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Abstract. We present magnetic field and particle data
recorded by the Cluster and Geotail satellites in the vicin-
ity of the high- and low-latitude dayside magnetopause, re-
spectively, on 17 February 2003. A favourable conjunction
of these spacecraft culminated in the observation of a se-
ries of flux transfer events (FTEs), characterised by bipolar
perturbations in the component of the magnetic field normal
to the magnetopause, an enhancement in the overall mag-
netic field strength, and field tilting effects in the plane of
the magnetopause whilst the satellites were located on the
magnetosheath side of the boundary. Whilst a subset of the
FTE signatures observed could be identified as being either
normal or reverse polarity, the rapid succession of events ob-
served made it difficult to classify some of the signatures un-
ambiguously. Nevertheless, by considering the source region
and motion of flux tubes opened by magnetic reconnection at
low latitudes (i.e. between Cluster and Geotail), we demon-
strate that the observations are consistent with the motion of
northward (southward) and tailward moving flux tubes an-
chored in the Northern (Southern) Hemisphere passing in
close proximity to the Cluster (Geotail) satellites. We are
able to demonstrate that a multi-spacecraft approach, cou-
pled with a realistic model of flux tube motion in the mag-
netosheath, enables us to infer the approximate position of
the reconnection site, which in this case was located at near-
equatorial latitudes.
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1 Introduction

Magnetic reconnection is the predominant mechanism by
which solar wind energy and momentum are transmitted into
the terrestrial magnetospheric cavity. The first in-situ obser-
vations of transient reconnection in the vicinity of the high-
latitude dayside magnetopause were reported byHaerendel
et al.(1978), using magnetic field observations made by the
HEOS-2 satellite. Exploiting measurements from one of the
first multi-spacecraft missions,Russell and Elphic(1978,
1979) also reported signatures of magnetic reconnection at
the dayside magnetopause. Presenting magnetic field data
from the low-latitude ISEE-1 and 2 spacecraft, these authors
identified characteristic bipolar fluctuations in the field com-
ponent normal to the magnetopause (with time scales of a
few minutes and a recurrence intervals of∼5–10 min) and
dubbed these signatures “flux transfer events”. Further stud-
ies demonstrated that FTEs are usually associated with a
mixed plasma population originating from both the magneto-
sphere and magnetosheath (e.g.Paschmann et al., 1982; Far-
rugia et al., 1988). The interpretation that FTEs were the
signatures of transient (few minutes) and localised (fewRE)
bursts of magnetic reconnection at the magnetopause pro-
posed byRussell and Elphic(1978, 1979) was subsequently
endorsed by a collection of studies indicating that FTEs were
most frequently observed during intervals when there was
a southward directed component of the field in the magne-
tosheath (e.g.Rijnbeek et al., 1984; Berchem and Russell,
1984; Kawano and Russell, 1997).

From the earliest observations of FTEs, it was apparent
that the characteristic bipolar signature in the magnetic field
component normal to the magnetopause manifested itself in
at least two distinct forms. WhilstRussell and Elphic(1978),
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using high-latitude magnetic field data from the ISEE space-
craft, reported observations of bipolar perturbations that were
directed first in the outward normal and then the inward nor-
mal direction (i.e. in the positive then negative normal direc-
tion), Rijnbeek et al.(1982) presented observations of FTEs
at equatorial latitudes that were characterised by inward then
outward (negative-positive) bipolar signatures. These signa-
tures, referred to as “normal” and “reverse” polarity FTEs,
were interpreted as encounters with newly-opened flux tubes
connected to the northern and Southern Hemispheres, re-
spectively. This inference was supported by a host of statisti-
cal surveys indicating that normal (reverse) polarity FTEs are
most commonly observed in the Northern (Southern) Hemi-
sphere with a mixture of the two observed at equatorial lati-
tudes (e.g.Berchem and Russell, 1984; Rijnbeek et al., 1984;
Kawano et al., 1992; Russell et al., 1996). In a unique multi-
spacecraft study exploiting data from the AMPTE UKS and
ISEE spacecraft located in opposite hemispheres,Elphic and
Southwood(1987) presented simultaneous observations of
normal and reverse polarity FTEs associated with northward
and southward moving flux tubes, respectively. However, a
survey byDaly et al.(1984), that examined plasma as well
as magnetic field observations, suggested that the polarity
of the bipolar signature may not necessarily provide a reli-
able indication of the hemisphere to which the FTE flux tube
is connected. The location and extent (both temporally and
spatially) of magnetic reconnection sites on the surface of the
magnetopause remains a subject of active debate.Southwood
and Farrugia(1988) andScholer(1988) have suggested that
the transient reconnection region is significantly larger than
that proposed byRussell and Elphic(1978, 1979), whereas
Milan et al.(2000) suggested that the reconnection site may
at any one time be spatially localised, but that it propagates
wave-like over the magnetopause for extended distances and
intervals of time (at least∼10 min). The study of Milan
and co-workers differs from others highlighted so far since it
employed simultaneous space- and ground-based measure-
ments in order to compare the ionospheric and magneto-
spheric signatures of magnetic reconnection. Indeed, the po-
tential to exploit ionospheric observations in order to diag-
nose reconnection processes at the magnetopause has led to
the development of a range of theoretical descriptions that
characterise the ionospheric flow signatures that would re-
sult from patchy, extended or wave-like reconnection sites
(e.g.Southwood, 1985, 1987; Cowley, 1986; McHenry and
Clauer, 1987; Lockwood et al., 1990; Wei and Lee, 1990;
Cowley et al., 1991; Cowley and Lockwood, 1992; Milan
et al., 2000; Coleman et al., 2000, 2001). This theoretical
effort has been matched by a plethora of studies that employ
ground-based observations of the ionosphere, either in iso-
lation or in coordination with space-based experiments, in
order to investigate the scale, evolution and occurrence of
FTEs (e.g.Van Eyken et al., 1984; Lockwood et al., 1989,
1993; Elphic et al., 1990; Pinnock et al., 1993, 1995; Rodger
and Pinnock, 1997; Provan et al., 1998, 1999; Provan and
Yeoman, 1999; Milan et al., 1999, 2000; Neudegg et al.,
1999, 2000, 2001; McWilliams et al., 2000; Chisham et al.,

