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Anupam Mazumdar and LsIE. Mendes
Astrophysics Group, Blackett Laboratory, Imperial College London SW7 2BZ, United Kingdom
(Received 10 February 1999; published 26 October 1999

We study the preheating scenario in generalized Einstein theories, considering a class of such theories which
are conformally equivalent to those of an extra field with a modified potential in the Einstein frame. Resonant
creation of bosons from an oscillating inflaton has been studied before in the context of general relativity taking
also into account the effect of metric perturbations in linearized gravity. As a natural generalization we include
the dilatonic—Brans-Dicke field without any potential of its own and in particular we study the linear theory of
perturbations including the metric perturbations in the longitudinal gauge. We show that there is an amplifi-
cation of the perturbations in the dilaton—Brans-Dicke field on super-horizon sé¢ale8)( due to the fluc-
tuations in the metric, thus leading to an oscillating Newton’s constant with very high frequency within the
horizon and with growing amplitude outside the horizon. We briefly mention the entropy perturbations gen-
erated by such fluctuations and also the possibility to excite the Kaluza-Klein modes in the theories where the
dilatonic—Brans-Dicke field is interpreted as a homogeneous field appearing due to the dimensional reduction
from higher-dimensional theoriegS0556-282199)01820-2

PACS numbd(s): 98.80.Cq

[. INTRODUCTION to variations in the Newtonian gravitation “constan®; and
introduces a new coupling constant with general relativity

One of the most important epochs in the history of therecovered in the limit 46— 0. The constraint o based on
inflationary Universe is the transition from almost de Sittertiming experiments using the Viking space probe suggests
expansion to the radiation dominated universe. Until a fewthat it must exceed 50®]. The JBD theory also mimics the
years ago proper understanding of this phenomenon was neffective Lagrangian derived from low energy scale of the
well established. Recent developments in the theory of resatring theory where the Brans-DickBD) field is called Di-
nant particle creation of bosof&] as well as fermion$2]  |aton and the coupling constaattakes the negative value of
due to coherent oscillations of the Bose-condensate inflatons 1 [10]. It also represents the ¢4D)-dimensional Kaluza-
may explain satisfactorily the emergence of the radiation erg|ein theories with an inflaton field which has mainly two
from the ultracold inflationary universl]. Although such  gypclasses out of which we shall consider the one where the
phenomena are hard to reproduce in a laboratory they are theraion is introduced in an effective four-dimensional
simplest manifestation of a slowly varying scalar field WhiChtheory. In this case the BD-dilaton field plays the role of

rolls down the potential and oscillates as a coherent source ﬂ'bmogeneous scalar field in 4 dimensions and is related to
each and every space-time region. Apart from reheating th e size of the compactification. Most of these models are

universe to the temperature ambient for the production o . . :
light nuclei this phenomena has multifaceted consequence(s;or?formal.Iy equivalent and can be_ recastin the form of Ein-
Stein gravity theory11]. The only difference is that the scal-

It is also a well known mechanism to create a nonequilib-; fthe field d thei di i i b
rium environment which can be exploited for the generatioHng of the Tields an €r corresponding couplings will be

of net baryon antibaryon asymmetry required for baryogengiffere”_t for different interpretgtions of BD-dilaton f_ie_Id. .
esis[3]. If there exist general chiral fields, then, in particular, N this paper we shall consider the general relativity limit
breaking of parity invariance could also lead to different pro-Of the JBD theory as well as other variant theories such as
duction of left and right fermions. If the rotational invariance Stfing and Kaluza-Klein and for the sake of consistency we
is broken explicitly by an axial background then there wouldiuSt use one representative of the coupling consfamthich
be anisotropic distribution of fermiorf&]. The same phe- takes d'|fferent values gccordmgly. We must say that there is
nomena is also responsible for the generation of primordia®" obvious advantage in all these theories that they are well
magnetic field[5,6] in the context of string cosmology, constrained at the present day and the evolution of the BD-

where the dynamical dilaton field plays the role of an oscil-dilaton field is roughly constant after a period of éGold-
lating background. ings of inflation. Here we shall not consider the potential in

The preheating scenario has been studied so far in th§€ dilatonic-BD sector and we assume that the evolution of
context of general theory of relativity. It has been well es-the dilaton-BD field during the oscillatory phase is solely due
tablished from the present observations that this theory o0 its coupling with the inflaton in the '25'”25"9'” frame. We
gravitation is the correct description of space-time geometr@Ssume the quadratic potentigf$)=3m"¢“ for the infla-
at scales larger than 1 cm. There exists a class of deviat®n field. Itis to be noticed that during the oscillatory phase
theories which are scalar-tensor gravity theories, known a€ field ¢ decreases in the same way as the density of non-
generalized Einstein theorig§SET) of which the Jordan- relativistic particles of massn: p,=3¢*+3sm?¢p’~a 3,
Brans-Dicke (JBD) theory [7,8] is the simplest and best- provided the couplingy is very small as in the case of JBD.
studied generalization of general relativity. This theory leadd~or simplicity we discuss the physics of weak coupling and
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at the end we comment on the strong coupling limits which>500 so thaty<0.09<1. In the dimensionally reduced
we get numerically. In the weak limit the coherent oscilla-theories the original action is different from E@.) but it is
tions of the homogeneous scalar field correspond to a mattatill possible to conformally transform it to EqG2) [11]. In
dominated equation of state with vanishing pressure. Thishis casey and the couplingy are given by

suggests that the BD field should evolve according to a well

known solution during the dust efaZ2]. 2(D+2)]*?

