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Preheating in generalized Einstein theories

Anupam Mazumdar and Luı´s E. Mendes
Astrophysics Group, Blackett Laboratory, Imperial College London SW7 2BZ, United Kingdom

~Received 10 February 1999; published 26 October 1999!

We study the preheating scenario in generalized Einstein theories, considering a class of such theories which
are conformally equivalent to those of an extra field with a modified potential in the Einstein frame. Resonant
creation of bosons from an oscillating inflaton has been studied before in the context of general relativity taking
also into account the effect of metric perturbations in linearized gravity. As a natural generalization we include
the dilatonic–Brans-Dicke field without any potential of its own and in particular we study the linear theory of
perturbations including the metric perturbations in the longitudinal gauge. We show that there is an amplifi-
cation of the perturbations in the dilaton–Brans-Dicke field on super-horizon scales (k→0) due to the fluc-
tuations in the metric, thus leading to an oscillating Newton’s constant with very high frequency within the
horizon and with growing amplitude outside the horizon. We briefly mention the entropy perturbations gen-
erated by such fluctuations and also the possibility to excite the Kaluza-Klein modes in the theories where the
dilatonic–Brans-Dicke field is interpreted as a homogeneous field appearing due to the dimensional reduction
from higher-dimensional theories.@S0556-2821~99!01820-2#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

One of the most important epochs in the history of t
inflationary Universe is the transition from almost de Sit
expansion to the radiation dominated universe. Until a f
years ago proper understanding of this phenomenon was
well established. Recent developments in the theory of re
nant particle creation of bosons@1# as well as fermions@2#
due to coherent oscillations of the Bose-condensate infla
may explain satisfactorily the emergence of the radiation
from the ultracold inflationary universe@1#. Although such
phenomena are hard to reproduce in a laboratory they are
simplest manifestation of a slowly varying scalar field whi
rolls down the potential and oscillates as a coherent sourc
each and every space-time region. Apart from reheating
universe to the temperature ambient for the production
light nuclei this phenomena has multifaceted consequen
It is also a well known mechanism to create a nonequi
rium environment which can be exploited for the generat
of net baryon antibaryon asymmetry required for baryog
esis@3#. If there exist general chiral fields, then, in particula
breaking of parity invariance could also lead to different p
duction of left and right fermions. If the rotational invarianc
is broken explicitly by an axial background then there wou
be anisotropic distribution of fermions@4#. The same phe-
nomena is also responsible for the generation of primor
magnetic field @5,6# in the context of string cosmology
where the dynamical dilaton field plays the role of an os
lating background.

The preheating scenario has been studied so far in
context of general theory of relativity. It has been well e
tablished from the present observations that this theory
gravitation is the correct description of space-time geome
at scales larger than 1 cm. There exists a class of dev
theories which are scalar-tensor gravity theories, known
generalized Einstein theories~GET! of which the Jordan-
Brans-Dicke ~JBD! theory @7,8# is the simplest and best
studied generalization of general relativity. This theory lea
0556-2821/99/60~10!/103513~7!/$15.00 60 1035
r

ot
o-

ns
ra

the

at
e
f
s.
-
n
-

,
-

al

-

he
-
of
y
nt
s

s

to variations in the Newtonian gravitation ‘‘constant’’G, and
introduces a new coupling constantv, with general relativity
recovered in the limit 1/v→0. The constraint onv based on
timing experiments using the Viking space probe sugge
that it must exceed 500@9#. The JBD theory also mimics the
effective Lagrangian derived from low energy scale of t
string theory where the Brans-Dicke~BD! field is called Di-
laton and the coupling constantv takes the negative value o
21 @10#. It also represents the (41D)-dimensional Kaluza-
Klein theories with an inflaton field which has mainly tw
subclasses out of which we shall consider the one where
inflaton is introduced in an effective four-dimension
theory. In this case the BD-dilaton field plays the role
homogeneous scalar field in 4 dimensions and is relate
the size of the compactification. Most of these models
conformally equivalent and can be recast in the form of E
stein gravity theory@11#. The only difference is that the sca
ing of the fields and their corresponding couplings will
different for different interpretations of BD-dilaton field.

