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Generic miniband structure of graphene on a hexagonal substrate
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Using a general symmetry-based approach, we provide a classification of generic miniband structures for
electrons in graphene placed on substrates with the hexagonal Bravais symmetry. In particular, we identify
conditions at which the first moiré miniband is separated from the rest of the spectrum by either one or a group
of three isolated mini Dirac points and is not obscured by dispersion surfaces coming from other minibands. In
such cases, the Hall coefficient exhibits two distinct alternations of its sign as a function of charge carrier density.
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I. INTRODUCTION

Recently, it has been demonstrated that the electronic
quality of graphene-based devices can be dramatically im-
proved by placing graphene on an atomically flat crystal
surface, such as hexagonal boron nitride (hBN).1–7 At the same
time, graphene’s electronic spectrum also becomes modified,
acquiring a complex, energy-dependent form caused by in-
commensurability between the graphene and substrate crystal
lattices.8–10 In particular, for graphene placed on hBN, the
difference between their lattice constants and crystallographic
misalignment generate a hexagonal periodic structure known
as a moiré pattern.2,3,8–10 The resulting periodic perturbation,
usually referred to as a superlattice, acts on graphene’s charge
carriers and leads to multiple minibands11 and the generation
of secondary Dirac-like spectra. The resulting new Dirac
fermions present yet another case where graphene allows
mimicking of QED phenomena under conditions that cannot
be achieved in particle physics experiments. In contrast to rela-
tivistic particles in free space, the properties of secondary Dirac
fermions in graphene can be affected by a periodic sublattice
symmetry breaking and modulation of carbon-carbon hopping
amplitudes, in addition to a simple potential modulation. The
combination of different features in the modulation results in
a multiplicity of possible outcomes for the moiré miniband
spectrum in graphene, which we systematically investigate in
this paper.

II. SUPERLATTICE HAMILTONIAN

To describe the effect of a substrate on electrons in graphene
at a distance, d, much larger than the spacing, a, between
carbon atoms in graphene’s honeycomb lattice, we use the

earlier observation8–10,12–15 that, at d � a, the lateral variation
of the wave functions of the P z carbon orbitals is smooth on
the scale of a. This is manifested in the comparable sizes
of the skew and vertical hopping in graphite and permits
an elegant continuum-model description12–15 of the interlayer
coupling in twisted bilayers and the resulting band structure.
A similar idea applied to graphene on a hBN substrate8–10

suggests that a substrate perturbation for Dirac electrons
in graphene can be described in terms of simple harmonic
functions corresponding to the six smallest reciprocal lattice
vectors of the moiré superlattice.

Below, we shall use a similar approach to analyze the
generic properties of moiré minibands for electrons in
graphene subjected to a substrate with a hexagonal Bravais
lattice with a slightly different lattice constant of (1+δ)

√
3a,

|δ|�1, compared to that of
√

3a for graphene, and a small
misalignment angle, θ �1. The moiré pattern harmonics are
described by vectors

bm=0,...,5 = R̂ 2πm
6

b0, b0 = [1 − (1+δ)−1R̂θ ]

(
0,

4π

3a

)
, (1)

with length |b0| ≡ b ≈ 4π
3a

√
δ2+θ2, which can be obtained

from each other by the anticlockwise rotation, R̂2πm/6. For
a substrate with a simple hexagonal lattice or a honeycomb
lattice with two identical atoms, the perturbation created for
graphene electrons is inversion-symmetric. For a honeycomb
substrate where one of the atoms would affect graphene
electrons stronger than the other (e.g., such as hBN, for
which the occupancy and size of the P z orbitals are different)
the moiré potential can be modeled as a combination of a
dominant inversion-symmetric part with the addition of a small
inversion-asymmetric perturbation,

Ĥ = v p · σ + u0vbf1(r) + u3vbf2(r)σ3τ3 + u1v [lz × ∇f2(r)] · σ τ3 + u2v∇f2(r) · σ τ3

