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a b s t r a c t

Hazardous materials routing and scheduling decisions involve the determination of the
minimum cost and/or risk routes for servicing the demand of a given set of customers. This
paper addresses the bicriterion routing and scheduling problem arising in hazardous mate-
rials distribution planning. Under the assumption that the cost and risk attributes of each
arc of the underlying transportation network are time-dependent, the proposed routing
and scheduling problem pertains to the determination of the non-dominated time-depen-
dent paths for servicing a given and fixed sequence of customers (intermediate stops)
within specified time windows. Due to the heavy computational burden for solving this
bicriterion problem, an alternative algorithm is proposed that determines the k-shortest
time-dependent paths. Moreover an algorithm is provided for solving the bicriterion prob-
lem. The proximity of the solutions of the k-shortest time-dependent path problem with
the non-dominated solutions is assessed on a set of problems developed by the authors.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is widely recognized that hazardous materials transportation risk may be drastically reduced by planning routes that
minimise the accident probability and/or the expected consequences of an accident (List et al., 1991). Significant research
has been focused on developing mathematical models and algorithms for determining safe and economical hazardous mate-
rials routes. The major part of the relevant research has been focused on routing decisions for transporting shipments of haz-
ardous materials from an origin to a single destination minimising cost and/or risk related criteria. Recently, an alternative
direction of research has arisen that is focused on the problem of designing the underlying hazardous materials transportation
network (from the perspective of the public authorities) in order to minimise the network-wide risk. This approach is appli-
cable to countries or regions (e.g. Alberta Canada) where the public authorities are entitled to exercise traffic control measures
for banning hazardous materials shipments passing through specific parts of the roadway network where various sensitive
facilities are located. An extensive literature review for the above type of problems is provided in (Erkut et al., 2007).

Although substantial research effort has been focused on routing decision for the full truckload hazardous materials
transportation, limited research has been placed on planning routes for the less-than-truckload hazardous materials trans-
portation. A hazardous materials distribution route involves the service of a set of intermediate stops (customers) usually
located in urban or suburban areas. In general, planning truck routes for freight distribution includes the following categories
of decisions: (i) the determination of the sequence of stops serviced by each truck and (ii) the specification of the path fol-
lowed by each truck (route-path) on the underlying roadway network in order to deliver the relevant orders. The latter deci-
. All rights reserved.
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sion is closely dependent on the former, since for each given sequence of stops the optimum path traversing the entire se-
quence of stops is envisaged. However, in the case of hazardous materials deliveries, determining the sequence of stops per
truck usually involves various case-specific constraints (Caramia et al., 2007; Avella et al., 2004; Ronen, 1995; Brown et al.,
1987; Brown and Graves, 1981). For instance, in the problem of delivering orders for multiple liquefied petroleum products
(e.g. various types of gasoline and diesel) which cannot be mixed, the loading constraints constitute a significant criterion for
specifying the sequence of visiting the customers (Brown et al., 1987). In this context, the problem of sequencing the stops
serviced by a truck depends on the specific substances included in the corresponding orders and the associated (regulatory
or operational) loading constraints, thus making it difficult to develop a model for the general case. However, assuming that
the sequence of stops for a truck is known in advance, then the routing and scheduling problem reduces to a path-finding
problem from an origin to a destination (not necessarily different from the origin) with a set of fixed mandatory intermediate
stops. The focus of this paper in on analysing and solving the emerging path-finding problem for a given hazardous materials
route. A major feature of the emerging hazardous materials path-finding problem, is that it involves multiple time-depen-
dent routing criteria including the transportation cost expressed by the travel time and the transportation risk. In practice, a
significant part of the underlying roadway network covers urban areas, where the travel speeds on the arcs of the network
are assumed dynamic (Miller-Hooks and Mahmassani, 2000; Pattanamekar et al., 2003). Furthermore, the dynamic traffic
control measures applied by the public authorities for diverting hazardous materials shipments from sensitive facilities (hos-
pitals, schools, shopping centres), imply that the travel time on such a roadway segment depends on the departure time from
the upstream node. For instance, many countries are practicing curfews, e.g., time constraints for hazardous materials ship-
ments on certain segments of the roadway network (Cox and Turnquist, 1986) in order to protect any local sensitive facilities
(e.g. tunnels) from exposition to the associated risk. This type of practices implies that parts of the network are available only
within specific time windows, thus strengthening the assumption on the dynamic nature of travel times.

Recent studies claim that risk attributes like the population exposure and the accident probability may vary considerably
for different parts of a day. For instance, it has been observed that the accident probabilities are higher at night. Moreover,
the expected population exposure at risk also varies with time since the population density at urban areas changes with the
daily activities and the associated mobility of the residents (Erkut and Alp, 2007).

Assuming time-dependent travel time and risk values on each arc of the network, the proposed problem is formulated as
a bicriterion shortest time-dependent path problem with fixed mandatory intermediate stops constrained within specified
service time windows. It should be clarified that by assuming time-dependent cost (risk and travel time) attributes for the
arcs of the underlying network, any solution to the above routing problem cannot be solely identified by a path. Any changes
in the schedule of traversing a path might lead to different cost values. Thus, any solution to the above path-finding problem
involves the path enhanced with the corresponding departure time from each node included in the path. Each solution of this
type will be referred to as a scheduled path.

The proposed bicriterion routing and scheduling problem is NP-Complete since it constitutes a generalisation of the clas-
sic bicriterion shortest path problem which has been proved to be NP-Complete (Garey and Johnson, 1979; Warburton,
1987). The computational complexity of the proposed problem constitutes an impediment for solving large instances (on
real life roadway networks) of the problem. Alternatively, in the decision making context under study, it might be sufficient
to determine and assess a set of alternative scheduled paths with marginal deviation from the optimal solution (in terms of
travel time). In this perspective, a decision maker could envisage to investigate alternative near optimal solutions with im-
proved risk performance thus capturing the trade-off between risk and travel time in the neighbourhood of the travel time
optimal solution. A solution approach has been developed aiming at identifying the k-shortest scheduled paths. The objec-
tive of this approach is not to identify the entire set of non-dominated solutions but only a subset of them lying closer to the
minimum travel time solution. The proposed solution algorithm extends the work presented in (Androutsopoulos and Zog-
rafos, 2008) which deals with the elementary (i.e., without intermediate stops) k-shortest time-dependent path problem.
The new algorithm is designed so as to deal with multiple mandatory intermediate stops and discard any equivalent solu-
tions, i.e., scheduled paths sharing the same sequence of nodes, common departure time from the origin, travel time and risk
value but different schedule. The proximity of the k-shortest time-dependent paths with the corresponding non-dominated
solutions is assessed for a set of problems developed by the authors. A label setting algorithm based on the Decrease Order
Time technique (Chabini, 1998) has been developed for identifying the entire set of non-dominated and non-equivalent solu-
tions to each test problem.