2002; McWilliams et al., 2004). The combination of multi-
ple in-situ measurements (from experiments on several spa-
tially separated spacecraft) and remotely sensed data (from
ground-based experiments) is rapidly emerging as a power-
ful technique that provides multi-point measurements over a
significant fraction of the magnetosphere. However, coordi-
nated multi-spacecraft missions have so far been uncommon.
The advent of the European Space Agency’s Cluster mission
(Escoubet et al., 1997, 2001) has, for the first time, facilitated
truly three-dimensional observations of the magnetosphere.
So far, Cluster and Cluster/ground-based investigations have
yielded several studies of transient reconnection (e.g.Lock-
wood et al., 2001a,b; Opgenoorth et al., 2001; Owen et al.,
2001; Wild et al., 2001, 2003; Maynard et al., 2003; Mar-
chaudon et al., 2004). However, the relatively small sepa-
rations of the Cluster spacecraft (typically<1RE), whilst
ideally suited to the study of small- and meso-scale struc-
tures, are unsuitable for the investigation of structures (such
as FTEs) evolving over large areas of the magnetopause.
The addition of the recently launched Chinese National
Space Administration/European Space Agency pair of Dou-
bleStar spacecraft will provide measurements at two addi-
tional points. In particular, the equatorial spacecraft, whose
orbital apogee is∼12RE , is designed to encounter the day-
side low-latitude magnetopause in the same local time sector
as the Cluster quartet at higher latitudes. In preparation for
such conjunctions, we will therefore examine a similar con-
junction between the Cluster and Geotail spacecraft. During
the interval discussed here, no ground-based data were avail-
able since at the time of the conjunction, dayside local times
corresponded to the Siberian sector (which is poorly instru-
mented). However, we shall compare the in-situ observations
to a simple model of magnetosheath and flux tube motion in
order to investigate the location of reconnection processes on
the dayside boundary. We are thus able to constrain the lo-
cation and size of the reconnection region responsible for the
FTE signatures observed by Cluster and Geotail.

2 Instrumentation

Upstream solar wind and IMF conditions are provided by
the Advance Composition Explorer (ACE) spacecraft (Stone
et al., 1998), located some 225RE upstream of the Earth
in the vicinity of the Sun-Earth L1 libration point. In par-
ticular, we will present data from the ACE magnetic fields
(MAG) experiment (Smith et al., 1998) and the solar wind
electron, proton, and alpha monitor (SWEPAM)(McComas
et al., 1998). In order to compare the upstream IMF and
solar wind conditions with those in the vicinity of the day-
side magnetopause, the ACE data presented below have been
lagged to account for the propagation of structure from the
spacecraft’s location to the terrestrial magnetosphere. In this
case, a comparison of upstream ACE IMF observations and
measurements of the magnetic field in the magnetosheath by
Cluster indicated that a propagation delay of∼33 min was
appropriate (this is discussed further below).



J. A. Wild et al.: Cluster and Geotail observations of FTEs 447

Fig. 1. The orbital motion of the Cluster (coloured circles) and Geotail (black circles) spacecraft presented in the X-Z (left) and X-Y (right)
GSM planes during the interval 07:00–08:00 UT on 17 February 2003.

Figure 1 presents the motion of the Cluster and Geotail
spacecraft in the X-Z (left hand panel) and X-Y (right hand
panel) GSM planes during the interval 07:00–08:00 UT on
17 February 2003. During this interval the Cluster quar-
tet were moving on an outbound trajectory, traversing the
high-latitude post-noon sector (∼13.5 MLT) magnetopause
just after 07:00 UT. Meanwhile, Geotail was moving (at low
southern latitudes) duskward and Earthward from the noon
sector magnetosheath toward the post-noon sector magneto-
sphere (∼12.5 MLT). Figure 1 shows the positions of the
four Cluster spacecraft (indicated by the colour-coded cir-
cles) and Geotail (indicated by the filled black circles) at
07:00 and 08:00 UT. The extent of a model magnetospheric
cavity (Shue et al., 1997) is indicated in the GSM Y=0 (left
hand panel), and Z=0 (right hand panel) plane by the dashed
line. This model is parameterised by the prevailing so-
lar wind dynamic pressure and north-south (BZ) component
of the IMF. In this case, we have chosen lagged upstream
parameters appropriate to the timing of the magnetopause
encounter by Cluster just after 07:00 UT (PDYN=2.3 nPa
and BZ=−0.8 nT, respectively). Measurements of the lo-
cal magnetic field, ion and energetic electron populations
at the Cluster spacecraft are provided by the fluxgate mag-
netometer (FGM; seeBalogh et al., 1997, 2001) and Clus-
ter ion spectrometry (CIS; seeRème et al., 1997, 2001) ex-
periments, and the research with adaptive particle imaging
detectors (RAPID: seeWilken et al., 1997, 2001), respec-
tively. The four spacecraft FGM data employed in this study
have been analysed at a temporal resolution equal to the spin

period of the spacecraft (∼4 s). The CIS experiment mea-
sures moments of the three-dimensional ion distribution be-
tween energies of a few tens of eV/e to around 40 keV/e,
yielding the total ion number density and velocity at spin
resolution. The Imaging Electron Spectrometer (IES) instru-
ment of the RAPID experiment detects electrons with ener-
gies in the range 20 to 400 keV. In this paper we will present
omni-directional IES data from spacecraft 3 only. Corre-
sponding magnetic field and particle observations from the
Geotail satellite are provided by the Geotail magnetic field
experiment (MGF; seeKokubun et al., 1994) and the Geo-
tail low energy particle experiment (LEP; seeMukai et al.,
1994). The MGF data, namely 3-component measurements
of the local magnetic field, have been analysed at a temporal
resolution approximate equal to the spin period of the Geotail
spacecraft (nominally∼3 s). The LEP package comprises
two sensors, namely the LEP Energy-per-charge Analyzers
(LEP-EA) and the LEP Solar Wind ion analyzer (LEP-SW).
These sensors operate over different energy ranges as well
as having different geometric properties, and the the LEP in-
strument effectively selects either one or other as the primary
sensor at any given moment. In practice, the reduced size of
the SW sensor’s sunward-pointing field-of-view compared to
that of the EA device implies that, if immersed in an isotropic
plasma, the SW sensor will underestimate the local ion den-
sity and incorrectly measure the ion velocity. Consequently,
ion velocity and density moments are only presented during
periods when the LEP instrument was recording data from
the EA sensor, spanning the∼32 eV/q–38 keV/q range.
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Fig. 2. (a)A comparison of the clock angle of the magnetic field
observed at ACE (green), Cluster 1 (blue) and Geotail (red) be-
tween 07:00–08:00 UT on 17 February 2003. The ACE data have
been lagged by 33 min.(b) Lagged upstream IMF and solar wind
measurements from the ACE spacecraft. The panels present the X
(blue), Y (green), and Z (red) GSM components of the interplane-
tary magnetic field, the total interplanetary magnetic field strength,
the solar wind velocity, and the proton concentration, respectively.