+ ũ0vbf2(r) + ũ3vbf1(r)σ3τ3 + ũ1v[lz × ∇f1(r)] · σ τ3 + ũ2v∇f1(r) · σ τ3. (2)

The Hamiltonian Ĥ acts on four-component wave func-
tions, (�AK,�BK,�BK ′ ,−�AK ′)T , describing the electron

amplitudes on graphene sublattices A and B and in two
principal valleys, K and K ′. It is written in terms of direct
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TABLE I. The inversion-symmetric parameters vbui for various
models of the moiré superlattice. In the 2D charge modulation model,9

V0 is a phenomenological parameter. The G-hBN hopping model in
Ref. 10 used the hopping parameter from twisted bilayer graphene.
Estimates in Appendix B show that the sets of parameters using a
model of point charges attributed to nitrogen sites and for the G-hBN
hopping model are very similar.

vbu0 vbu1 vbu2 vbu3

Model [meV] [meV] [meV] [meV]

Potential modulation8 60 0 0 0

2D charge modulation9 − V0
2 0 0

√
3V0
2

One-site version of G-hBN 1.6 −3.2δ√
δ2+θ2

3.2θ√
δ2+θ2

−2.8
hopping10 (Appendix B 2)

Point charge lattice ṽ

2
−ṽδ√
δ2+θ2

ṽθ√
δ2+θ2

−
√

3ṽ

2
(Appendix B 1), 0.6� ṽ�3.4

products σiτj , of Pauli matrices σi and τj separately acting on
sublattice and valley indices. The first term in Ĥ is the Dirac
part, with p=−i∇−eA describing the momentum relative
to the center of the corresponding valley, with ∇× A=B.
The rest of the first line in Eq. (2) describes the inversion-
symmetric part of the moiré perturbation, whereas the second
line takes into account its inversion-asymmetric part. In the first
line, the first term, with f1(r) = ∑

m=0,...,5 eibm·r , describes a
simple potential modulation. The second term, with f2(r) =
i
∑

m=0,...,5(−1)meibm·r , accounts for the A–B sublattice asym-
metry, locally imposed by the substrate. The third term, with
unit vector lz, describes the influence of the substrate on the
A–B hopping: consequently,16–18 this term can be associated
with a pseudomagnetic field, eβ = ±u1b

2f2(r), which has
opposite signs in valleys K and K ′. Each of the coefficients
|ui | � 1 in Eq. (2) is a dimensionless phenomenological
parameter with the energy scale set by vb ≈ 2π

√
δ2 + θ2γ0,

where γ0 ≈ 3 eV is the nearest-neighbor hopping integral in
the Slonczewski-Weiss tight-binding model.19 Concerning the

inversion-asymmetric part, the second line in Eq. (2), we
assume that |ũi | � |ui |. Note that the last term in each line
can be gauged away using ψ → e−iτ3(u2f2+ũ2f1)ψ .

Hamiltonian Ĥ may be used to parametrize any micro-
scopic model compatible with the symmetries of the system
(see Appendix A) and the dominance of the simplest moiré
harmonics eibm·r in the superlattice perturbation. The values
that parameters ui take are listed in Table I for several models
of graphene on an hBN substrate, both taken from the recent
literature8–10 and analyzed in Appendix B, including a simple
model in which the hBN substrate is treated as a lattice
of positively charged nitrogen nuclei with a compensating
homogeneous background of electron P z orbitals. The ex-
amples of model-dependent values of parameters ui , listed
in Table I, indicate that the combination of several factors
can strongly shift the resulting moiré perturbation across the
parameter space in Fig. 1. That is why, in this work, we analyze
the generic features of the miniband spectra generated by
the moiré superlattice, rather than attempt to make a brave
prediction about its exact form for a particular substrate.