The remainder of this paper consists of six sections. Sesction 2 presents an overview of the literature on hazardous mate-
rials routing and scheduling while Section 3 provides the formulation of the proposed problem. Section 4 provides the solu-
tion approach for identifying the k-shortest solutions while Section 5 presents the proposed exact solution approach. Both
solution approaches have been applied on a set of problems developed by the authors, and their results are presented in Sec-
tion 6. Finally, Section 7 provides the concluding remarks arising from the work presented in this paper and indicates direc-
tions for future research.
2. Previous related work

In the case of non-negative, time-invariant and deterministic arc cost attributes, the relevant bicriterion path-finding
problem with mandatory intermediate stops can be addressed by solving each of the arising intermediate bicriterion short-
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est paths problem with any of the relevant existing label setting algorithms (Climaco and Martins, 1982; Hansen, 1980).
However, a similar approach cannot be adopted for solving the proposed problem in the case of time-dependent cost attri-
butes. In general the Bellman’s principle of optimality for multi-criteria shortest path problems cannot be transferred for the
case of time-dependent cost attributes. For instance, if a scheduled path from i to j through q departing at time si is non-dom-
inated, then it is not necessary that the part of the path from i to q departing at si is non-dominated as well. Hamacher et al.
(2006) provide an illustrative example to prove the above statement. Thus, the proposed path-finding problem cannot be
addressed by simply solving the intermediate bicriterion time-dependent shortest path problems between any pair of sub-
sequent stops. To the knowledge of the authors no research effort has been focused on dealing with this problem.

In the existing literature, two major categories of dynamic path-finding problems for the hazardous materials transpor-
tation are encountered: (i) dynamic and deterministic and (ii) dynamic and stochastic. In the dynamic and deterministic
path-finding problems, the arc travel time and/or any risk attributes are assumed time-dependent, i.e., the travel time
and risk on any arc are expressed as functions of the departure time from the upstream node. Assuming time-dependent
arc travel times, Nozick et al. (1997) formulated the integrated routing and scheduling problem for hazardous materials
transportation as a multi-objective shortest path problem in a network with time-dependent cost attributes. In their study,
they adapt the forward label setting algorithm proposed by Cox (1984) for the time-invariant multi-objective shortest path
problem, in order to solve the emerging multi-objective routing and scheduling problem. Their algorithmic approach is heu-
ristic since part of the non-dominated solutions may be omitted. In particular, the Cox’s algorithm is based on the adaptation
of the Bellman’s forward optimality principle for the multi-objective shortest path problem, which, as mentioned above,
does not hold for a network with time-dependent arc cost attributes (Hamacher et al., 2006; Nozick et al., 1997). Erkut
and Alp (2007) enhanced the above integrated routing and scheduling problem by permitting en-route stops. They formu-
lated the emerging routing problem as a constrained shortest path problem in a network with time-dependent arc travel
time and risk values. The objective of their formulation was to determine the minimum risk path under the constraint that
the total travel time of the path does not exceed a specified threshold. The solution algorithm they propose for the con-
strained time-dependent shortest path problem is based on the dynamic programming technique introduced in Cai et al.
(1997) which utilises the adaptation of the Bellman’s backward optimality principle for the multi-criteria shortest time-
dependent problem.

On the other hand, the dynamic and stochastic path-finding problems involve arc travel time and/or risk attributes which
are assumed random variables with time-dependent probability distribution. Along this line, Hall (1986) modeled the arc
travel time as a discrete random variable with time-dependent probability distribution function and presented a branch
and bound algorithm for solving the least expected time path problem. In the same context, Miller-Hooks and Mahmassani
(1998a,b) adapted the label correcting algorithm for time-dependent shortest path problems by Ziliaskopoulos and Mahmas-
sani (1993) for determining the least possible time path and a lower bound of the probability of occurrence of the least pos-
sible travel time. Miller-Hooks and Mahmassani (2000) developed a label correcting algorithm for determining the least
expected time path, based on the assumption that the arc travel time random variables are independent. Miller-Hooks
and Mahmassani (1998a,b) propose label correcting procedures for determining pareto-optimal paths in a network with
stochastic, time varying link cost attributes, by utilising three alternative stochastic dominance criteria. Chang et al.
(2005) assumed normal probability distribution functions for the cost attributes on each arc. Under this assumption Chang
et al. developed procedures for propagating means and variances along paths and incorporated them in a best first search
(Ahuja et al., 1993) solution algorithm for solving the multi-objective dynamic and stochastic shortest path problem.

Finally, an additional line of research involves independent stochastic time-invariant arc cost attributes. Wijeratne et al.
(1993) formulate the hazardous materials routing problem from a single origin to a single destination as a stochastic multi-
objective shortest path problem. They introduce two criteria of stochastic dominance for comparing the probability distri-
butions of any pair of alternative paths: (i) comparing the mean value and variance of the paths and (ii) comparing the range
of the attribute values for which the cumulative probability function of one path overruns the corresponding function of the
other. The authors incorporate the above stochastic dominance criteria in the label setting algorithm for bicriteria shortest
path problems proposed by Cox (1984).

A major finding from the relevant studies on multi-criteria path-finding problems implies that assuming dynamic and sto-
chastic arc travel time and risk values leads to a broader set of non-dominated solutions than in the case of dynamic and deter-
ministic values. On the other hand, this last observation implies that a heavy computational burden and immense storage
facilities would be required identifying the entire set of non-dominated solutions. The work in this paper is based on the
assumption that the arc travel time and risk values are deterministic and time-dependent while a set of prespecified manda-
tory intermediate stops with arrival time windows are involved between the origin and the destination. In particular, the
work in this paper extends the work in Nozick et al. (1997) and Erkut and Alp (2007) by assuming intermediate mandatory
stops and arrival time windows. In the present work the solutions are further refined by excluding equivalent paths, i.e. solu-
tions with identical paths, departure time, total travel time and risk, which only differ in the waiting time at the nodes.
3. Definition of the problem

Assume that graph G(N, A) denotes a roadway network, where N is the set of nodes, i.e., roadway junctions, origin,
destination, and potential intermediate stops, and A the corresponding set of arcs. Each arc (i, j) of the graph is associated



716 K.N. Androutsopoulos, K.G. Zografos / Transportation Research Part C 18 (2010) 713–726
with two non-negative cost attributes, namely travel time and risk. Both attributes are assumed time-dependent, i.e.,
their value depends on the departure time (s) from the upstream node (i), denoted by cs

1ði; jÞ and cs
2ði; jÞ respectively.