3 Observations

3.1 Upstream interplanetary conditions

Figure2a presents a comparison of the IMF clock angle ob-
served by ACE with the corresponding parameter measured
at Cluster and Geotail over the interval 07:00–08:00 UT.
The ACE data (colour-coded green) have been temporally
lagged by∼33 min such that the clock angle variations are
in approximate agreement with those observed at Cluster
1 (colour-coded blue) and Geotail (colour-coded red) when
these spacecraft were located in the magnetosheath after
∼07:11 UT (discussed in detail below). Whilst the observed
33-min propagation time of magnetic field structures from
ACE to the dayside magnetosheath is significantly shorter
than the delay estimated by, for example, the technique of
Khan and Cowley(1999) (which in this case was found to
be ∼43 min), the excellent agreement between the lagged
IMF and magnetosheath clock angles provides confidence
in the 33-min propagation delay inferred here. Figure2b
presents the upstream solar wind and IMF conditions ob-
served by ACE during the same interval. These data have
also been lagged by∼33 min, in order to indicate the ap-
proximate solar wind and IMF configuration at the subsolar
magnetopause between 07:00–08:00 UT. During this period,
the IMF was generally oriented earthward (GSMBX−ve),
and duskward (GSMBY +ve) although several brief dawn-
ward excursions were observed. The north-south (GSMBZ)
component fluctuated throughout, varying between±6 nT.
This configuration resulted in an IMF clock angle, defined as
arctan(BY /BZ), that generally varied between 45◦ and 135◦,
whilst the overall magnetic field strength remained relatively
steady at∼7.5 nT prior to 07:20 UT, falling to∼6.5 nT for
the remainder of the interval. We note that a sharp increase in
the solar wind speed from∼600 km s−1 to ∼630 km s−1 at
∼07:11 UT resulted in a 10% increase in the solar wind dy-
namic pressure. Simultaneously, the dayside magnetopause
contracted inward causing the Cluster and Geotail spacecraft
to simultaneously exit the magnetosphere (as discussed in de-
tail below). We interpret this motion of the magnetopause as
a response to the increase in solar wind dynamic pressure,
further justifying the chosen 33-min propagation delay ap-
plied to the ACE observations.

3.2 Cluster and Geotail observations

As indicated in Fig.2a, at∼07:11 UT, the Cluster FGM in-
struments recorded a transition from a magnetospheric to a
magnetosheath magnetic field configuration. This reorienta-
tion of the field was accompanied by a significant increase in
the concentration and bulk speed of the ions observed by the
Cluster CIS instruments (not shown) which, given the po-
sition of the spacecraft, we interpret as an encounter with
the high-latitude post-noon sector magnetopause. Follow-
ing Cluster’s departure from the magnetospheric cavity, the
field and particle signatures of transient magnetic reconnec-
tion (i.e. FTEs) were observed on the magnetosheath side of
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the boundary. In order to scrutinize these features more care-
fully we will compare the measurements of ion concentration
with the magnetic field data from all available spacecraft,
presented in a boundary normal coordinate system (Russell
and Elphic, 1978). We have therefore employed minimum
variance analysis (Sonnerup and Cahill, 1967) on the Cluster
FGM data to determine the outward normal to the boundary
encountered by spacecraft 1 at∼07:11 UT. When applied
to the interval 07:11–07:13 UT, minimum variance analysis
(MVA) yielded an outward normal vector with GSM compo-
nents (+0.78, +0.12, +0.61). The direction of this normal,
being predominantly sunward and poleward, with a small
duskward component, is entirely consistent with the expected
outward normal of the magnetopause in the high-latitude,
post-noon sector. The ratio of the intermediate and minimum
eigenvalues of the covariance matrix, a useful indicator of the
reliability of the solution, was∼16, suggesting that the de-
rived minimum variance direction was robust. Furthermore,
using the technique ofKhrabrov and Sonnerup(1998), we
estimate that the angular standard deviation of the derived
minimum variance vector towards or away from the direc-
tions of intermediate and maximum variance to be∼1◦ and
∼0.4◦, respectively. We are therefore confident that the es-
timated outward normal direction was sound. Of course, the
chief advantage of a multi-spacecraft mission is the ability to
(a) determine the planarity of the boundary by comparing the
boundary normal direction calculated at each satellite, and
(b) estimate any motion of the boundary. In this case, the
Cluster 2 and 4 spacecraft crossed the boundary almost si-
multaneously (within one spin-period of the spacecraft), fol-
lowed by Cluster 1 (some 40 s later), and Cluster 3 (∼3 min
later still). The derived outward-directed boundary normals
at Cluster 2 and 4 were in close agreement to the correspond-
ing normal direction at Cluster 1 (these vectors being sepa-
rated from the spacecraft 1 outward normal by∼8◦ and∼6◦,
respectively). Cluster 3, which started the interval deepest
within the magnetosphere, crossed the magnetopause just af-
ter 07:15 UT. Minimum variance analysis indicated an out-
ward normal almost identical to that observed at the other 3
spacecraft (e.g. within 3◦ of that at Cluster 1).

We therefore infer that the boundary was planar during the
traversals of the four Cluster spacecraft. The relative timing
of the magnetopause crossings of spacecraft 1, 2, and 4 sug-
gests that the boundary moved over the spacecraft with an
approximately constant velocity component of∼25 km s−1

in the inward normal direction (based upon the separation be-
tween those satellites along the MVA-derived boundary nor-
mal direction). Since Cluster 3 did not encounter the mag-
netopause until approximately four minutes after spacecraft
1, 2, and 4, it would perhaps be unwise to base a further
velocity estimate on the four-spacecraft data set (e.g. using
the techniques described byDunlop and Woodward, 1998,
and references therein), as this would rely upon an assumed
constant orientation and continuation of the motion of the
boundary. However, for completeness, we note that the three
velocity estimates relying on spacecraft 3 each indicate an in-
ward velocity of∼10 km s−1. In summary, the Cluster FGM

data reveal the inward motion of the magnetopause over the
spacecraft at∼07:11 UT, the relative planarity of the bound-
ary over the inter-spacecraft separation scale (∼5000 km),
and the approximate orientation of the outward boundary
normal direction.