In the absence of a magnetic field, the Hamiltonian (2)
obeys time-reversal symmetry, which follows from both σi

and τi changing sign upon the transformation t → −t .20 As a
result, εK+ p = εK ′− p and we limit the discussion of minibands
to the K valley. Subject to this limitation, the band structure
for the inversion-symmetric superlattice perturbation obeys the
c3v symmetry. Moreover, using the commutation properties of
σi , one can establish that

ε
u0,u1,u3
K+ p = −ε

−u0,−u1,u3
K− p =−ε

−u0,u1,−u3
K+ p =ε

u0,−u1,−u3
K− p . (3)

III. GENERIC MINIBAND SPECTRA

To calculate the miniband spectrum for Ĥ in Eq. (2), we
perform zone folding (in the graphene K valley) bringing states
with momenta related by the reciprocal lattice vectors n1b1 +
n2b2 of the moiré pattern to the same point of the superlattice
Brillouin zone (sBZ) in Fig. 1(a). Then, we calculate the
matrix elements of Ĥ between those states and diagonalize

FIG. 1. (Color online) (a) The hexagonal Brillouin zone for the moiré superlattice. (b) Three volumes in the space of the moiré superlattice
parameters where the edge of the first miniband, in graphene’s valence band, contains an isolated mDP at the κ (red) or the −κ (blue) points,
or three isolated mDPs at the sBZ edge (green). Parameters for which the ±κ point is triple degenerate are shown by the red and blue surfaces.
The black dots represent sets of perturbation parameters for which miniband spectra are shown in Fig. 2. (c) The same for the conduction band
in graphene.
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FIG. 2. (Color online) Numerically calculated moiré miniband (left), the corresponding density of states (centre), and Landau level
spectrum (right) for electrons in the vicinity of graphene’s K point. Here, we use the rhombic sBZ, so that the c3v symmetry of the moiré
superlattice spectrum is not obviously seen in the images.

the corresponding Heisenberg matrix numerically exploring
the parametric space (u0,u1,u3) of the dominant inversion-
symmetric part of the moiré perturbation shown in Figs. 1(b)
and 1(c). The size of the matrix is chosen to guarantee the
convergence of the calculated energies for the three lowest
minibands in both the conduction (s = +1) and the valence
(s = −1) bands. Below, we discuss the generic features of the
moiré miniband spectra for the characteristic points in the para-
metric space (u0,u1,u3), marked using black dots in Figs. 1(b)
and 1(c), using both the numerically calculated dispersion
surfaces in Fig. 2 and analytical perturbation theory analysis.

For the zero-energy Dirac point in graphene, there are only
the original p = 0 states in each valley that appear at ε = 0
upon zone folding. For all three characteristic spectra shown
in Fig. 2, for the inversion-symmetric moiré perturbation,
the gapless Dirac spectrum persists at low energies near the
conduction-valence band edge with almost unchanged Dirac
velocity, [1 + O(u2)]v. The inversion-asymmetric terms ũi are
able10 to open a minigap at the Dirac point.

For the point μ = b0/2 on the edge of the first sBZ, zone
folding brings together two degenerate plane-wave states,

|μ + q〉 and |μ + b3 + q〉. The splitting of these degenerate
states by the moiré potential in Eq. (2) can be studied using
degenerate perturbation theory. The corresponding 2 × 2 ma-
trix, expanded in small deviation q of the electron momentum
from each of the three sBZ μ points21 has the form

Ĥμ+q = vb

(
Eμ + s

qy

b
H12

H ∗
12 Eμ − s

qy

b

)
, Eμ ≈ s

2
+ sq2

x

b2
,

H12 ≈ (su1 − u3) − i(sũ1 − ũ3) + 2
qx

b
(u0 + iũ0). (4)

