion coefficientsm (n) can be calculated recur
sively for increasing ordern by solving the hierarchy of
equations

(
k50

n

m (n2k) f (k)5sa
2 f (n22)1~ca

222]asaca! f (n21)

1L a
2 f (n)2«]a f (n), ~13!

which results when one introduces into Eq.~11! the power
expansions form0 and for f 0(j,a)5(n50

` f (n)(a)jn: In each
ordern, we first integrate overa from 0 to 2p, which elimi-
natesf (n) and hence givesm (n) in terms of the quantitiesf (m)

andm (m) with m,n. Afterwards f (n) can be obtained from
Eq. ~13! by two integrations. The iteration is initiated forn
50 with m (0)50. This completely solves the problem t
calculate the cumulantsCn in the localized regime.

Let us illustrate the procedure forE50. To start the it-
eration we consider Eq.~13! with n50, given byL a

2 f (0)

50. This differential equation is solved by the normaliz
function

f (0)~a!5
A2p

G2~1/4!A11cos2a
, ~14!

which is identical to the stationary limiting-distribution func
tion lim

x→`
*2`

` du P(a,u;x) of the variablea.

Now the next iteration. Equation~13! with n51 is given
by

L a
2 f (1)~a!5~m (1)2ca

212]asaca! f (0)~a!. ~15!

We first determine

m (1)5E
0

2p

da ca
2 f (0)~a!54

G2~3/4!

G2~1/4!
. ~16!

The prediction for the inverse localization length
1-2
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l loc5G2~1/4!/@2DG2~3/4!#, ~17!

obtained by combining Eq.~16! with Eqs. ~1! and ~12!, is
identical to the result found in Refs. 20–22. Then we so
for

f (1)~a!5~11ca
2 !21/2E

0

a

db~11cb
2 !21/2

3F2sbcb f (0)~b!1E
0

b

dg~m (1)2cg
2! f (0)~g!G .

~18!

From the next iterationn52 we obtain

m (2)5E
0

2p

da @~ca
22m (1)! f (1)~a!1sa

2 f (0)~a!# ~19!

and also f (2)(a). Analogously we obtainm (3). With Eq.
~12!, this is sufficient to determine the values for the fi
three cumulants

C150.4569DL, C250.9570DL, C350.2595DL.
~20!

They correspond to the anomalous ratios given in Eq.~6!.
The analysis of Eq.~13! can be straightforwardly carrie

out also for finiteE/D. For E/D@1, the stationary limiting-
distribution function ofa is given by f (0)(a)51/(2p), cor-
responding to a completely random phase. Forn51 we find
the coefficientm (1)51/2, and the perturbative resultl loc
54/D is recovered.23 In the next iteration we obtainm (2)

51/2, while the higher coefficients all vanish. According
Eq. ~12!, the SPS relations~4! then are reestablished.

We have tested the predictions of the analytical the
against the result of a direct numerical computation of
conductanceg for the Anderson model~5!, by recursively
increasing the length of the wire.25 The potentialVl was

FIG. 1. ~Color online! First three cumulantsCn5^^(2 lng)n&&
for energy E50 in the Anderson model~5! with D51/150, as
function of system lengthL. The data points are the result of
numerical simulation. The slopes of the straight lines follow t
predictions of Eq.~20!. The localization lengthl loc is taken from
Eq. ~17!.
10020
e
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e

FIG. 2. ~Color online! Same as Fig. 1, but for energyE50.1
~upper panel! and E52 ~lower panel!. The straight lines in the
upper panel follow the predictions of perturbation theory~Ref. 23!
and single-parameter scaling~Ref. 9!. The straight lines in the lower
panel are the predictions of Ref. 17~see text!.

FIG. 3. ~Color online! Energy dependence of the ratios of c
mulantsC2 /C1 and C3 /C1. The inset showsC1 in units of the
perturbative resultDL/2. The data points are the result of a nume
cal simulation of the Anderson model withD51/150. The curves
are the analytical predictions of this paper (E,0.1), of perturbation
theory ~Ref. 23! and single-parameter scaling~Ref. 9! (0.1,E
,1.8), and of Ref. 17 (E.1.8).
1-3
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drawn independently for each site from a box distributi
with uniform probability 1/A24D over the interval
@2A6D,A6D#. The data shown in the plots were obtain
for D51/150 ~identical results are obtained for a Gauss
distribution with the same varianceD). The cumulants were
determined by averaging over 107 disorder realizations.

The result of this computation for the first three cumula
and E50 is shown in Fig. 1. The cumulants all increa
linearly with the lengthL of the wire, and the slopes agre
perfectly with Eq.~20! @hence the localization length agre
with Eq. ~17! and the ratios of cumulants agree with Eq.~6!#.
The comparison is free of any adjustable parameter.

For contrast, the upper panel of Fig. 2 shows the fi
three cumulants at energyE50.1, where the SPS relation
~4! hold andC15DL/2 follows from perturbation theory.23

The lower panel shows the results at the band edgeE52,
which are compared to the predictionsC150.7295D1/3L,
C251.602D1/3L, C350.7801D1/3L of Ref. 17.

In Fig. 3, we show the ratios of cumulantsC2 /C1 and
C3 /C1 as a function of energy. The inset showsC1. The
anomalous region extends up toE.10D. Around the band
edge, the violations set in for 22E&3D2/3. Again, perfect
n

a

a

he

.

cs

10020
s

t

agreement is found between our analytical theory and
results of the numerical simulations.

In summary, we have presented an analytical theory
the distribution functionP of the dimensionless conductanc
g in the localized regime of the Anderson model, Eq.~5!. The
relations~4! implied by single-parameter scaling theory f
the cumulantsCn of 2 lng are violated not only around th
band edgesuEu52, but also at the band-center energyE
50, where the correct values are given by Eq.~6!. Since the
random-phase approximation is known to break down
both cases, our findings reestablish the relevance of this
proximation for single-parameter scaling, which recently h
been contested.15

Whether the single-parameter scaling hypothesis it
breaks down atE50, or just persists in modified form, is a
open question. The ratios~6! still imply universal relations
between the cumulants for weak on-site disorder, i.e., they
not depend on the distribution function of the random pot
tial. However, it can be questioned whether this universa
also extends to additional disorder in the hopping rates, s
it is well known that the extreme case of purely off-diagon
disorder results in delocalization atE50.26
tt.
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