Figure 3 shows magnetic field data from all four Clus-
ter spacecraft presented in boundary normal coordinates be-
tween 07:20–07:50 UT. This coordinate system is defined
such thatN is the estimated outward normal direction,L lies
in the boundary and points north (such that the L-N plane
contains the GSM Z-axis), andM also lies in the boundary
and points west, orthogonal toL andN (such that (L, M, N )
forms a right-handed coordinate system). The uppermost
panel of Fig.3 shows the total magnetic field measured at
all four spacecraft as a function of universal time, with the
data from each spacecraft colour-coded as indicated, while
the following three panels present theL, M, and N field
components. The corresponding components of the ion ve-
locity, the total ion velocity|V |, and the ion concentration are
presented in the remaining five panels, respectively. In the
case of the plasma data, moments from CIS hot ion analyser
(HIA) sensors on board Clusters 1 and 3 are presented. No
CIS data were available from spacecraft 2, while measure-
ments from the Cluster 4 CIS ion COmposition and DIstribu-
tion Function (CODIF) analyser indicated an unexpected but
sizeable positive component of the flow normal to the local
boundary orientation. We have attributed this inconsistency
to a systematic offset between the velocities recorded by the
Cluster 1/3 (HIA) and Cluster 4 (CODIF) CIS sensors (i.e. an
instrumental, rather than geophysical effect) and the Cluster
4 data are therefore not presented. Simultaneous data from
the RAPID IES instrument (spacecraft 3 only) are compared
to the magnetic field data in Fig.4. The lower panel shows an
energy-time spectrogram of energetic electron flux in the 40–
110 keV range during the interval 07:20–07:50 UT (the same
as in Fig.3). The centre panel presents a time-series of flux
in 52.7–70.3 keV range only. The upper panel shows theBN

component of the magnetic field data recorded at spacecraft
3, as presented in Fig.3.

In contrast to the Cluster spacecraft, which approached the
high-latitude magnetopause on outbound trajectories, Geo-
tail was located at much lower latitude in the post-noon sec-
tor throughout the interval of interest. As indicated by the
magnetic field clock angle comparison presented in Fig.2a,
at the beginning of the interval Geotail (red dots) observed a
magnetic field clock angle of∼0◦ (i.e. approximately north-
ward). This orientation was consistent with a low-latitude
position within the dayside magnetosphere, where the ex-
pected magnetospheric field points predominantly north-
ward, rather than a location in the magnetosheath (given
that the lagged ACE data at that time indicated a duskward
oriented IMF). At∼07:11 UT the spacecraft emerged into
the magnetosheath and the clock angle variations observed
at Geotail began to match closely those seen at Cluster 1
and ACE, and continued to do so until the end of the in-
terval presented. We therefore conclude that following the
07:11 UT magnetopause encounters, Geotail and all four
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Fig. 3. Cluster magnetic field and ion observations during the inter-
val 07:20–07:50 UT on 17 February 2003, colour-coded according
to spacecraft. From top to bottom, the panels present the total mag-
netic field strength, theL, M, andN components of the magnetic
field and the correspondingL, M, andN components of the ion ve-
locity (as described in the text), the total ion velocity, and the local
ion concentration.

Fig. 4. Measurements of energetic electrons made by the RAPID
IES instrument on board the Cluster 3 spacecraft during the interval
07:20–07:50 UT on 17 February 2003. The lower panel presents
an energy-time spectrogram of omni-directional electron flux over
the 40–110 keV range, colour-coded as indicated. The centre panel
presents a time-series in the 52.7–70.3 keV range. For comparison,
the upper panel shows the boundary-normal component of the mag-
netic field observed at the same spacecraft (as presented in Fig.3).

Cluster spacecraft were situated in the magnetosheath, at low
and high latitudes, respectively.

Figure 5 presents magnetic field observations recorded
by the Geotail MGF instrument during the interval 07:20–
07:50 UT (the same interval over which Cluster magnetic
field data is presented in Fig.3). As in the case of the Cluster
measurements, minimum variance analysis has been applied
to the magnetic field data in order estimate the direction of
the outward pointing vector normal to the boundary, with the
data then being organised in boundary normal coordinates. In
this case, we have applied MVA during 07:11–07:13 UT, cor-
responding to the interval when Geotail emerged from a mag-
netospheric into a magnetosheath magnetic field configura-
tion. This interval also corresponds to the outbound magne-
topause crossing observed by the Cluster spacecraft at higher
latitudes, presumably due to the global (inward) motion of
the magnetopause at that time. Minimum variance analy-
sis yields a boundary normal vector with GSM components
[+0.93, +0.05,−0.36], with the ratio of the intermediate to
minimum eigenvalues of the covariance matrix being∼4.4.
In this case, the angular standard deviations of the minimum
variance direction either towards or away from the interme-
diate and maximum variance directions were∼10◦ and∼1◦,
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respectively. This uncertainty, while larger than in the cor-
responding Cluster MVA, remains acceptable. Furthermore,
the derived boundary normal direction, being predominantly
sunward, with a small southward and almost no dawn-dusk
component, is entirely consistent with the expected outward
pointing direction of the magnetopause just southward of the
subsolar point. The arrangement of the panels in Fig.5 is
similar to those in Fig.3, with the panels presenting (from
top to bottom) the total magnetic field strength, theL, M,
and N components of both the magnetic field and the ion
velocity, the total ion velocity, and the local plasma concen-
tration.

3.3 Signatures of magnetic reconnection

During the interval 07:20 UT–07:50 UT, several (at least
seven) large amplitude bipolar oscillations were observed by
the Cluster spacecraft, each usually associated with an en-
hancement in the overall magnetic field strength and varia-
tions in the magnetic field components in the plane of the
magnetopause. These signatures, examples of which oc-
curred at∼07:25, 07:28, 07:31, 07:33, 07:37, 07:39, and
07:41 UT, were observed in the magnetosheath and set
against a highly variable background magnetic field. The
approximate timings of these features, defined by the local
peaks in total magnetic field strength, are indicated by dashed
lines in Fig. 3, labeledi–vii, respectively. In general, we
have defined as possible FTE signatures those structures that
exhibit significant enhancements in the total magnetic field
strength (above the background fluctuations in|B|) and iden-
tifiable contemporaneous bipolar variations in theBN com-
ponent of the magnetic field. The peak-to-peak magnitude
of the bipolar variations exceed 10 nT in each case (and ap-
proached 50 nT in the 07:25 UT feature observed at Cluster
spacecraft 1 and 3). As such, the bipolar variations indicated
in the figure have peak-to-peak amplitudes in excess of the
10 nT discriminator employed byRijnbeek et al.(1984).