For the inversion-symmetric perturbation, the dispersion rela-
tion resulting from Eq. (4) contains an anisotropic mini Dirac
point (mDP)8,22,23 with Dirac velocity component ≈2u0v in
the direction of the sBZ edge and ≈v in the perpendicular
direction. This feature is clearly seen at the μ point of the first
moiré miniband in the valence band, in the top row of Fig. 2.
Note that the electron spectrum is not symmetric between
the valence and conduction bands and that the mDPs at the
μ point in the conduction band are obscured by an overlapping
spectral branch.
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Moving in parameter space, e.g., along the line shown in
Fig. 1(b), the positions of the three anisotropic mDPs shift
along the sBZ edge towards the sBZ corners: either κ = (b4 +
b5)/3, or −κ , as shown by arrowed lines in Fig. 1(a). In general,
a spectrum with three isolated mDPs at the sBZ edge is typical
for the green volume in the parameter space in Fig. 1(b) for the
valence band, or Fig. 1(c) for the conduction band. In contrast,
for (u0,u1,u3) in the clear part of the parameter space, mDPs on
the edge of the first sBZ are overshadowed by an overlapping
spectral branch, as is the case on the conduction band side for
all three cases shown in Fig. 2.

For the points in Figs. 1(b) and 1(c) on the red and blue
surfaces, the three mDPs reach the κ point, forming a triple
degenerate band crossing, as in the valence-band spectrum
shown in the middle row of Fig. 2, which can be traced
using the perturbation theory analysis of the band crossing
at κ discussed below.

The third line in Fig. 2 shows the third type of spectrum of
moiré minibands, characteristic for the red and blue volumes
of the parameter space in Fig. 1. The characteristic feature of
such spectra consists in a single isolated mDP, at the ±κ point,
in the valence band [see Fig. 1(b)] or the conduction band [see
Fig. 1(c)].

For the κ and −κ points, zone folding brings together
three degenerate plane-wave states, |ζ (κ + q)〉, |ζ (κ + b1 +
q)〉, and |ζ (κ + b2 + q)〉 (where ζ = ±), whose splitting is
determined by

Ĥζ (κ+q) = vb

⎛
⎜⎜⎝

s√
3
+ sqx

b
wζ w∗

ζ

w∗
ζ

s√
3
−s

qx−
√

3qy

2b
−wζ

wζ −w∗
ζ

s√
3
−s

qx+
√

3qy

2b

⎞
⎟⎟⎠,

wζ ≈ 1
2 [(u0− 2sζu1 +

√
3ζu3) + iζ (ũ0+2sζ ũ1−

√
3ζ ũ3)].

For wζ �= 0, the inversion-symmetric terms in Ĥζ (κ+q) partially
lift the ζκ-point degeneracy into a singlet with energy ( s√

3
−

2wζ )vb and a doublet with energies ( s√
3

+ wζ )vb, so that a

distinctive mDP23 characterized by Dirac velocity vκ = [1 +
O(u)] v

2 (Ref. 9) is always present at ±κ somewhere in the
spectrum.24 This behavior reflects the generic properties of
the symmetry group of wave vector κ , which has the two-
dimensional irreducible representation E (corresponding to
the mDP) and one-dimensional irreducible representations A1

and A2. Note that each isolated mDP is surrounded by Van
Hove singularities in the density of states corresponding to
saddle points in the lowest energy minibands. The weaker
inversion-asymmetric terms, |ũi | � |ui |, in the second line of
Eq. (2), open a minigap in both types of mDP discussed above.

The appearance of mDPs at the edge of the first miniband
results in a peculiar spectrum of electronic Landau levels, as
shown on the right-hand side of Fig. 2. Each data point in
these spectra represents one of the Hofstadter minibands25

(with an indistinguishably small width) calculated for rational
values of magnetic flux, p

q
�0 per moiré supercell following

a method in Ref. 14. Using these spectra, one can trace a
clearly separated “zero-energy” Landau level related to the
isolated κ-point mDP in the valence band in the bottom row
of Fig. 2, in addition to the true zero-energy Landau level at
the conduction-valence band edge. The three isolated mDPs

on the sBZ edge in the valence band (top row of Fig. 2) also
result in a “zero-energy” Landau level, though not as clearly
separated and split by the magnetic breakdown occurring at
� ≈ 0.1�0.