In this paper we shall consider the general relativity lim
of the JBD theory as well as other variant theories such
string and Kaluza-Klein and for the sake of consistency
just use one representative of the coupling constantg, which
takes different values accordingly. We must say that ther
an obvious advantage in all these theories that they are
constrained at the present day and the evolution of the B
dilaton field is roughly constant after a period of 60e fold-
ings of inflation. Here we shall not consider the potential
the dilatonic-BD sector and we assume that the evolution
the dilaton-BD field during the oscillatory phase is solely d
to its coupling with the inflaton in the Einstein frame. W
assume the quadratic potentialV(f)5 1

2 m2f2 for the infla-
ton field. It is to be noticed that during the oscillatory pha
the fieldf decreases in the same way as the density of n
relativistic particles of massm: rf5 1

2 ḟ21 1
2 m2f2'a23,

provided the couplingg is very small as in the case of JBD
For simplicity we discuss the physics of weak coupling a
©1999 The American Physical Society13-1



ic
la
at
h
e

of
io

du
nc
m

io
b

he

wi

e
he
th

-
ls
n.
si

e-

,
se
-
ure.
ive
e of
ain
lso
ns

d

on-
tra
tion

e,
o-

ot-

ld
in

s-
a-
the
cay

is
less

ANUPAM MAZUMDAR AND LUI´S E. MENDES PHYSICAL REVIEW D 60 103513
at the end we comment on the strong coupling limits wh
we get numerically. In the weak limit the coherent oscil
tions of the homogeneous scalar field correspond to a m
dominated equation of state with vanishing pressure. T
suggests that the BD field should evolve according to a w
known solution during the dust era@12#.

Apart from the study of nonperturbative creation
bosons and fermions during preheating, metric perturbat
have also been studied extensively in Refs.@13# and @14#. It
has been shown that the metric perturbations also grow
ing preheating in the multiscalar case due to the enha
ment of the entropy perturbations. It is also possible to a
plify the superhorizon modes causally. Such amplificat
requires the linear theory of gravitational perturbations to
supplanted by nonlinear perturbation theory. In Ref.@13# the
authors have discussed the two fields case in particular w
the first one (f) represents the inflaton and the second (s)
represents the newly created bosons with an interaction
the inflaton of the form1

2 gf2s2. Perturbations ins get am-
plified along with the metric perturbations. They have argu
that all the fields would be possibly amplified except t
inflaton which is subdued by transferring its energy to
other fields. Following their claim it is also possible to am
plify the other fields such as dilaton-BD field as they are a
coupled to the inflaton and can be cause of some concer
the concluding section we devote ourselves to the discus
of these issues.

II. THE EQUATIONS

In JBD theory the action in the Jordan frame@7#

S5E FFBD

16p
R̂1

v2

16pFBD
ĝmn]mFBD]nFBD

1
1

2
ĝmn]mf]nf2V~f!GA2ĝ d4x, ~1!

is transformed into Einstein frame

S5E F 1

2k2
R1

1

2
gmn]mx]nx2U~x!

1
1

2
e2gkxgmn]mf]nf2e22gkxV~f!GA2g d4x,

~2!

through the conformal transformation

gmn5V2ĝmn ,

V2[
k2

8p
FBD[e(kx/Av13/2), ~3!

wherek258pG, g is a constant related tov. x andf are
the BD and inflaton fields respectively. For our concerng
51/Av13/2 andU(x)50 ~see, however, the discussion b
low and on Sec. III!. Observational constraints givev
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.500 so thatg,0.09!1. In the dimensionally reduced
theories the original action is different from Eq.~1! but it is
still possible to conformally transform it to Eq.~2! @11#. In
this casex and the couplingg are given by

x5F2~D12!

D G1/2

ln FBD , ~4!

g5F 2D

D12G1/2

, ~5!

whereFBD[(b/b0)D/2, b is the radius of compactification
andb0 its present value. Notice that in the Kaluza-Klein ca
it is possible to makeU(x)50 only when the extra dimen
sions are compactified on a torus which has zero curvat
Compactifying the extra dimensions on a sphere will g
rise to a mass to the dilaton corresponding to the curvatur
the sphere. In Sec. III we shall come back to this point ag
and discuss what should we expect if such a term is a
included in the Lagrangian. The number of extra dimensio
is D and g can at most take a valueA2. In the superstring
caseg is exactlyA2 @15#. As we have already mentione
during radiation and matter dominationx has to be roughly
constant in order to comply with the observational data@16#
and to reproduce the correct value of the gravitational c
stant today. In most of the models the evolution of the ex
dimensions is also treated to be constant during the radia
era @17#.