The simultaneous plasma measurements presented in
Fig. 3 are generally as expected for a location in the magne-
tosheath exterior to the high-latitude post-noon sector mag-
netopause. The Cluster 1 and 3 observations are generally
in excellent agreement throughout, indicating anti-sunward
magnetosheath flow dominated by components in theL and
−M directions. (of which theL component is larger). These
data therefore indicate flow in a predominantly northward
and duskward direction. For most of the interval, the compo-
nent of the flow normal to the boundary was significantly
smaller than the flow in the plane parallel to the magne-
topause. Given the highly variable nature of the magne-
tosheath flow observed by the Cluster spacecraft, it is dif-
ficult to establish a one-to-one correlation with the possible
FTE structures inferred from the magnetic field data. How-
ever, in some cases there were indications of plasma varia-
tions associated with the FTE magnetic field perturbations.
Notable examples are the reduction in plasma density during
FTE eventi and enhancements within±1 min of eventsv,
vi, andvii observed at spacecraft 1 and 3 (each apparently

Fig. 5. Magnetic field and plasma observations from the Geotail
spacecraft during the interval 07:20–07:50 UT on 17 February 2003
presented in the same format as Fig.3.

associated with burst of increased anti-sunward flow), al-
though we acknowledge that such interpretation is somewhat
subjective, given the variability of the data.

Examination of the RAPID IES data from the Cluster 3
spacecraft (which was located closest to the magnetopause
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Fig. 6. (a)A comparison of|B| andBN measurements from Cluster
3 and Geotail. FTEs identified previously are indicated by arrows,
labelledi–vii (Cluster) anda–d(Geotail) as in Figs.3 and5, respec-
tively. (b) the same data as (a), but band-pass filtered in order to
reveal the FTE signatures more clearly.

during this interval) indicated enhanced fluxes of energetic
electrons with the majority of the seven events identified
from the magnetic field data. As shown in Fig.4, the majority
of the magnetic FTE signatures were closely associated with
a burst of electrons whose energies were typical of magneto-
spheric particles. In each case, the observed electron flux was
around two orders of magnitude lower than observed on the
magnetospheric side of the magnetopause earlier in the inter-
val (not shown), as expected for FTEs in the magnetosheath
(e.g.Daly and Keppler, 1982). A burst of energetic electrons
centred on∼07:21 UT was not accompanied by a signifi-
cant magnetic perturbation. We suggest that this may be the
final remnants of the magnetopause boundary layer associ-
ated with the outbound magnetopause crossing just prior to
the beginning of the interval included in this figure. We also
note that the final observation of significant fluxes of ener-
getic magnetospheric electrons coincided with the magnetic
signature of the penultimate FTE (vi). The final FTE (event
vii) was not associated with a burst of energetic electrons.
This is most likely a consequence of the final FTE passing in
close proximity to the spacecraft, resulting in the observation
of disturbed magnetosheath field lines draped over the open
flux tube, but not actually penetrating the FTE (and therefore
not observing magnetospheric plasma).

During this interval, the Geotail magnetic field measure-
ments, presented in Fig.5, were also characterised by several
large-amplitude, bipolar perturbations observed in the nor-
mal component of the field. These perturbations were gen-
erally associated with enhancements in the overall magnetic
field strength and variations in the direction of the field in the
plane of the magnetopause. These are indicated in Fig.5 by
dashed vertical lines labelleda–d. As was the case for similar
observations made by Cluster at higher latitudes, we interpret
these perturbations as the characteristic signatures of FTEs
in the vicinity of the magnetopause. Once again, we note
that the differentiation of FTE signatures from “background”
variations in the magnetic field is not trivial. In particular, the
enhancements in the overall magnetic field strength observed
at Geotail are less clear than the equivalent features at Clus-
ter. However, for the examples indicated in Fig.5, we have
identified features that exhibit a clear local peak in the total
magnetic field strength and a significant perturbation in the
boundary normal component of the field. We acknowledge
that it is likely that we have identified only a subset of the
FTE signatures embedded within the data. As with the FTEs
observed at much higher latitudes by Cluster, a variety ofBN

type signatures are apparent.
As discussed in Sect.3.2, appropriate Geotail plasma data

were only available for a fraction of the interval presented in
Fig. 5. These ion velocity moments indicate that during and
immediately following the 07:29 UT FTE (b), the flow speed
was∼150 km s−1, predominantly in the−L (i.e. southward)
direction, as expected for a satellite located∼1.5RE south-
ward of the subsolar stagnation point. At approximately
07:42 UT, during the final FTE candidate event, a burst
of high-speed ion flow was observed. This∼300 km s−1

flow burst, superimposed upon a background flow similar to
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that observed during eventb, was mainly in the−L (south-
ward) direction, although significant components in the−M

(duskward) and−N (inward) directions were observed. Ion
density measurements, where available, indicated density be-
tween 10–15 cm−3 during both events.

4 Discussion

Figures3, 4, and5 present the field and particle signatures
of flux transfer events in the vicinity of the dayside mag-
netopause observed by Cluster and Geotail, respectively. In
both cases, the signatures were embedded within a complex
and highly-variable magnetosheath field and plasma environ-
ment. As such, we acknowledge that the list of FTEs identi-
fied during this interval is unlikely to be exhaustive and that
other, less well-defined events may have been overlooked.
This favourable conjunction of spacecraft has neverthless re-
vealed the simultaneous signatures of magnetic reconnection
at similar magnetic local times but at greatly seperated lati-
tudes.

Figure6a presents an overview of the magnetic field sig-
natures of FTEs observed at Cluster and Geotail. The upper
panel presents a comparison of the|B| time-series recorded
by Cluster 3 and Geotail, respectively, while the lower panel
shows theBN component of the field. We have chosen to
present data from Cluster 3, since during this period, it was
this spacecraft that was in closest proximity to the magne-
topause. The flux transfer events identified in Figs.3, 4, and
5 are indicated by arrows in each panel, employing the same
i–vii and a–d labelling as previously. In order to substan-
tiate our interpretation of the signatures and further investi-
gate timing of the FTEs observed at each spacecraft, we shall
first remove the low amplitude, high frequency perturbations
from these time-series. Figure6b therefore presents the same
data as Fig.6a, but low-pass filtered in order to remove vari-
ations with periods less than 1 min. Furthermore, the|B|

time-series have also been highpass filtered to remove vari-
ations with periods greater than 20 min. As with all filtered
data, caution must be exercised such that any subsequent in-
terpretation is not reliant upon features (or the lack thereof)
that may have been added (or removed) by the actual filtering
process. However, in this case, the filtered data presented in
Fig. 6b are broadly speaking a faithful representation of the
large-scale structure present in the unfiltered measurements.
Once again, we acknowledge that there may be further FTE
signatures in these time series, in addition to those labelled in
Fig. 6, but we shall not seek to define any further candidates
at this stage.