IV. CONCLUSIONS

To conclude, the inversion-symmetric moiré perturbation
will result in either the first sBZ separated from the rest of the
spectrum by one or three mDPs, or for weak perturbations, will
result in overlapping first and higher minibands. The experi-
mental consequences of this can be expected in the optical
spectroscopy of graphene on a hexagonal substrate: the
presence of mDPs and Van Hove singularities in the density of
states should lead to a modulation of the FIR and IR absorption
spectra of monolayer graphene, which otherwise, has the flat
absorption coefficient of 2.3%.

Another experimental consequence of the moiré minibands
would consist in a nonmonotonic variation of the Hall
coefficient upon doping the graphene flake with electrons
or holes. For example, for those miniband spectra in Fig. 2,
where there are isolated mDPs in the valence band, the Hall
coefficient would pass through a zero value and change sign
at two characteristic densities, n1 and n2. At the density n1,
which corresponds to the valence band filled with holes up
to the Van Hove singularity, the Hall coefficient will change
sign from positive to negative. At the higher density, n2, which
corresponds to a completely filled first miniband, it would
repeat the behavior at the neutrality point changing sign from
negative to positive. Such behavior is expected to take place
for the entire regions of the parametric space painted red,
blue, or green in Fig. 1. The relation between these two carrier
densities for various types and strengths of moiré perturbations
is shown in Fig. 3. For the clear part of the parametric space
for which we find substantial overlap between many moiré
minibands, such alternations in the sign of the Hall coefficient

FIG. 3. (Color online) The relation between the two densities
at which the Hall coefficient in graphene reverses sign upon its
doping with holes. The results are shown for several realizations
of moiré superlattice in the parameter range corresponding to either
three isolated mDPs on the sBZ edge (squares) or one isolated mDP
at the sBZ corner (other symbols). The thresholds for isolation are
indicated on the x axis.
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would be obscured by the competing contributions from the
“electron-like” and “hole-like” branches in the spectrum.
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APPENDIX A: MOIRÉ SUPERLATTICE SYMMETRY

The point group symmetry of graphene on an incommen-
surate substrate is given by the intersection of the point group
of graphene, c6v , and that of its substrate. For a perfectly
aligned (θ = 0) inversion-symmetric substrate, with either a
single (dominant) atom per unit cell or two identical atoms
arranged in a honeycomb lattice, the point group symmetries
of the substrate and graphene coincide. The corresponding
Hamiltonian (2), with moiré harmonics orientated as per
Fig. 1(a), must necessarily commute with the operators
corresponding to the elements of c6v: ĉ6, ŝx , and ŝy , which
describe 2π/6 rotations and reflections that either exchange
or preserve the graphene sublattices. The operators for ĉ6

and ŝy involve the valley exchanging matrices τ1,2 resulting
in that the symmetry of the Hamiltonian restricted to the K

valley, as well as the K valley band structure, is reduced to
c3v = {Ê,ĉ3,ŝx}, where ĉ3 = ĉ2

6 has no intervalley structure
and Ê is the identity. Each of the ũi terms are odd under ĉ6,
while the u2 and ũ2 terms are odd under ŝy , so that these terms
are forbidden for the perfectly aligned inversion-symmetric
system described above. The point group of substrates with the
honeycomb lattice and two nonequivalent atoms per unit cell,
such as hBN, only possesses the ĉ3 and ŝy symmetries, which
allow inversion-asymmetric parameters ũi=0,1,3 to take a finite
value.

For a finite misalignment angle, the reflection symmetries
of graphene and the substrate do not coincide, and the
moiré harmonics become misaligned, by an angle φ, from
those in Fig. 1(a). However, the moiré harmonics may
be brought back into alignment using the transformation
Ĥ (r) → eiσ3

φ

2 Ĥ (R̂φ r)e−iσ3
φ

2 , and the u2 and ũ2 terms, which
are no longer forbidden, may be gauged away. This proce-
dure restores the reflection symmetries to the Hamiltonian,
despite their absence in the geometry of the moiré pattern for
finite misalignment angle.