A. Equations of motion

We shall perform our calculation in the Einstein fram
Eq. ~2!, for simplicity. The homogeneous equations of m
tion for a zero-curvature Friedmann universe are

ẍ13Hẋ1
g

2
e2gxḟ222ge22gxV~f!50, ~6!

f̈13Hḟ2gẋḟ1e2gxV8~f!50, ~7!

1

3 F1

2
ẋ21

1

2
e2gxḟ21e22gxV~f!G5H2,

~8!

with an overdot denoting time derivation and a prime den
ing partial derivative with respect tof. We use natural units
where k251. We do not pay much attention to the fie
equations during inflation, since much has been studied
this area@15,18#, rather we concentrate on the coherent o
cillations of the inflaton. Before we turn to linear perturb
tion theory we should mention that we have to introduce
bosons resonantly produced from the nonperturbative de
of inflaton field which we shall denote bys. We consider the
coupling of s particles with the inflaton to beg/2f2s2,
whereg is the coupling strength. Hence, the old potential
modified during oscillations due to the presence of mass
s particles:
3-2
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PREHEATING IN GENERALIZED EINSTEIN THEORIES PHYSICAL REVIEW D60 103513
V~f,s!5
1

2
m2f21

1

2
gf2s2. ~9!

In the Heisenberg representation the equation of motion
the scalar fields can be expressed in terms of the tempo
part of the mode with comoving momentumk,

s̈13Hṡ2gẋṡ1F k2

a2~ t !
1gf2e2gx2zRGs50, ~10!

wherez is the nonminimal coupling to the curvature, whic
we shall not take into account. This is the equation of gr
importance for the study of resonant creation ofs ~details
can be seen in Ref.@1#!. This particular equation takes th
form of the well known Mathieu equation after redefining t
field. This equation has very rich properties, and its soluti
can fall into two categories, either stable or unstable depe
ing on the choice of two parameters@A(k),q#, defined later
@19#.

B. Linear perturbations

Linear perturbations can be taken into account in a ga
invariant fashion using the longitudinal gauge. We write t
perturbed metric as

ds25~112F!dt22a2~ t !~122C!d i j dxidxj , ~11!

whereF and C are gauge invariant metric potentials. Th
Fourier modes satisfy the following equations of moti
which are derived perturbing the Einstein’s equatio
@20,21#.

F5C, ~12!

Ḟ1HF5
1

2
@ ẋdx1e2gxḟdf1e2gxṡds#, ~13!

dẍ13H ḋx1F k2

a2
2

g2

2
e2gxḟ214g2e22gx

•V~f,s!Gdx

1ge2gxḟdḟ22ge22gxV~f,s! ,fdf

22ge22gxV~f,s! ,sds

54Ḟẋ14e22gxV~f,s!F, ~14!

df̈1~3H2gẋ!dḟ1F k2

a2
1e2gxV~f,s! ,f,fGdf

1e2gxV~f,s! ,f,sds2gḟdẋ2ge2gxV~f,s! ,fdx

54Ḟḟ22e2gxV~f,s! ,fF, ~15!
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ds̈1~3H2gẋ!dṡ1F k2

a2
1gf2e2gxGds

12gsfe2gxdf2gṡdẋ2ggf2se2gxdx

54Ḟṡ22gf2se2gxF, ~16!

wheredf, dx, andds are gauge invariant perturbations
the respective fields. At this point the evolution equations
the background are not determined by Eqs.~6!–~8!; rather
they are modified by the presence ofs particles. For the
Friedmann equation@Eq. ~8!# we now have

1

3 F1

2
ẋ21

1

2
e2gxḟ21

1

2
e2gxṡ21e22gxV~f,s!G5H2.

~17!