It is clear that during this interval, the characteristic signa-
tures of magnetic reconnection were observed contempora-
neously in the magnetosheath, at both high and low latitudes
during a window of approximately 20 min in duration. More-
over, the almost continuous train of FTEs appeared to cease
simultaneously at all five spacecraft. Given that such widely
separated multi-spacecraft observations are somewhat rare,
we therefore consider what the observations reveal regarding

the location of the reconnection site during the interval pre-
sented. In order to study these signatures in a quantitative
fashion, we have employed a realistic model of open flux
tube motion based on that ofCooling et al.(2001) to in-
vestigate the motion of newly-reconnected flux tubes over
the dayside magnetopause (subsequently referred to as “the
Cooling model”). Whilst a detailed description of this model
is not appropriate here, we shall outline the basic elements of
our implementation. This simple model, an evolution of the
model of Cowley and Owen(1989), considers the draping
and strength of the magnetosheath magnetic field, magne-
tosheath flow velocity, and density over the surface of a sim-
ple paraboloid magnetopause, based upon the models ofKo-
bel and Fl̈uckiger(1994) andSpreiter et al.(1966). In the un-
modified Cooling model, a test for steady-state reconnection
between the magnetosheath and magnetospheric field (which
is everywhere constrained to lie parallel to the magnetopause
and point away/toward the southern/northern cusp) may be
applied at any point on the surface of the magnetopause. This
effectively compares the mean current density in the magne-
topause current sheet with some arbitrary threshold value,
allowing reconnection to occur if the mean current exceeds
the threshold. If reconnection is permitted, a reconnection
X line of fixed length is constructed in the direction of the
merging current calculated at the reconnection site. The in-
stantaneous flux tube motion along the magnetopause due to
the effects of stress balance in the reconnected flux tubes and
magnetosheath flow, at the so-called de Hoffman-Teller ve-
locity (de Hoffman and Teller, 1950), is then calculated, as
indicated in Fig.7a. The subsequent motion of reconnected
flux tubes is then traced, via iteration, over the surface of
the magnetopause and into the magnetotail from several lo-
cations on the X line.

In our modified implementation of the model, the steady-
state reconnection test is not applied. Instead, we are able to
monitor the subsequent motion of the reconnected flux tubes
(i.e. FTEs) away from a user-defined reconnection site (i.e.
foregoing the reconnection test). By doing this, we are able
to compare the expected flux tube motion with the observed
FTE signatures without constraining the location of the re-
connection site, using an assumed threshold to the reconnec-
tion process. Furthermore, rather than imposing a particu-
lar X line orientation, we simply trace the flux tube motion
from several point-like reconnection sites in order to mimic
the effects of a spatially extended X line (for a discussion of
reconnection site location and X-line geometry modelling,
the reader is directed toMoore et al., 2002, and references
therein).

In the first instance, we shall investigate the FTE signa-
tures observed at Cluster and Geotail at∼07:25 UT (events
i and a, respectively). Given that this was the first mag-
netosheath FTE observed, that the signature was distinct
at all spacecraft, and coming some three minutes after the
lagged upstream IMF observations indicated a reorientation
to ∼180◦ clock angle, it is possible that in this case the
near-simultaneous observations made at widely separated lo-
cations are consequences of the same reconnection event.
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Fig. 7. (a)Velocity space diagram illustrating the relationship between the various velocity vectors following reconnection at an arbitrary
point (afterCooling et al., 2001). In this case the magnetosheath and geomagnetic field vectors (Bms andBgm, respectively) are indicated
in the top right corner. The magnetosheath flow in the Earth’s rest frame,V SH , is indicated by the dot-dashed line. Following reconnection,
a pair of open flux tubes is formed, connected to the northern and Southern Hemisphere cusps, respectively. In the rest frame of each
reconnected flux tube (i.e. the de Hoffman-Teller frames), which have origins OHT N and OHT S , respectively, the magnetosheath flow
appears as a field-aligned flow at the Alfvén speed. In the case of the flux tube anchored to the Northern (Southern) Hemisphere cusp,
this is indicated by the solid (dashed) arrow labelledVAbms (−VAbms ). Consequently, the instantaneous velocies of the flux tubes (at
the de Hoffman-Teller velocity) can be constructed as indicated by the dotted vectors markedV HT N andV HT S , respectively. Plasma in
the magnetospheric boundary layer is also moving at the Alfvén speed along the geomagnetic field line in the de Hoffman-Teller frame,
indicated by vectors labelledVAbgm and−VAbgm, respectively.(b) The equivalent velocity space diagram for an open flux tube anchored
in the Northern Hemisphere cusp, in the vicinity of the Cluster spacecraft at∼07:35 UT, as described in the text. In this case, the draped
magnetosheath field is oriented predominantly in the duskward direction. The field-aligned magnetosheath flow in the rest frame of the
flux tube (VAbms ), while smaller in magnitude than the predominantly northward directed super-Alfvénic magnetosheath flow (V SH ),
contains a larger component in the dawn-dusk direction. The resulting motion of the flux tube, at the de Hoffman-Teller velocity (V HT N ),
is predominantly northward with a small dawnward component.

Figure 8a presents results of the Cooling model that sup-
port this inference. This figure shows a view of the day-
side magnetopause in the GSM Y-Z plane as viewed from
the Sun. The concentric dotted circles indicate the magne-
topause in the GSM Y-Z plane atX positions ofX=+5RE ,
0RE , −5RE , and−10RE while the cusps are represented
by the diamond symbol. In this model, the cusps are po-
sitioned at the GSM locations (0.5RMP , 0, ±RMP ), where
RMP is the radius of the model magnetopause at the subso-
lar point. In this case,RMP has been set to 10RE , roughly
the value predicted by the model ofShue et al.(1997) dur-
ing this interval. At 07:22 UT, just prior to the FTE obser-
vations at the spacecraft, the lagged IMF had GSM compo-
nents (−3.6 nT,−0.5 nT,−5.0 nT), i.e. southward but with a
substantial earthward component. The resulting IMF clock
angle is indicated in the upper right-hand corner of Fig.8a.

In this case, the initial reconnection site was positioned
just poleward of the subsolar point at GSM coordinates
(+9.9RE , 0RE , +1RE), where a large shear between the
draped magnetosheath and geomagnetic fields was expected

(indicated by a red cross in the figure). Open flux tubes were
then tracked (forwards in time) from this point over an inter-
val of six minutes. The motion of open flux tubes anchored
in the Northern (Southern) Hemisphere is thus indicated by
the dashed (solid) trace. Similarly, open flux tubes were
traced from two additional locations, displaced 1 and 2RE

duskward of the original point, respectively. For compari-
son, the positions of the four Cluster spacecraft (indicated by
the filled circles, colour-coded as in Fig.1) and Geotail (indi-
cated by the filled black circle) at 07:25 UT are also included.