In graphs with time-dependent cost attributes, as defined above, the classic definition of a path is not sufficient to ex-
press the solutions of any shortest path problem. It is evident that traversing the same path for different departure times
from the origin or any intermediate node may lead to different total travel time or/and risk value. Thus, it is essential to
extent the classic definition of a path as in Definition 1 below, where the time of leaving each node of a path is also
included.

Definition 1. Any path in G(N, A) between two nodes i0 and in enhanced with the departure time (sd
iq

) from any constituent
node iq of the path, is called scheduled path and it is denoted by ps[i0, in] where s is the earliest possible departure time
(ready time) from the origin i0.

Any scheduled path may be written as in (1):
ps½i0; in� :¼ ði0; i1Þ
sd

i0 ; . . . ; ðiq�1; iqÞ
sd

iq�1 ; ðiq; iqþ1Þ
sd

iq ; . . . ðin�1; inÞ
sd

in�1

� �
ð1Þ
where ðiq; iqþ1Þ
sd

iq denotes the arc (iq, iq+1) of the path ps[i0, in] traversed at time sd
iq

. The departure time (sd
iq

) from any constit-
uent node iq of a scheduled path that includes arc (iq, iq+1), takes values on a discrete time horizon [0, T] and satisfies con-
straint (2).
sd
iq þ c

sd
iq

1 ðiq; iqþ1Þ 6 sd
iqþ1
; ðiq; iqþ1Þ

sd
iq 2 ps½i0; in� ð2Þ
Inequality (2) implies that the departure from any node (apart from the destination) of a scheduled path should occur
following to the arrival at it. The arrival time (sa

iq
) at any node iq of a scheduled path is defined by (3).
sa
iq :¼ sd

iq�1
þ c

sd
iq�1

1 ðiq�1; iqÞ; ðiq�1; iqÞ
sd

iq�1 2 ps½i0; in� ð3Þ
The path-finding problem presented in this paper involves an origin s0 e N, a destination sn+1 (not necessarily different
from s0) and a sequence of n intermediate stops of a given route R located at the nodes in R ¼ fs1; . . . ; sng# N. The departure
from the origin is constrained within a time window ½de

s0
; dl

s0
� while the arrival at the destination is also constrained within

½ae
snþ1

; al
snþ1
�. Unbounded waiting is assumed on any node of the network, in the sense that each node of the network is asso-

ciated with a rest area where the truck could temporarily park. However no waiting (or bounded waiting time) might apply
for the intermediate stops, i.e. the truck is not allowed to wait at the premises of the relevant customer, although unbounded
waiting time might be allowed in the neighbourhood expressed through the relevant node of the network. In order to resolve
this issue, the underlying network is slightly modified by creating a dummy node s0q for any node hosting an intermediate
stop sq. The set A is enhanced with the dummy arcs (sq; s0q) and (s0q; sq) each one having zero travel time and risk. In this con-
text, the stops are assumed located on the new dummy nodes, while the original nodes are treated as any other node of the
network. Thus, unbounded waiting time is allowed on the original nodes while waiting at an intermediate stop s0q is allowed
only until time al

sq
is reached. However, in the remaining of the paper the notation used for the intermediate stop remains the

same, i.e. sq.
Each intermediate stop (sq) is associated with a service time (tsq ) and a given service time window denoted by ½ae

sq
; al

sq
�,

where ae
sq

denotes the earliest time that service at stop sq may start and al
sq

denotes the corresponding latest service start
time. A truck is not allowed to arrive later than al

sq
, while if it arrives earlier than ae

sq
then the service of the relevant customer

has to wait until time ae
sq

is reached. This is a common feature in freight distribution problems where each customer requests
from the carrier to arrive at the delivery location within a specified time window. Moreover, the service time window for any
intermediate stop sq imposes implicitly a departure time window ½de

sq
; dl

sq
� as defined in (4) and (5)
de
sq

:¼ ae
sq
þ tsq ð4Þ

dl
sq

:¼ al
sq
þ tsq ð5Þ
Formulae (4) implies that the departure from the stop sq could not occur earlier than the earliest possible completion time
of the service at that stop. Similarly, formulae (5) implies that the departure from sq could not occur later than the latest
possible completion time of the service at that stop.

The objective of the proposed bicriterion routing and scheduling problem involves the determination of the scheduled
path from the origin s0 to the destination sn+1 passing through the mandatory intermediate stops in R respecting the service
time windows and minimising the total travel time and the total risk. The above special type of scheduled paths are named
scheduled route-paths (since they traverse the entire truck route), and they are denoted as in (6).
ps½s0;R; snþ1� ¼ fps0 ½s0; s1�;ps1 ½s1; s2�; . . . ; psn�1 ½sn�1; sn�; psn ½sn; snþ1�g ð6Þ
where each ps[sq, sq+1] denotes an intermediate scheduled path.
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The total travel time and risk metrics calculated for each alternative scheduled route-path are given by (7) and (8).
c1ðps0 ½s0;R; snþ1� :¼
X
ði;jÞs2p

ðcs
1ði; jÞ þ tw

i Þ ð7Þ

c2ðps0 ½s0;R; snþ1�Þ ¼
X
ði;jÞs2p

ps
ijC

s
ij ð8Þ
where p � ps0 ½s0;R; snþ1�, tw
i is the waiting time at node i, ps

ij is the probability of accident on arc (i, j) traversed at time s, and
Cs

ij denotes the measure of expected consequences arising in case of an accident occurring at arc (i, j) at time s.
The metric (7) expresses the total en-route duration of the relevant sequence of the constituent scheduled paths including

the waiting at the intermediate stops. Concerning the risk metric, several measures are confronted in the relevant literature,
e.g., population exposure (Batta and Chiu, 1988), incident probability (Saccomanno and Chan, 1985), perceived risk (Abko-
witz et al., 1990), and expected disutility (Erkut and Ingolfsson, 2000). The present research has adopted the perceived risk
measure given by (8).

A major feature of the above bicriterion time-dependent shortest path problem is that it aims to determine the set of non-
dominated scheduled route-paths based on the following definition: ps

1ðs0;R; snþ1Þ is non-dominated for time s if and only if
there does not exist a scheduled route-path ps

2ðs0;R; snþ1Þ; ps
2ðs0;R; snþ1Þ – ps

1ðs0;R; snþ1Þ with cqðps
1ðs0;R; snþ1ÞÞP cqðps

2ðs0;R;
snþ1ÞÞ8q and cq1

ðps
1ðs0;R; snþ1ÞÞ > cq1

ðps
2ðs0;R; snþ1ÞÞ for at least one q1 2 f1;2g. Note that any two scheduled route-paths solv-

ing the above problem which depart from the origin at the same time, share the same path (i.e. sequence of nodes), and have
equal total travel time and risk, they are non-dominated. However, identifying this type of non-dominated solutions does not
provide any added value in the specific decision making process, since the only difference among them pertains to the wait-
ing times at the nodes of their (common) path. The above type of solutions is defined below.