Similarly, the homogeneous equations forx andf, Eqs.~6!
and ~7! are to be modified accordingly withV(f) replaced
by V(f,s) and V8(f) replaced byV(f,s) ,f . It is worth
mentioning that in the absence ofs field and the metric
perturbation it is possible to express the perturbation in
BD field in a simpler form. Let us further note that in a
expanding universe without BD field the behavior of the
flaton field isf'sin(mft)/mft and the scale factor goes a
a(t)'a0(t/t0)2/3. In the presence of the BD field this i
modified to a(t)'a0(t/t0)(2v13)/(3v14), such that in the
largev limit it reduces to the previous one. We expect sim
lar modification in the behavior of an inflaton field. For o
calculation’s sake we can assume that the modified evolu
of the inflaton forv.500 andg,0.09 is

f'@11O~g!#
sin~mft !

mft
. ~18!

For our purpose the exact numerical expression forO(g)
does not matter because we are retaining the lowest ord
g. Simplifying the perturbed BD field Eq.~14! with the help
of Eq. ~18! and noting thatdx can be rescaled by introducin
u5a3/2(t)dx(t) andz5mft, we get

d2u

dz2
1F k2

a2mf
2

1
3

4

g2

z2
2

5

4

g2

z2
cos~2z!Gu50. ~19!

The above equation resembles the Mathieu equation@19#:

x91@A~k!22q cos 2z#x50 ~20!

with

A~k!5
k2

a2mf
2

1
3

4

g2

z2
, ~21!

q5
5

8

g2

z2
. ~22!

Since q!1 we are never in the broad resonance regi
which is essential to amplify the modes during the oscil
3-3
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ANUPAM MAZUMDAR AND LUI´S E. MENDES PHYSICAL REVIEW D 60 103513
tions of the scalar field in presence of expansion. In this c
we are always in the narrow resonance regime@1#.

During preheating the resonant modes should grow
dxk}exp(mkt), wheremk is the Floquet index and its analyt
cal estimation has been done in Ref.@1# for the bosonic
fields, mk' ln(112e2p(k/agf0)22Q), where Q is contributed
by the initial and final quantum states of the created boso
which in the case of preheating are not thermal but have
characteristics of a squeezed state@1#. As it has been pointed
out in Ref. @13#, the resonant production of newly create
bosons grows fork50, so the super-Hubble modes a
present even in the absence of metric perturbation. In
case, however, the BD modes are not amplified. We rec
nize that in the Einstein equations as we perturb the ma
sector we automatically perturb the gravitational sector,
gravity being a source of negative heat capacity it can o
transfer energy to the metric perturbation which acts bac
the matter sector enhancing the resulting perturbation in
matter fields. Energetically it is easier to transfer energy
the lowest modes so most of the energy is transfered toFk50
and that is the reason whyk50 is favored.
t

C. Numerical result

Our analytical approximation breaks down as we incre
the numerical value for the coupling constantg and the per-
turbation equations become intractable as we introduce
metric perturbations. Hence we solve the system of 14
order differential equations numerically. Here while solvi
the homogeneous equation fors we consider only the zero
mode contribution, hence Eq.~10! can be treated as a homo
geneous background equation for the linear perturbations
with k50. By doing so we neglect the zero mode contrib
tion from the metric potential and including the zero mo
metric contribution can only lead to enhancement in the a
plification in the matter and the BD-dilaton sector as d
cussed in Ref.@13#. For our numerical calculation we hav
assumed that the perturbation inf and in x contains the
generic, scale invariant spectrum produced during inflat
We setFk(t0)51025 and we also consider the same initi
conditions for the fluctuations in the BD-dilaton and the flu
tuations in the matter fieldsdxk505dfk505dsk5051025

FIG. 1. The evolution of lndx for g(f0
2/mf

2 )593103 k50, and
g51.22 corresponds toD56 extra compactified dimensions.
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while the corresponding time derivatives are set to zero.1 The
initial condition fors is that of a plane wave solution and th
BD-dilaton fieldx is assumed to be very small!1 to match
the present strength of the gravitational constant~see Figs. 1
and 3!.