Clearly, an azimuthally extended X line that includes (but
is not limited to) the points indicated by red crosses in Fig.8a
results in open flux tubes that move (under the effects of the
magnetic tension force and magnetosheath flow) during the
few (∼3) minutes after reconnection, over the locations of
the Cluster and Geotail spacecraft. In this example, the flux
tubes connected to the Southern Hemisphere arrive at Geotail
slightly (∼90 s) before the corresponding Northern Hemi-
sphere flux tubes arrive at Cluster, as was the case for the
i/a pair of events indicated in Fig.6. This is a consequence of
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Fig. 8. The simulated path of open magnetic flux tubes over magnetopause derived from the Cooling model. Each panel represents the
dayside magnetopause as viewed from the Sun for the IMF direction indicated in the upper right corner. Concentric dotted circles indicate the
radius of the magnetopause in theX=+5, 0,−5, and−10RE planes while the location of the cusps are indicated by the diamond symbols.
In each panel, reconnection has been initiated at locations indicated by the red crosses. Flux tubes anchored in both the northern (dashed
lines) and Southern Hemisphere (solid lines) are traced over 6-min intervals. The Cluster and Geotail spacecraft are indicated by the filled
circles, colour-coded as in Fig.1. The FTE velocity in the Northern Hemisphere, based on multi-spacecraft observations and the estimated
open flux tube velocity yielded by the Cooling model, are indicated by the green and black vectors, respectively (scale: 1RE=100 km s−1).

our choice of positiveZGSM locations for the reconnection
sites, although we note that this effect is relatively insensi-
tive to small changes in the orientation of our notional X line
(suggesting that the simulation results are stable, rather than
contrived). We emphasise that the reconnection sites pre-
sented here have been selected, following multiple runs of the
model, in order to give good agreement with the timing of the
observed FTE signatures. Larger scale (∼RE) changes to the
location of the postulated X line resulted in flux tube motion
inconsistent with the observation of FTEs at both Cluster and
Geotail. The Cooling model is therefore able to reproduce
the timing of the FTEs observed in this case with surprising
accuracy, assuming that reconnection occurs simultaneously
over the whole of the X line.

Furthermore, the model estimates that by the time they
reached the approximate location of the Cluster space-
craft, the flux tubes were moving along the surface of
the magnetopause at∼400 km s−1 with GSM compo-
nents (−270 km s−1, +93 km s−1, +286 km s−1). This mo-
tion, at the de Hoffman-Teller velocity, compares favourably
with the estimated speed of the FTE obtained by compar-
ing the arrival time of specific, identifiable features within
the magnetic field data observed by the four, spatially dis-
placed spacecraft. When high resolution FGM data are
examined in detail (not shown), the positive edge of the
positive-to-negative bipolar signature (eventi) takes∼15 s
to convect across all four spacecraft. Assuming that the
leading edge of FTE structure was planar, constrained to
move in the plane of the magnetopause, and travelled

at approximately constant velocity over the tetrahedron,
analysis of the multi-spacecraft timing information reveals
that the propagation speed of the structure normal to the
FTE “front” was ∼380 km s−1, with GSM components
(−229 km s−1, +79 km s−1, +295 km s−1). For compari-
son, the Cooling model flux tube velocity vector in the vicin-
ity of Cluster, and the FTE convection velocity vector based
upon the multi-spacecraft observations are superimposed on
Fig. 8a, coloured black and green, respectively. Noting that
at the spacecraft which observed the largest (and longest last-
ing) bipolar fluctuation (Cluster 3), the structure took∼40 s
to pass over the spacecraft (peak-to-peak), we infer a scale
size of∼2RE in the direction of motion. As a further indica-
tion of the robustness of the model, we note that the average
ion velocity directions measured at Cluster during 20-s win-
dows centred on the FTE were broadly consistent with the
direction of motion of flux tubes predicted by the Cooling
model. During the event, the three Cluster spacecraft with
operating particle detectors observed a region of depleted ion
density during the passage of the FTE which corresponded to
a region of suppressed ion velocity.

Following the first “pair” of FTEs, the assignment of fur-
ther corresponding pairs of signatures becomes increasingly
subjective due to the relative short inter-FTE period (∼ few
minutes at Cluster). However, we shall briefly investigate
the sequence of FTEs observed by Cluster and Geotail after
∼07:32 UT (i.e. the latter portion of the interval presented
in Figs. 3, 4, 5 and 6). During these events, the period
of the BN component fluctuations observed at Cluster was
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comparable to the inter-event period (∼2–3 min). Whilst the
two events identified at Geotail are separated by a longer in-
terval, examination of the noisy magnetic field data suggest
that it is highly likely that further FTEs (below the thresh-
old of objective discrimination) occur between eventsc and
d. Consequently, it is all but impossible to delimit individual
events or confidently ascertain the correspondence of events
between Cluster and Geotail. We note that during this in-
terval, the rate at which FTEs were observed was within the
range of repetition times reported byLockwood and Wild
(1993). Given the reduced IMF clock angle during this pe-
riod a slight (∼0.5RE) equatorward displacement and az-
imuthal extension of the X line was required in order produce
open flux tubes that propagated over the locations of Cluster
and Geotail (Fig.8b). In this case, by the time it arrived
at Cluster, the northward and duskward motion of the mod-
elled open flux tube had evolved into northward and slightly
dawnward motion. As indicated in Fig.7b, this motion was a
consequence of the predominantly duskward pointing draped
magnetosheath field at this location. The duskward compo-
nent of the super-Alfv́enic magnetosheath flow at this posi-
tion was slightly smaller than the duskward component of
the field-aligned magnetsheath flow in the rest frame of the
flux tube (a consequence of the magnetosheath flow model
employed). Consequently, in the rest frame of the Earth, the
flux tube exhibited a poleward and slightly dawnward mo-
tion. Detailed examination of the Cluster magnetometer data
during the final event (vii) indicates that the ordering of the
observed structure as it passed over the spacecraft was once
again in concordance with the northward and duskward mo-
tion of a planar structure moving at∼305 km s−1. The du-
ration of the events observed at the Cluster spacecraft were
similar to those in the earlier interval (∼40 s), indicating a
scale size∼2RE . This is supported by the fact that all four
spacecraft observed similar amplitude signatures, implying
a lower limit for the spatial scale of the order of the space-
craft separation (∼5000 km). As indicated in Fig.8b, the
observed flux tube motion is consistent with the Cooling
estimate of the flux tube’s speed in the vicinity of Cluster
(∼297 km s−1). However, the predicted direction of propa-
gation was not as accurate as in the previous case (the differ-
ence in this case between prediction and observation being
∼30◦ in the plane of the model magnetopause). Investiga-
tion of the model indicates that under suchBY dominant IMF
conditions, the dawnward motion of flux tubes in the high-
latitude post-noon sector is not uncommon. The discrepancy
between the predicted flux tube motion and that inferred from
multi-spacecraft data (which in this case appears to be rea-
sonable) is an intrinsic effect of the simple geomagnetic and
magnetosheath field, and magnetosheath plasma models re-
lied upon by the Cooling technique.