Definition 2. Any two scheduled paths ps
1ði0; inÞ and ps

2ði0; inÞwhich share a common path from i0 to in departing from node i0
at time s and c1ðps

1½i0; in�Þ ¼ c1ðps
2½i0; in�Þ; c2ðps

1½i0; in�Þ ¼ c2ðps
2½i0; in�Þ, they are called equivalent. Any two scheduled route-

paths ps
1½i0;R; in� ps

2½i0;R; in� are non-equivalent if there is atleast one pair of constituent scheduled paths ps
1½isq ; isqþ1 � and

ps
2½isq ; isqþ1 �, which are non-equivalent as well.

In this context, this paper deals with the determination of the non-equivalent solutions of the proposed bicriterion rout-
ing and scheduling problem.

4. Determining the k-shortest non-equivalent scheduled route-paths

The proposed solution approach starts from the destination and traverses backwards the stops of the route iteratively,
calculating the k-shortest scheduled paths from an intermediate stop sq to the destination sn+1 through the stops
{sq+1, . . . , sn} for any possible departure time. Thus, in essence the k-shortest scheduled route-path problem is decomposed
to a series of nested k-shortest scheduled path problems. A label setting algorithm has been developed in order solve each
of the above problems. The proposed label setting algorithm is based on the work presented in (Androutsopoulos and Zog-
rafos, 2008) where the elementary k-shortest time-dependent path problem is addressed under the assumption of un-
bounded waiting times at the nodes of the network. This algorithm is further enhanced for identifying only the k-
shortest non-equivalent solutions. A theoretical discussion is included in the remainder of this section in order to justify
this enhancement.

4.1. Previous related work on the k-shortest path problem

In general, the k-shortest path problem arises in many routing decisions involving the determination of more than one
alternative paths. The objective of the classic k-shortest path problem is to determine the first k-minimum cost paths in a
network where each arc is associated with a static cost attribute. Depending on whether cycles are allowed or not in the
paths, two different versions of the problem arise. The research studies by Eppstein (1998) and Martins (1984) were focused
on the k-shortest looping path problem. On the other hand, several studies have been focused on the k-shortest loopless
paths including Yen (1971), Katoh et al. (1982), and Hadjiconstantinou and Christofides (1999). This paper studies an exten-
sion of the classic k-shortest path problem involving the determination of k-shortest (loopless) non-equivalent scheduled
paths on a network with time-dependent travel times.

Although substantial research effort has been devoted to the time-dependent shortest path problem (Cooke and Halsey,
1966; Ziliaskopoulos and Mahmassani, 1993; Cai et al., 1997; Chabini, 1998; Ahuja et al., 2003) limited research has been
found in the literature addressing the k-shortest time-dependent path problem. Miller-Hooks and Mahmassani (1998a,b)
have studied the k-shortest path problem in a network with time-dependent arc travel times. They propose a dynamic pro-
gramming algorithm founded on the label correcting technique of Ziliaskopoulos and Mahmassani (1993) for determining at
most k-shortest paths. Their approach is heuristic in the sense that eventually only j(<k) of the k-shortest looping paths are
identified, without specifying how close is j to k. Other relevant work in this field relates to the k-shortest path problem on
networks with time-invariant cost attributes, where either the departure or the arrival at any node is time constrained. In
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particular, Chen et al. (2001) studied the k-minimum cost paths problem in a time-schedule network. The objective of their
formulation is to determine k-minimum cost paths with total travel time less than a threshold value s. The corresponding
network involves arcs with time-invariant travel times and non-negative cost attributes while the departure from any node
is allowed only at specified discrete points in time. The solution algorithm proposed by Chen, Rinks and Tang involves the
creation of the time expanded version of the network and the implementation of the Yen’s algorithm for the classic k-short-
est path problem. Along this line, Chen and Tang (1998) proposed an algorithm for solving a variation of the above problem
where the departure time from any node is allowed only within specified time windows. In particular, when an arrival occurs
at a node of the relevant network, two options are possible: either leave the node immediately if the arrival lies within a
given time window or otherwise wait until the next time window is reached. The solution algorithm for this problem follows
the structure of Yen’s algorithm where instead of determining simple shortest paths, the entire set of alternative scheduled
paths with the same total travel time but different waiting times are identified.

It is evident that the abovementioned k-shortest path problems constitute special cases of the problem studied in this
paper which involves time-dependent (instead of time-invariant) cost attributes, multiple intermediate mandatory stops,
and time windows on the origin, the destination, and the intermediate stops.

4.2. Solution approach

The proposed algorithmic approach consists of n + 1 stages indexed by v 2 Q � f0; . . . ;ng. At each stage v 2 Q , the k-
shortest (non-equivalent) scheduled paths from any node of the network to the destination sn+1 through the v intermediate
stops from sn�v+1 to sn for any possible departure time s, i.e., s 2 ½de

sn�v
; dl

sn�v
� for the node sn�v and s 2 ½de

sn�v
; al

sn�vþ1
� for any

other node. Given the k-shortest scheduled paths from sn�v to sn, the proposed algorithm proceeds to stage (v + 1) where
the k-shortest scheduled paths from sn�v�1 to sn through {sn�v, sn�v+1,. . .,sn} are determined. Each of the scheduled paths
determined in stage (v + 1) consists of: (i) a sub-path from the origin to the intermediate stop sn�v and (ii) any of the k-short-
est scheduled paths from sn�v to sn (through {sn�v+1, . . ., sn}) determined in stage (v). The algorithm that solves each of the
above mentioned nested k-shortest non-equivalent scheduled path problems is based on the algorithm proposed in (And-
routsopoulos and Zografos, 2008) for the elementary k-shortest time-dependent path problem. The proposed algorithm en-
hances the one presented in (Androutsopoulos and Zografos, 2008) on the basis of identifying only non-equivalent solutions
and treating multiple intermediate stops between the origin and the destination. It is proved that under the assumption of
unbounded waiting, the exclusion of any equivalent scheduled paths does not pose a risk in omitting any of the k-shortest
non-equivalent scheduled paths.

The intuition underlying the proposed algorithm is founded on the Proposition 1 presented below. Definitions 3 and 4
presented below are essential for stating and proving Proposition 1.