We have plotted the fluctuations in the BD-dilaton fie
and the perturbations in thes field for k50 ~see Figs. 2 and
4!. In the weak limit forg50.09, the perturbations do no
grow much and they saturate much earlier in compari
with the strong coupling limit, such asg51.22, which, in the
case of a Kaluza-Klein theory corresponds to six extra
mensions compactified to a six-dimensional torus. In
strong limit case the nonlinearity is achieved as soon as
metric perturbationF51. It is obvious that for Kaluza-Klein
theories and for string motivated theories the linear the
soon becomes invalid unless the backreaction is taken
account. It is important to notice that ourq parameter is not
the same as in general relativity. Instead of defining thq
parameter to beq5g(f0

2/mf
2 ), wheref0 is the initial am-

plitude of the inflaton field, which is 0.08MPl in our case, in
presence of the BD fieldq is modified by an exponentia
factorq5g(f0

2/mf
2 )e2gx. The negative sign in the exponen

drags down theq parameter. For the figuresg(f0
2/mf

2 )59
3103. There is some difference between the perturbation
s and x as visible from the plots~see Figs. 1–4!. It is im-
portant to note thatx has as such no potential with minim
unlike f ands fields which oscillate around the minima o
their respective potentials and for the modes outside the
rizon the perturbedx field almost stops oscillating and star
growing exponentially. The increment in the perturbations
the strong coupling limit can be understood qualitatively. L
us first see how the scale factor behaves in these two ca
As we have already discussed the oscillations in the infla
field on average correspond to zero pressure. This sugg
that the BD-dilaton field on average evolves similar to t
matter dominated era, and in presence of the BD-dila
a(t)'a0(t/t0)(2v13)/(3v14). For largev and smallg, the
growth in a(t) is roughly the same as in general relativit

1We have chosen our initial conditions to be scale-invariant, i
independent ofk. There are, however, other subtleties involved
deciding the initial conditions. For a recent discussion we refe
Ref. @13#.

FIG. 2. The evolution of lnds for g(f0
2/mf

2 )593103, k50
andg51.22 corresponds toD56 extra compactified dimensions.
3-4
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PREHEATING IN GENERALIZED EINSTEIN THEORIES PHYSICAL REVIEW D60 103513
but for small v and g close toA2, the departure of the
behavior of the inflaton oscillations from general relativity
quite significant. Sincef;1/t;1/a(3v14)/(2v13), for small
v, the amplitude of the inflaton decreases slowly compa
to the general relativity limit, therefore leading to a rema
able growth in the production ofs particles.

D. Perturbing Newton’s constant

In @22# the authors have considered the oscillations in
Newton’s constant by introducing a potential for the BD fie
explicitly and concluded thatG oscillates about its mea
value and for reasonable values of the mass of the BD fi
(m>1 GeV!, the oscillations have very high frequenc
n21!1 s, compared to the Hubble expansion. In their ca
however, the amplitude of the oscillations is exponentia
small, and the oscillation energy is dissipated throu
Hubble redshift. Considering our scenario, where we do
have to invoke the potential for the BD explicitly, the pe
turbations in the BD field will cause the oscillations in th
Newton’s constant in the Jordan frame even if the modes
well within the horizon. Such oscillations will not only hav
a temporal but also a spatial variation. As we approach
k50 mode, gradually the amplitude of such oscillations a
increases exponentially in time and causes a large varia
in the Newton’s constant. Such oscillations are certainly p
missible but whether they would withstand all known te
from cosmology and general relativity is not known at t
moment. It is expected that the classical fluctuations w
lead to nonlinearity after some time and the linear theory
perturbation will break down whenF51. Such provocative
interpretation of the Newton’s constant and the nondecay
property of the BD field could be the source of dark matter
our universe. Had we introduced a potential with a minimu
for the BD-dilaton field, superimposed on the exponen
growth, we should also see small oscillations with frequen
and amplitude depending on the exact form of the poten

E. Entropy perturbations

During inflation the presence of BD field renders t
three-curvature of comoving hypersurfaces in terms
Bardeen’s gauge invariant quantityz time varying on super-
horizon scales, thus producing not only adiabatic but a
isocurvature perturbations@18,23#. It has been estimated i

FIG. 3. The evolution of lndx for g(f0
2/mf

2 )593103, k50 and
g50.09 corresponds tov5500 in JBD theory.
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Ref. @18# that at the end of inflation whenx is very close to
zero the metric perturbation is dominated by the adiab
contribution and at the time of horizon crossing the fractio
energy density fluctuations inx are much smaller than th
adiabatic ones. This suggests that the isocurvature fluc
tions in the JBD model are negligible. If we assume that
BD field is a candidate for the cold dark matter then one c
estimate its energy density from the exact solution of the
field during the dust era, which is a good approximati
during the oscillatory phase when the average pressure
comes zero and energy density falls as 1/t. Since

rx5
1

2
ẋ2>g2r, ~23!