The symmetries described above can be used to gain a
deeper understanding of the mDPs discussed in the main text.
The K valley plane-wave states from the three equivalent
sBZ corners, ζκn=0,1,2 = ζ R̂2πn/3κ , which form the basis for
Ĥζκ , transform into each other on application of symmetry
operators of c3v . In the same basis, the symmetry operators

acting on Ĥζκ take the form of matrices

�ζκ (ĉ3) =

⎛
⎜⎝

0 0 −1

−1 0 0

0 1 0

⎞
⎟⎠, �ζκ (ŝx) = sζ

⎛
⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎠. (A1)

For the inversion-symmetric superlattice perturbation, the
singlet eigenstate of Ĥζκ is given by vs = 1√

3
(1,−1,−1). The

action of matrices from Eq. (A1) on this state show that
it transforms according to the one-dimensional irreducible
representations of c3v: either A1 for sζ = 1 or A2 for sζ =
−1, indicating evenness or oddness under ŝx respectively.
Similarly, the doublet states of Ĥζκ , v+ = 1√

3
(
√

2, 1√
2
, 1√

2
)

and v− = 1√
2
(0,1,−1) transform as the two-dimensional ir-

reducible representation E, and their degeneracy is therefore
protected by the c3v symmetry.

The three anisotropic mDPs can be understood using the
compatibility relations in the group appropriate for the sBZ
edge, ch = {Ê,ŝx}. This group only supports one-dimensional
irreducible representations A1 and A2 with the doublet states
reducing as E = A1 + A2. For a given band, s = ±1, the
split bands at κ and −κ belong to different irreducible
representations of ch and therefore cannot be joined along
the sBZ edge. Instead, if both of these bands are closer to zero
energy than the doublet states, they must each be joined to
one of the doublet bands at the opposite sBZ corner. Thus,
along the sBZ edge, a crossing of the split bands is required,
resulting in the mDPs illustrated in the valence band for the
top row of Fig. 2.

APPENDIX B: MICROSCOPIC MODELS

1. Point charge lattice model

The point charge model analyzed in this appendix mimics
the effect of the quadrupole electric moment of the atoms in the
top layer of the substrate. In application to the graphene-hBN
system, we neglect the potentials of the quadrupole moments
of the boron atom, which have only σ orbitals occupied by elec-
trons, and replace nitrogen sites by a point core charge +2|e|
compensated by the spread out cloud of the π electrons, which
we replace by a homogeneous background charge density,
giving −2|e| per hexagonal unit cell of the substrate. This
model gives an example of an inversion-symmetric moiré
superlattice. The matrix elements of the resulting perturbation,
taken between sublattice Bloch states i and j (i,j = A or B),
acting on the low-energy Dirac spinors of the graphene
K valley, are given by the long wavelength components
of

δHij = −2e2

4πε0

∑
RN

∫
dz

L2�∗
Ki(r,z)�Kj (r,z)√

(r − RN )2 + (z − d)2
(B1)

= −2e2

4πε0a

∑
g,g′,gN

I|K+g|,|K+g′|,|gN |ei(g′−g+gN )·rei(g·δi−g′ ·δj ).

In Eq. (B1), RN are positions of nitrogen sites and L2 is the
total area of the graphene sheet; �K,i(r,z) are Bloch wave
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FIG. 4. (Color online) Solid lines show the dimensionless integral
I , as a function of the effective Bohr radius of the graphene P z

orbitals, for various choices of interlayer separation d . To demonstrate
convergence of the sum in Eq. (B1), dashed lines show I2K,K,g0 for
the same values of d .