Definition 3. Assume a scheduled path ps
1½i0; in� :¼ fði0; inÞs0 ; . . . ; ðiq�1; iqÞsq�1 ; ðiq; iqþ1Þsq ; . . . ; ðin�1; inÞsn�1g. Any scheduled path

ps0
2 ½iq; in� :¼ fðiq; iqþ1Þsq ; . . . ; ðin�1; inÞsn�1g with sq�1 þ csq�1

1 ðiq�1; iqÞ 6 s0 6 sq is called scheduled sub-path of ps
1ði0; inÞ.
Definition 4. Any two scheduled paths ps
r1
½i0; in� and ps

r2
½i0; in� for which c1ðps

r1
½i0; in�Þ ¼ c1ðps

r2
½i0; in�Þ, they are called time-

equivalent solutions.

Proposition 1. If a scheduled path ps
1½i0; in� is one of the k-shortest loopless scheduled paths from i0 to in with ready time s,

then its sub-path ps0
2 ½iq; in� is either one of the k-shortest solutions from iq to in at time s0 or it is time-equivalent with one of

them.

Proof. It will be proved by contradiction. Assume that there exist at least k scheduled paths ps0
ðrÞ½iq; in� for which

c1ðps0
2 ½iq; in�Þ > c1ðps0

ðrÞ½iq; in�Þ for any r 2 f1; . . . ; kg . Joining the first part of ps
1ði0; inÞ, i.e., fði0; inÞs0 ; . . . ; ðiq�1; iqÞsq�1g, with each

of ps0
ðrÞðiq; inÞ creates k new scheduled paths. If the new scheduled paths created as above contain no loop then they have

strictly lower total travel time than ps
1ði0; inÞ, leading to a contradiction with the hypothesis of this proposition. If on the other

hand any of the k new scheduled paths contains a cycle, then by replacing the cycle with waiting time at the node revisited,
leads to a new scheduled path with no cycle and equal travel time.Thus, in either case the findings contradict with the
hypothesis that ps

1½i0; in� is one of the k-shortest scheduled paths. h

Proposition 1 implies that if a sub-path of ps
1½i0; in� is not within the k-shortest scheduled paths, then it will be time-equiv-

alent with the corresponding kth shortest scheduled path.
A label setting algorithm is proposed for solving the corresponding k-shortest nested scheduled path problem arising at

each stage v 2 Q . Each node of the network is initially associated with a list of k vector-labels fðks;½m�
ðrÞ;c1
ðiÞ; ks;½m�

ðrÞ;c2
ðiÞÞ :

r ¼ 1; . . . ; kg for every point in time s 2 ½de
sn�v

; al
sn�vþ1

� and stage v of the problem, denoted by Ks;½v �
i . The first attribute

ks;½v �
ðrÞ;c1
ðiÞ of each vector-label denotes the total travel time of the rth shortest scheduled path ps

ðrÞ½i; fsn�vþ1; . . . ; sng; snþ1� which
departs from node i no earlier than time s, while the second attribute of the vector-label denotes the risk value of the cor-

responding scheduled path. Each vector-label is associated with a set Fs;½v �
ðrÞ ðiÞ which includes the nodes visited by the corre-

sponding scheduled path. In addition, a pointer ws;½v �
ðrÞ ðiÞ is attached to each vector-label, indicating the next vector-label of the
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corresponding rth shortest scheduled path. The role of this pointer is on facilitating the backtracking of each of the k-shortest
scheduled paths from any node i to the destination.
Fig. 1. Steps of the algorithm for solving the k-shortest scheduled path problem.
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For the stage v: = 0, where the k-shortest scheduled path problem from sn to sn+1 for any departure time s 2 ½de
sn
; dl

sn
� is

solved, the proposed algorithm initializes the vector-labels associated with the destination (sn+1) by setting both attributes
equal to zero. The attributes of the vector-labels associated with any other node are set equal to a very large number M. For
any other stage v – 0 the travel time and risk attributes of the initial vector-labels associated with the node sn�v+1 for time
s 2 ½ae

sn�vþ1
; al

sn�vþ1
� are set equal to the value of travel time and the risk value of the corresponding vector-labels for stage

(v � 1) at time s0 :¼ sþ tsn�vþ1 . A vector-label is also created for the node sn�vþ1 for any time de
sn�v
6 s 6 ae

sn�vþ1
by setting

the travel time equal to the corresponding travel time of the earliest vector-label from stage (v � 1) plus the service time
tsn�vþ1 plus the waiting time (ae

sn�vþ1
� s), and the risk equal to the corresponding risk value of the earliest vector-label from

stage (v � 1).
Following to the vector-labels initialisation, each stage (v) of the algorithm involves Tð:¼ al

sn�vþ1
� de

sn�v
þ 1Þ iterations

moving backwards in time, starting from time s :¼ al
sn�vþ1

down to de
sn�v

. For each iteration s the k-shortest scheduled paths
from any node i to destination node sn+1 through the v intermediate stops {sn�v+1, . . . s, sn} departing from i at time s are
determined. Each iteration s involves the identification of a set of candidate vector-labels for every node i – sn�v+1. Given
any arc (i, j) e A (outgoing from node i) and K(P k) vector-labels already identified for the node j at time s0ð:¼ sþ cs

1ði; jÞÞ,
then K candidate vector-labels are identified for node i, referring to the corresponding scheduled paths emerging from join-
ing the arc (i; j) with the scheduled paths associated with the existing vector-labels of node j at time s0, where s0 is the arrival
time through arc ði; jÞ at node j. The above procedure is repeated for every arc outgoing from node (i). Thus, if i R Fs;½v �

ðrÞ ðjÞ (in
order to avoid looping paths), for each vector-label (ks0;½v �

ðrÞc1
ðjÞ,ks0;½v �

ðrÞc2
ðjÞ) 2 Ks0;½v �

j a new candidate label (us
c1
ðiÞ, us

c2
ðiÞ) is calculated

for node i by adding the travel time and risk of ði; jÞs to ks0;½v�
ðrÞc1
ðjÞ and ks0;½v �

ðrÞc2
ðjÞ, respectively. It should be clarified that the search

for a loop is performed for the part of the corresponding scheduled path between node i and sn�vþ1. Thus, node i may be revis-
ited by the part of the scheduled path after the intermediate stop sn�vþ1.