wherer is the post inflationary energy density of the un
verse, it is obvious that the energy density of the BD field
negligible when compared to the total. Usually for multip
fields the difference between the relative perturbations
defined as entropy perturbationS1,2 @24# by

S1,25
dr1

r11p1
2

dr2

r21p2
, ~24!

wherer1 , r2 , p1 , p2 are respectively the energy densiti
and pressures. For nonadiabatic initial conditionsdx/ẋ
Þdf/ḟÞds/ṡ, Sx,f , Sx,s , and Ss,f would not vanish,
thus producing entropy perturbation inside as well as outs
the horizon. Thus for superhorizon modes isocurvature fl
tuations would evolve though adiabatic fluctuation wou
have frozen. The growth in the isocurvature perturbation o
side the horizon gives the tilt in the spectrum, which is us
ally blueshifted and roughly estimated by the ratio of effe
tive mass square of the cold dark matter~CDM! field and
square of the Hubble expansion. Ifx is treated as a CDM
field then the effective mass is roughlyg2V(f,s), the main
contribution coming from the large coupling 0.5gf2s2, but
the coupling is subdued by the presence ofg2, provided we
are in a weak limit JBD theory. In string motivated and
Kaluza-Klein theories the effective mass increases a lot. D
ing preheating the Hubble expansion is very small compa
to the effective mass and thus results in an extreme blue
specially in string motivated theories.

FIG. 4. The evolution of lnds for g(f0
2/mf

2 )593103, k50
andg50.09 corresponds tov5500 in JBD theory.
3-5
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ANUPAM MAZUMDAR AND LUI´S E. MENDES PHYSICAL REVIEW D 60 103513
F. Shaking the Kaluza-Klein modes

As we have described, depending on the numerical va
of the coupling constantg, the role ofx also changes, and in
fact it covers a wide range of theories from effective act
for superstring models to JBD theories. IfFBD is interpreted
as a homogeneous field which appears as an effective m
term for the Kaluza-Klein modes@25# in the effective four-
dimensional Kaluza-Klein action defined asMl

2(FBD) then,
as mentioned before, the BD-dilaton can be related to
radius of the compactifiedD dimensions if the compactifica
tion is done on aD dimensional torus or on sphere. In term
of x:

x5x0 lnF b

b0
G , ~25!

x05AD~D12!

2
. ~26!

If the extra dimensions are compactified on a sphere then
massMl(x) of the four-dimensional Kaluza-Klein fieldf lm
in terms ofx

Ml
2~x!5

l ~ l 1D21!

b0
2

e2(D12)x/x0. ~27!

In the usual case,x is assumed to be very close to zero af
inflation and its variation is assumed to be negligible in
diation and matter dominated eras. That leads to very h
mass of these modes, very close to Planck scale and pro
tional to the inverse square of the radius of the extra dim
sions. During reheating the perturbation inx grows exponen-
tially in time and that causes fluctuations in the mass of
Kaluza-Klein modes. The perturbations effectively give r
to the Casimir force as a fluctuating boundary condition
the D-dimensional sphere. This in fact can stabilize the p
tential for the homogeneous scalar field, in our notat
FBD . Though we have neglected such potentials in
analysis since we have concentrated on the compactifica
on a torus, in this case the Kaluza Klein mass scale is
inversely proportional to the square of the size of the co
pactification radius. If the compactification is done on
sphere and if a potential term for the dilaton is taken in
account then the effect of resonance will be even more p
nounced. However, the potential lacks a local minima and
order to stabilize it one needs to invoke the Casimir effect
a one-loop level. The issue raises a few questions suc
particle creation in the external dimensions due to fluctua
boundary and their stability requires a detailed study.