It is also worthwhile considering the polarity of the FTE
signatures presented here. At Cluster, located in the high-
latitude Northern Hemisphere magnetosheath, eventi was
a clear example of a normal polarity bipolar perturbation
whilst eventsii–vii were less clear cut: depending upon the
definition of the FTE timing they could be interpreted as

either normal or reverse polarity. However, we infer the
bipolar FTE signatures to be of the normal polarity based
upon the FTE timings derived from energetic electron obser-
vations. We note that this is consistent with the high-latitude
position on the spacecraft (as suggested by previous stud-
ies, e.g.Berchem and Russell, 1984; Rijnbeek et al., 1984;
Kawano et al., 1992; Russell et al., 1996). The simultaneous
Geotail measurements, made slightly southward of the equa-
tor, present a complex scenario: eventa is distinctly asym-
metric and best classified as “irregular” while eventb is of
the reverse polarity. At first inspection eventsc andd appear
to be of normal polarity, although this interpretation is by no
means clear-cut. Without clearer|B| signatures, or reliable
plasma data, it is not possible to determine the polarity of
these fluctuations with absolute certainty.

5 Summary and conclusions

We have presented in-situ observations of the signatures
of FTEs at multiple positions in the magnetosheath during
the interval 07:20–07:50 UT on 17 February 2003. During
this time, the Cluster spacecraft were located in the mag-
netosheath, moving away from the high-latitude post-noon
sector magnetopause. At the same time, Geotail was located
in near-noon sector, at equatorial latitudes in the Southern
Hemisphere. The FTE signatures observed by Cluster and
Geotail were principally characterised by bipolar perturba-
tions in the magnetic field component in the direction normal
to the magnetopause and enhancements in the overall mag-
netic field strength. This was consistent with the expected
enhanced rate of dayside reconnection resulting from the pre-
vailing IMF orientation at the time, namely southward and
duskward.

Our comparison of the field and particle signatures ob-
served at high and low latitudes, using multi-point Cluster
data wherever possible, has enabled us to infer the scale
and motion of the FTEs. A modified implementation of
the flux tube model ofCooling et al.(2001) has been em-
ployed in order to investigate the expected time of arrival
and direction of motion of open flux tubes (FTEs) at the lo-
cations of Cluster and Geotail. For the first FTE signatures
observed at the spacecraft, simulations were able to repro-
duce the measured propagation delay with considerable ac-
curacy, suggesting that reconnection may have been initiated
almost simultaneously along an X line located slightly pole-
ward of the equatorial plane and extending at least∼3RE

in length in the azimuthal direction. The predicted north-
ward evolution of reconnected flux tubes anchored in the
Northern Hemisphere resulted in them passing over the lo-
cations of the Cluster satellites, and was entirely consistent
with the observation of normal polarity FTE signatures by
each spacecraft. Similarly, the estimated southward evo-
lution of reconnected flux tubes anchored in the Southern
Hemisphere passed over the location of Geotail (although
in this case an irregular FTE signature was observed by the
spacecraft). The convection speed and direction of the FTE
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structure, inferred from the multi-spacecraft measurements
made by Cluster (∼400 km s−1 in the predominantly tailward
and duskward direction), was in general agreement with the
estimated speed and direction of the flux tubes at the location
of Cluster yielded by the model. If propagating at this speed,
the duration of the Cluster observations suggest the scale size
of the FTE to be∼2RE in the direction of motion. An irreg-
ular, asymmetric perturbation observed at Geotail was also
inferred to be the consequence of an open flux tube anchored
in the Southern Hemisphere given the good agreement be-
tween the estimated propagation direction and the observed
ion flow, and the inferred position of the X line required to
initiate the propagation of northward moving FTEs consis-
tent with those observed at Cluster. We note that this depar-
ture from the expected reverse polarity signature is in keep-
ing with the observations ofDaly et al.(1984), who demon-
strated southward moving flux tubes may give rise to signa-
tures other than the expected “normal” polarity under certain
circumstances andSanny et al.(1998), who proposed that
FTEs formed at an equatorial X line emerge with strongly
asymmetric signatures which evolve into the familiar bipolar
signature at increasing distances from the X line.

The train of FTEs observed by both Cluster and Geotail
during the latter part of the interval under scrutiny was more
difficult to classify in terms of normal or reverse polarity sig-
natures due to the rapid repetition rate of the FTEs. How-
ever, as with the earlier events, consideration of the expected
evolution of newly-reconnected flux tubes via the model of
Cooling et al.(2001) indicates that the FTEs were not incon-
sistent with a low-latitude X line extending at least several
RE in azimuth. Furthermore, as in the earlier cases, the esti-
mated propagation velocity of FTE structures based on multi-
spacecraft observations is in excellent agreement with the
open flux tube propagation velocity predicted by the Cool-
ing model. The duration of the FTE signatures during these
events also indicates a scale-size of∼2RE in the direction of
motion.

In effect, during the interval presented, we have utilised
the multi-point observations (over multiple scale lengths) in
order to constrain the inferred location of the reconnection
region. By employing a simple model of flux tube motion
in the magnetosheath, we have suggested a possible source
region of the FTEs observed by the five spacecraft em-
ployed in this study. It is interesting to note that without,
for instance, the Geotail data, we might have suggested
many reconnection configurations that would have resulted
in the Cluster observations of FTEs in the high-latitude
post-noon sector (or vice versa). However, the provision of
observations at both high and low latitudes has in this case
constrained the reconnection site to lie at near equatorial
latitudes. However, the complexity of the FTE signatures
observed during this interval has, in most cases, frustrated
attempts to identify any pairing between the events observed
at Cluster and Geotail. We anticipate that the advent of the
Cluster/DoubleStar programme will yield many favourable
conjunctions suitable for investigation by a similar technique.

Given the renewal of interest in large separation in-situ in-
vestigations prompted by the Cluster and DoubleStar com-
panion missions, and the current and unprecedented level of
ground/space based coordination, we expect investigations
such as this to incorporate ground-based data in the future.
Indeed, ground-based data would have proven invaluable in
this analysis since the ionosphere signatures of reconnec-
tion can reveal a great deal regarding reconnection processes
over a significant fraction of the dayside magnetopause, and
would have provided an additional foothold in the interpre-
tation of the different signatures of magnetic reconnection at
widely separated latitudes.
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