An exemption to the above scanning process arises when i ¼ sn�v for which no scanning is performed for any
s R ½de

sn�v
; dl

sn�v
�, since any such solution contravenes the relevant departure time window constraint. This new candidate vec-

tor-label is checked if it is one of the k shortest labels for time s by comparing it with the existing vector-labels (if any). If the
scheduled path associated to the new candidate vector-label is time-equivalent with the existing kth scheduled path (i.e.
us;½v �

c1
¼ ks;½v �

ðkÞc1
ðiÞ) then the vector-label is also included in the list of vector-labels Ks;½v �

i . Thus, any set Ks;½v �
i may include more

than k vector-labels. However, if the scheduled path associated to a candidate vector-label is equivalent with any of the
existing scheduled paths associated to the labels in Ks;½v �

i , then the corresponding candidate vector-label is excluded from
further consideration.

Upon termination of the iterations, the lists of k (or more) vector-labels determined for the stop sn�v for each point in time
s 2 ½de

sn�v
; dl

sn�v
� correspond to the k-shortest scheduled paths. Moreover, upon termination of the entire process (nþ 1 stages),

the k-first vector-labels in Ks;½nþ1�
s0

refer to the k-shortest scheduled paths. If more than k labels are included in Ks;½nþ1�
s0

, then k-
shortest vector-labels are selected.

The proposed algorithm is provided in the form of pseudocode in Fig. 1.

Lemma 1. Assume that k loopless scheduled paths from node i1 to in departing at time s are non-equivalent. If the k scheduled
paths emerging from adding ði0; i1Þs0 in front of each of the above scheduled paths arriving at i1 earlier than s are loopless then they
are non-equivalent as well.

Proof. Assume any k loopless non-equivalent scheduled paths ps
r ði1; inÞ for r ¼ 1; . . . k, where ps

r ði1; inÞ ¼ fði1; ir1 Þ
s
; . . . ;

ðirm ; inÞsrm g. Since the k scheduled paths are non-equivalent, then from the Definition 2 the following statement holds for
any pair of them: (i) if they involve the same sequence of nodes then they differ in at least one of the total travel time or
the risk and (ii) if they have the same travel time and risk value then each of them includes different sequence of nodes.
Based on the above statements, any pair of the arising scheduled paths either differ in at least one cost attribute (if the cor-
responding initial scheduled paths also differ in at least one attribute) or they have a different sequence of (if the initial
scheduled paths do so as well). Thus, in any case the new k scheduled paths are non-equivalent as well. h

In the above proof, If any of the emerging k scheduled paths contain a loop, then the scheduled path arising from replacing
the loop with a waiting time, might be equivalent with any of the remaining k � 1 scheduled paths.

Lemma 2. If two scheduled paths ps
1ði1; inÞ and ps

2ði1; inÞ are equivalent, then the corresponding scheduled paths emerging from
adding ði0; i1Þs

0
in front of each of them are equivalent as well.

Proof. It derives directly from Definition 2. h

Remark 1. In the proof of Lemma 1, if any of the k new scheduled paths ps
r ði0; inÞ includes a loop, then the scheduled path

arising from replacing the loop with waiting time, might be equivalent with any of the remaining k � 1 scheduled paths.
Thus in the context of the algorithm, when new scheduled paths are created by scanning a node, one cannot exclude the case
that the new loopless scheduled path may be equivalent with any of the scheduled paths created by adding one unit of wait-
ing time at that node. This is the reason why it is imperative for check of non-equivalent paths throughout the iterations of
the proposed algorithm. Moreover, based on Lemma 2, by excluding any solution equivalent with any of the already existing
solutions does not include any risk of excluding in advance any of the k-shortest non-equivalent solutions.
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Proposition 2 (Proof of correctness). The vector-labels solutions determined by the proposed algorithm are associated with
the k-shortest non-equivalent scheduled paths.

Proof. Based on the steps of the algorithm any scheduled path including a cycle or being equivalent with any of the existing
solutions is excluded from further consideration. Actually, any of the scheduled paths that contains a cycle and its value is
included within the k minimum, it is implicitly replaced with a similar scheduled path which instead of having the loop, it
involves waiting time at the node revisited equal to the duration of the corresponding loop. Therefore, it is sufficient to prove
that at any stage v of the algorithm, the k-shortest scheduled paths from every node i to the destination snþ1 through
{sn�vþ1; . . . ; sn} for any time s 2 ½de

sn�v
; al

sn�vþ1
� are determined. It can be proved by induction. For stage v :¼ 0, it is evident that

at time s ¼ al
snþ1

the vector-labels determined for any node are unique and therefore optimal. Assume that from time s ¼ al
snþ1

down to time s0 þ 1 the vector-labels identified in Ks;½0�
iq

, for each node iq and any time s such that s0 þ 1 6 s 6 al
snþ1

, are the k-
shortest. Then it is sufficient to prove that the k vector-labels determined by the algorithm for any node iq at time s0 are
indeed the k-shortest for departure time s0. This last statement will be proved by contradiction. Assume that there exists
a loopless scheduled path ps0 ½iq; snþ1� which consists of the following sequence of arcs {ðiq; iqþ1Þ

sd
iq ,

ðiqþ1; iqþ2Þ
sd

iqþ1 ;. . .,ðiqþm; snþ1Þ
sd

iqþm } and it is one of the k-shortest non-equivalent paths not identified by the proposed algorithm,

i.e., there does not exist a label ðks0 ;½0�
ðrÞc1
ðiqÞ; ks0 ;½0�

ðrÞc2
ðiqÞÞr ¼ 1; . . . ; jKs0 ;½0�

iq
j associated with it, while in addition it is non-equivalent

with any of k-shortest scheduled paths with determined by the algorithm. A necessary condition for ps0 ½iq; sn� being within

the k-shortest paths while not associated with any label in Ks0 ;½0�
iq

is that 9r : c1ðps0 ½iq; snþ1�Þ 6 ks0 ;½0�
ðrÞc1
ðiqÞ; r 2 f1; . . . ; jKs0 ;½0�

iq
jg.

Based on Proposition 1, the sub-path p
sa

iqþ1 ½iqþ1; snþ1� :¼ fðiqþ1; iqþ2Þ
sd

iqþ1 ; . . . ðiqþm; snþ1Þ
sd

iqþm } of ps0 ½iq; snþ1� is either among the

k-shortest for node iqþ1 at time sa
iqþ1

or it is time-equivalent with one of them for node qþ 1, i.e., p
sa

iqþ1
ðh1Þ ½iqþ1; snþ1� already deter-

mined by the algorithm (based on our hypothesis that the algorithm determines the k-shortest vector-labels for any node
and s P s0 þ 1). Thus based on the steps of the algorithm, a vector-label for path ps0 ðiq; snþ1Þ should have been determined
for node iqþ1 for time s, leading to a contradiction with the hypothesis that the scheduled path ps0 ðiq; snþ1Þ is not represented
in Ks0 ;½0�

iq
. Assume that the algorithm identifies the k-shortest scheduled paths for v ¼ v0. Then by following the same proce-

dure as above it can be proved that the algorithm determines the k-shortest scheduled paths for the stage v ¼ v0 þ 1 , thus
proving the proposition. h
5. Determining the set of non-dominated non-equivalent solutions

A label setting algorithm has been developed for identifying the entire set of non-dominated non-equivalent solutions,
based on the adaptation of the Bellman’s backward optimality principle (Hamacher et al., 2006) for networks with multiple
time-dependent non-negative cost attributes. The adapted Bellman’s optimality principle implies that if a scheduled path
from any node i departing at si to node j passing through node q at time sq is non-dominated for time si then the sub-path
from q departing at time sq is non-dominated for time sq.