If the Kaluza-Klein modes are excited their excitatio
may also give rise to some undesirable particles such as
pyrgon@26#, whose energy density decreases asa23, giving
during the radiation erarpyrgon/r rad;a. Their stringent re-
quirement to decay@26# can enhance their lifetime and the
can be a candidate for dark matter. Overproduction of s
particles could have overcome the critical density, but th
number density could have been diluted by invoking a s
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ondary phase of inflation. Such a phase is also desirabl
smoothen the large superhorizon resonances as mention
Ref. @13#.

III. CONCLUSIONS

We have studied the preheating scenario in the contex
scalar-tensor theories. We have discussed the linear pe
bation theory and showed that the perturbations in B
dilaton field grow outside the horizon. The interpretation
such modes is not very clear at the moment but one m
hope that by including backreaction in a consistent way m
solve this problem. Nevertheless, including perturbations
the BD-dilaton field introduces new physics well within th
horizon such as temporal and spatial variation in Newto
constant. Such perturbations could play an important r
during structure formation and it is important to see whet
such variations inG could be detected or not. In the stron
coupling regime fluctuations inx field grow faster than the
fluctuations in the case of weak coupling~JBD theory! for
the zero mode and can also excite the Kaluza-Klein mo
by lowering the mass off l ,m . Such excitations can give ris
to highly noninteracting quanta which can be a very go
candidate for the present dark matter.

We have also discussed the entropy perturbations du
reheating which are solely due to the fact that there is m
than one scalar field and the initial conditions in the relat
density fluctuations in the respective components are no
diabatic. In general relativity the reason behind such su
amplification in the fluctuations is due to the enhancemen
the entropy perturbations outside the horizon. In our c
such amplification is even stronger especially in the stro
coupling case because we have an extra field which con
utes its fluctuations to the entropy perturbation. Isocurvat
fluctuations will be generated with a large tilt in string m
tivated and Kaluza-Klein theories provided BD-dilaton
treated as a CDM field.

Here we must point out that we have intentionally n
glected the potential term coming from the dilaton sect
Such a scheme is possible provided the extra dimensions
compactified on a torus and not on a sphere. Compactify
on a sphere gives rise to a term proportional to the curva
of the sphere and such a term acts as a potential for
dilaton. However, as we noted before, the curvature te
lacks the global minima in the direction of the dilaton fie
and one has to invoke the first order Casimir corrections
one-loop level to give rise to a global minimum. Paramet
excitations of the Kaluza-Klein modes in such a poten
have already been discussed in Ref.@25# but the author has
not taken the metric perturbations into account. Inclusion
the dilaton potential may even enhance the metric pertu
tion as it acts as an extra source term for Eq.~15!. Concrete
predictions requires a detailed study and it is worth inve
gating this point as a separate issue. We must mention
recently there has been an intense discussion upon the in
conditions for the perturbations in the matter and in the B
dilaton fields. We have chosen our initial conditions to
scale invariant. There have been other proposals such a
commonly used quantum plane wave initial conditions
3-6
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the fluctuations in the fields. This, however, favors smak
modes more than the largek modes. Another attractive pro
posal can be evolving the BD-dilaton from 60e foldings
before the end of inflation whenaH!k until the horizon
crossing and then subsequently evolving the fields during
oscillatory phase. These are open issues which require
ther investigation. Our analysis was mainly restricted to
k→0 mode but we should also expect the same phys
consequences for other modes excited during preheatin
though with a much smaller magnitude.

The issue of backreaction becomes important after a
inflaton oscillations and the subject becomes almost int
table as we increase the number of fields gradually. Bac
action has been considered before by many authors@1#, but
in our situation we have to worry about the contributi
coming from the BD-dilaton sector also. A self-consiste
study of the inflaton and thes particles should take into
account the effective change in the mass of the inflaton bu
this case such corrections will be larger due to the contri
tion from the BD-dilaton sector. Similarly, the BD-dilato
will also acquire an effective mass. To make a compl
picture one must answer all these relevant issues and
v.
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leave them for future investigation. We also point it out th
our analysis has ignored the the contribution coming fr
Fk50 to the background evolution equations. Inclusion
such terms will certainly help to amplify the fluctuation
even faster and we can expect the fluctuations to bec
nonlinear before. The aspects of nonlinearity in the grav
tional sector is least understood and the further evolution
the nonlinear modes will become important leaving an i
print on the cosmic microwave background radiation wh
will be the ultimate verification for the validity of such
claims.
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