functions of graphene π electrons exactly at the K point. Then
the Fourier transform has been used to write δHij in terms of a
sum over substrate reciprocal lattice vectors, gN , and graphene
reciprocal lattice vectors, g and g′. Nearest-neighbor vectors,
δi=A/B , are δA = (0,a) and δB = (0,−a), so that K ·δi = 0.
The homogeneous background charge has not been included
in Eq. (B1) since its only role is to exclude gN = 0 from the
sum. The long wavelength terms in the first exponential of the
second line of Eq. (B1) determine bm = −(g′ − g + gN ). The
dimensionless integral

IQ,Q′,gN
= 32a3

0

27a3

∫
dqzdq ′

z

ψ∗(Q,qz)ei(qz−q ′
z)·dψ(Q′,q ′

z)

g2
N + (qz − q ′

z)
2

is written in terms of the Fourier transform of the hydrogen-
like graphene P z(r,z) orbitals with an effective Bohr
radius a0,

ψ(Q,qz) = π

a
3/2
0

1

2π

∫
d r dz e−i( Q·r+qzz)P z(r,z)

= −64ia0qz[
1 + 4a2

0

(
Q2 + q2

z

)]3 .

The integral IQ,Q′,gN
rapidly decays as a function of the

magnitude of all its arguments so that we limit the sum in
Eq. (B1) to only several terms such that |K + g| = |K + g′| =
|K |, with I = IK,K,g0 , where g0 = 4π

3a(1+δ) .

For the graphene layer, a=1.42 Å, and for the graphene-
hBN heterostructure, δ=0.018. The carbon P z orbitals may

have a different effective Bohr radius compared to hydrogen.
The range of values quoted for ṽ = 2e2

4πε0a
I in Table I

corresponds to the interval 0.27 Å � a0 � 0.53 Å, indicated
by the black double-arrow in Fig. 4. Interlayer separation
3.22 Å � d � 3.5 Å is taken from Ref. 26.

Both the dominance of the simplest moiré harmonics and
the finite values for the off-diagonal terms u1 and u2 stem from
the three-dimensional treatment of the substrate potential. The
potential is strongest near the substrate and therefore a greater
proportion of the integral IQ,Q′,gN

comes from the region
near the substrate, where the graphene P z orbitals are broad
and therefore have both rapidly decaying Fourier components
and significant overlap with their neighbors. This contrasts
with the model employed in Ref. 9, which is based on a
two-dimensional substrate potential resulting in u1 = u2 = 0.

2. Graphene-hBN hopping model

In Ref. 10, Kindermann et al. modelled a hBN substrate
as a lattice of P z orbitals onto which the graphene electrons
can hop. This treatment, extended from a model of twisted
bilayer graphene,27 assumed equal values for the hopping
integral to the boron and nitrogen sites, with the difference
between the two sublattices arising from their different on-site
energies. Here, we consider an inversion-symmetric version of
the hopping model of Ref. 10, assuming that coupling between
graphene and the hBN layer is dominated by the hopping to
only one of the two sublattices (e.g., boron). Using k· p theory,
this coupling can be written as

δĤ = Ĥint
1

ε − V − m
Ĥ

†
int,

(B2)

Ĥint = γ

3

∑
n=0,1,2

e
−i

(
R̂ 2πn

3
κ

)
·r
(

ei 2πn
3

e−i 2πn
3

)
.

Neglecting a nonoscillatory term, which corresponds to a
trivial constant energy shift, Eq. (B2) as applied to graphene
electrons in valley K , leads to the moiré Hamiltonian (2), with

{ui=0,...,3} = γ 2/(vb)

9(m + V )

{
1

2
,

−δ√
δ2+θ2

,
θ√

δ2+θ2
, −

√
3

2

}
.

The parameters of the superlattice perturbation given in Table I
of the main text, correspond to γ = 0.3 eV, V = 0.8 eV, and
m = 2.3 eV, in accordance with Ref. 10. For the perfectly
aligned system, we always find u2 = 0, which is a consequence
of the reflection symmetries present in the perfectly aligned
substrate-graphene system (see Appendix A).
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