The proposed algorithmic approach is based on decomposing the bicriterion scheduled path-finding problem with man-
datory intermediate stops to a series of bicriterion nested shortest scheduled path problems starting from the destination
and traversing the route backwards. Solving each of the ðnþ 1Þ bicriterion nested shortest scheduled path problems consti-
tutes a separate stage of the algorithmic approach. In particular, at each stage v the non-dominated solutions from sn�v to
snþ1 through stops {sn�vþ1; . . . ; sn} are calculated by enhancing (backwards) the non-dominated non-equivalent scheduled
paths from sn�vþ1 to snþ1 through the stops {sn�vþ2; . . . ; sn} for each possible departure time s 2 ½de

sn�v
; dl

sn�v
�. The algorithmic

procedure that solves each of the bicriterion nested shortest scheduled path problems is based on the adaptation of the De-
creased Order Time (DOT) technique (Chabini, 1998) for the bicriterion case.

For the purposes of the proposed label setting algorithm, each node i of the network is associated with the vector-labels
(ns;½v �

w;c1
ðiÞ, ns;½v �

w;c2
ðiÞ), the pointer ws;½v �

w ðiÞ, and the set Fs;½v �
w ðiÞ, where ns;½v �

w;c1
ðiÞ and ns;½v �

w;c2
ðiÞ denote the total travel time and risk (respec-

tively) of the wth non-dominated scheduled path from node i to node snþ1 through the stops {sn�vþ1; . . . ; sn} at the vth stage.
The pointer ws;½v�

w ðiÞ points to the next vector-label in the corresponding scheduled path, while the set Fs;½v �
w ðiÞ denotes the list

of nodes already visited by the above mentioned wth scheduled path. Keeping track of the visited nodes of a scheduled path
facilitates the check for tracing and excluding equivalent solutions. In addition, a set Ns;½v �ðiÞ is created for each node i which
includes the corresponding non-dominated vector-labels for node i at time s and stage v . Fig. 2 presents the steps of the pro-
posed algorithm for any stage v 2 Q :¼ f0; . . . ;ng. Note that upon the completion of stage n, the entire set of non-dominated
non-equivalent solutions are identified for each possible departure time from the origin s0.

The operator � denotes the inclusion of a set of candidate vector-labels in a set of non-dominated non-equivalent vector-
labels. This operator implies that each candidate vector-label is assessed in terms of dominating or being dominated by each
element of the set of currently non-dominated vector-labels. If the candidate vector-label is dominated by at least one ele-
ment of this set then it is disregarded. In case that it dominates any of the elements of the set of non-dominated vector-la-
bels, then the corresponding element is excluded from the set. If by the end of this process the candidate vector-label is not
found either equivalent with or dominated by any of the elements of the set of the temporarily non-dominated vector-labels,
it also becomes an element of this set.



Fig. 2. Steps of the algorithm for solving the bicriterion scheduled path problem.
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On termination of the proposed algorithm, each set Ns;½vþ1�ðs0Þ includes the vector-labels referring to the entire set of non-
dominated non-equivalent scheduled route-paths from s0 to snþ1 through {s1; . . . ; sn} for each possible departure time s:

Lemma 3. If Ns;½v�ðsn�vþ1Þ includes the vectors-labels associated to a set of non-dominated non-equivalent solutions for time s,
then the corresponding vector-labels in Ns�tsn�vþ1 ;½vþ1�ðsn�vþ1Þ emerging through the proposed algorithm, relate to non-dominated
non-equivalent scheduled paths as well.
Proof. The vector-labels in Ns�tsn�vþ1 ;½vþ1�ðsn�vþ1Þ correspond to non-equivalent scheduled paths since the only difference
with the vector-labels in Ns;½v �ðsn�vþ1Þrelates to the departure time. Thus, it is sufficient to prove that the vector-labels are
non-dominated. For any vector-label (ns0;½vþ1�

w;c1
ðsn�vþ1Þ, ns0;½vþ1�

w;c2
ðsn�vþ1ÞÞ 2 Ns�tsn�vþ1 ;½vþ1�ðsn�vþ1Þ there exist a vector-label

(ns;½v �
w;c1
ðsn�vþ1Þ, ns;½v �

w;c2
ðsn�vþ1ÞÞ 2 Ns;½v �ðsn�vþ1Þ such that ðns0;½vþ1�

w;c1
ðsn�vþ1Þ; ns0;½vþ1�

w;c2
ðsn�vþ1ÞÞ :¼ ðns;½v �

w;c1
ðsn�vþ1Þ þ tsn�vþ1 þ tw;

ns0;½vþ1�
w;c2

ðsn�vþ1ÞÞ where twdenotes the waiting time at stop sn�vþ1. Thus it derives from the above statement that the vector-

labels (ns0;½vþ1�
w;c1

ðsn�vþ1Þ, ns0;½vþ1�
w;c2

ðsn�vþ1Þ) are non-dominated as well. h

Proposition 3. The proposed algorithm identifies the entire set of non-dominated non-equivalent scheduled paths with
intermediates stops for any possible departure time.

Proof. I t is sufficient to prove that the proposed algorithm determines the non-dominated non-equivalent solutions for any
stage v . This can be proved by induction. For v ¼ 0, the relevant problem simplifies to a bicriterion shortest scheduled path
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problem from sn to snþ1. Based on the relevant vector-label initialisation process of the algorithm, the destination snþ1 is asso-
ciated with a single vector-label for every s 2 ½de

sn
; al

snþ1
� equal to (0, 0), which is trivially non-dominated. To complete the

proof, it is sufficient to show that given the vector-labels in Ns½v �ðsn�vþ1Þ, the initial vector-labels for node sn�vþ1 in stage
v þ 1 are non-dominated and non-equivalent. In particular, assume that the sets Ns;½v �ðsn�vþ1Þ, s 2 ½de

sn�vþ1
; dl

sn�vþ1
� consist of

the non-dominated non-equivalent vector-labels for any possible departure time s from stop sn�vþ1 to the destination snþ1

through the stops fsn�vþ2; ::; sng. Based on Lemma 3, the vector-labels in Ns;½vþ1�ðsn�vþ1Þ calculated by vector-labels initialisa-
tion process of the proposed algorithm are non-dominated and non-equivalent. Assume that Ns;½vþ1�ðjÞ 8j and any s P s0 � 1
for s0 2 f1; . . . ; Tg, contains the entire set of non-dominated non-equivalent vector-labels for time s and node j. It is profound
(from the algorithm outline) that the new vector-labels in the sets Ns0 ;½vþ1�ðiÞ are non-dominated and non-equivalent. It suf-
fices to prove that there are no other non-dominated non-equivalent scheduled paths from any node i to node sn+1 through
{sn�vþ1; . . . ; sn} departing at time s0. If there was such a scheduled path it would be of the following form:
ps0 ½i; fsn�vþ1; . . . ; sng; snþ1� :¼ fði; jÞs0 ; ps0½j; fsn�vþ1; . . . ; sng; snþ1�g, where ps0 ½ j; fsn�vþ1; . . . ; sng; snþ1� is non-dominated and non-
equivalent (by assumption since s0 P s0 � 1). However, since ps0½ j; fsn�vþ1; . . . ; sng; snþ1� is determined by the proposed algo-
rithm, the scheduled path ps0 ½i; fsn�vþ1; . . . ; sng; snþ1� should have identified as well through the scanning process of the
algorithm. h
6. Computational performance

The proposed algorithm for determining the k-shortest non-equivalent scheduled route-path problem has been applied
on a set of problems developed by the authors. The major goals of assessing the proposed algorithm were to compare the
solutions produced by the algorithm for the k-shortest non-equivalent scheduled route-paths with the corresponding
non-dominated solutions identified by the algorithm that solves the bicriterion problem.

Three grid-like graphs were developed in this context, i.e., G100 with 100 nodes, G300 with 300 nodes, and G600 with
600 nodes. The in-degree and out-degree of each node of the above graphs is equal to 4, in order to strengthen the networks
resemblance to roadway networks. The travel time and risk defined on each arc of the graph were defined on 24 time periods
(i.e., with time period length equal to 15 min) starting from 08:00 up to 14:00. The problems generated on graphs G100–300
involved randomly selected origins, destinations, and 1 up to 4 intermediate stops with 1–2 h time windows. In this setting,
100 problems were generated for each combination of graph type and number of intermediate stops. The above problems
were solved by both algorithms implemented on a Pentium IV, with Intel processor at 2.99 GHz, and 2 GB RAM.

Table 1 presents the average computational time needed for solving the above set of test problems by the algorithm for
the k-shortest scheduled route-path problem. Each of these test problems was solved for k equal to 10 and 20. A major find-
ing of the above process is that reasonable computational time was needed for the solution of the test problems ranging from
2 to 72 s.

Moreover, Figs. 3 and 4 indicate that the relationship between the average computational time of the proposed algorithm
with the number of intermediate stops is linear.
Table 1
Average computational time of the algorithm for the test problems.

Network id k Intermediate stops Computational time (ms)

G100 10 1 2355
20 1 4591
10 2 4197
20 2 4185
10 3 4404
20 3 8996
10 4 5749
20 4 11 903

G300 10 1 6665
20 1 13 708
10 2 10 722
20 2 22 625
10 3 14 315
20 3 30 332
10 4 19 489
20 4 37 284

G600 10 1 13 303
20 1 27 029
10 2 13 302
20 2 27 029
10 3 30 251
20 3 59 175
10 4 38 306
20 4 71 361
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Fig. 3. Average computational time (for k = 10) as a function of the number of intermediate stops.
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Fig. 5. The non-dominated solutions and the solutions determined by the proposed algorithm (for k = 10) plotted on the travel time vs. risk plane.
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Concerning the quality of the solutions provided by the algorithm determining the k-shortest scheduled route-paths,
Figs. 5 and 6 below presented graphically the deviation of the k-shortest scheduled route-paths from the corresponding
non-dominated solutions for one of the test problems mentioned above. Each of the circles plotted in the diagram (travel
time vs. risk) of Fig. 5 denotes a non-dominated (non-equivalent) solution to a test problem defined on network G100 with
two intermediate stops. The triangles marked on the same plot diagram denote the solutions that emerged from the algo-
rithm that determines the k-shortest scheduled route-paths, for k equal to 10. Note that the solutions plotted in the diagram
are only those that were found non-dominated among the total (k � T) solutions identified by the algorithm. Similarly, Fig. 6
presents the non-dominated solutions (circles) and the corresponding k-shortest scheduled route-path solutions that
emerged for k equal to twenty.

Figs. 5 and 6 indicate that the solutions determined for the k-shortest scheduled route-path problem are close or coincide
with the non-dominated solutions lying close to the area of the minimum travel time solution. Moreover, when k increases a
better fit of the two types of solutions (non-dominated vs. k-shortest) emerges.
7. Concluding remarks

The bicriterion path-finding problem presented in this paper arises in hazardous materials delivery problems, especially
in cases where the sequence of stops per truck is dominated by safety and/or business constraints. In this respect, the se-
quence of stops is usually specified exogenously, and thus the trade-off between travel time and risk is specified on the basis
of the path-finding problem. Moreover, the work presented in this paper could be utilised within any bicriterion vehicle
routing and scheduling problem provided that the sequence of stops per route are specified by a separate heuristic
algorithm.

An algorithm is presented for determining the non-dominated scheduled route-paths. Alternatively a label setting algo-
rithm is proposed for determining the k-shortest non-equivalent scheduled route-paths, thus approximating the non-dom-
inated solutions close to the minimum travel time solution. The computational performance of the proposed algorithm
indicates that reasonable computational time is required for solving real life hazardous materials delivery problems. There-
fore, the algorithm could be integrated into applications for planning hazardous materials truck routes given the sequence of
the relevant stops. The k- shortest scheduled route-paths provided by the proposed algorithm enable the decision maker to
perform a comparative assessment of the alternative solutions with respect to their travel time and risk.

It should be emphasized however, that the proposed algorithm is accurate only under the assumption that unbounded
waiting is allowed at any node of the network. Thus, a significant line for future research arises in exploring the above prob-
lem under various constraints on the waiting time at the nodes of the network. Moreover, solving the relevant bicriterion
vehicle routing and scheduling problem on time-varying networks constitutes another significant direction for future
research.
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