Apart from the study of nonperturbative creation of X=|—p Indgp, (4)
bosons and fermions during preheating, metric perturbations
have also been studied extensively in R¢is] and[14]. It 72
has been shown that the metric perturbations also grow dur- y= 2D (5)
ing preheating in the multiscalar case due to the enhance- D+2]

ment of the entropy perturbations. It is also possible to am-
plify the superhorizon modes causally. Such amplificationwhere ®gp=(b/b)’?, b is the radius of compactification,
requires the linear theory of gravitational perturbations to beandb, its present value. Notice that in the Kaluza-Klein case
supplanted by nonlinear perturbation theory. In R&8] the it is possible to makeéJ(x)=0 only when the extra dimen-
authors have discussed the two fields case in particular whetgons are compactified on a torus which has zero curvature.
the first one ¢) represents the inflaton and the second (  Compactifying the extra dimensions on a sphere will give
represents the newly created bosons with an interaction witkise to a mass to the dilaton corresponding to the curvature of
the inflaton of the formig¢?o?. Perturbations inr get am-  the sphere. In Sec. Ill we shall come back to this point again
plified along with the metric perturbations. They have arguedand discuss what should we expect if such a term is also
that all the fields would be possibly amplified except theincluded in the Lagrangian. The number of extra dimensions
inflaton which is subdued by transferring its energy to theis D and y can at most take a valug2. In the superstring
other fields. Following their claim it is also possible to am- casey is exactly 2 [15]. As we have already mentioned
pllfy the other fields such as dilaton-BD field as they are alsqjuring radiation and matter dominatiqnhas to be rough]y
coupled to the inflaton and can be cause of some concern. ¥pnstant in order to comply with the observational d4i8|
the conclgding section we devote ourselves to the discussiofnd to reproduce the correct value of the gravitational con-
of these issues. stant today. In most of the models the evolution of the extra
dimensions is also treated to be constant during the radiation
Il. THE EQUATIONS era[17].

In JBD theory the action in the Jordan frafg

|

1. =
+ 59" 0,0, V( ¢)} V=g, (1)

A. Equations of motion
2
(I)BDI'_\)

167 16mdgy

quv We shall perform our calculation in the Einstein frame,
9", Pppd, Pep P .

r Eq. (2), for simplicity. The homogeneous equations of mo-
tion for a zero-curvature Friedmann universe are

X 3HiH Z€ NG 20e7 MV ($)=0, ()
is transformed into Einstein frame

|

1
50 NG, i, bV (¢)

11 G+3HG— yxb+e MV (4)=0,  (7)
FRJF Eg”vﬁﬂxﬁyX—U(X)
K

1)1. 1 .
3 §X2+ Ee‘”¢2+e‘2”V(¢) =H?,

V-gd'x, ®)

(2)  with an overdot denoting time derivation and a prime denot-
ing partial derivative with respect t¢. We use natural units
where k?2=1. We do not pay much attention to the field
equations during inflation, since much has been studied in

through the conformal transformation

— O2A !
9=, this area[15,18), rather we concentrate on the coherent os-
5 cillations of the inflaton. Before we turn to linear perturba-
02— K—q> _ olkxl @ ¥372) 3) tion theory we should mention that we have to introduce the
o BP ' bosons resonantly produced from the nonperturbative decay

of inflaton field which we shall denote hy. We consider the
wherex?=87G, v is a constant related to. y and¢ are  coupling of o particles with the inflaton to bg/242%¢?,
the BD and inflaton fields respectively. For our concern whereg is the coupling strength. Hence, the old potential is
=1/Jw+3/2 andU(x) =0 (see, however, the discussion be- modified during oscillations due to the presence of massless
low and on Sec. I). Observational constraints give o particles:
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V(g,0)= Em2¢>2+ Eg(ﬁzaz €) 0 Y) 8¢
; > 2 . 60+ (3H—yx)do+ oo

k2
5 tggle
a

. . . . - e Sy 2 -
In the Heisenberg representation the equation of motion for t2goge Mép—yodx—ygooe ox
the scalar fieldr can be expressed in terms of the temporal

—Ad. 2 -
part of the mode with comoving momentum =4Po—29¢°ce MO, (16)

where ¢, Sy, and S0 are gauge invariant perturbations in
the respective fields. At this point the evolution equations for

0=0, (100  the background are not determined by E(—(8); rather
they are modified by the presence @f particles. For the
Friedmann equatiofEq. (8)] we now have

k2

o+3Ho—yxo+ +gp2e —(R

a’(t)

where{ is the nonminimal coupling to the curvature, which

we shall not take into account. This is the gquation of great E E 24 Ee—yx¢z+ Ee‘ yxb_2+e—27)(v(¢,o,) —H2.
importance for the study of resonant creationcofdetails 3|2 2 2
can be seen in Refl]). This particular equation takes the 17)

form of the well known Mathieu equation after redefining the _. arlv. the h . d
field. This equation has very rich properties, and its solutions>Milarly, the homogeneous equations joand ¢, Egs.(6)

can fall into two categories, either stable or unstable depend®nd (7) are to be modified accordingly witti(¢) replaced

ing on the choice of two parametera(k),q], defined later °Y V(#,0) andV'(¢) replaced byV(¢,a) ,. It is worth
[19]. mentioning that in the absence of field and the metric

perturbation it is possible to express the perturbation in the
BD field in a simpler form. Let us further note that in an
B. Linear perturbations expanding universe without BD field the behavior of the in-

Linear perturbations can be taken into account in a gaugbaton field is #=sin(m,t)/m,t and the scale factor goes as

~ 2/3 . ..
invariant fashion using the longitudinal gauge. We write the®(t) =o(t/to)". In the presence 92 the BD field this is
perturbed metric as modified to a(t)~ag(t/ty) ?¢"3/Ge*4) such that in the

o large w limit it reduces to the previous one. We expect simi-
ds’=(1+2d)dt?—a(t)(1-2¥)s;dxdx, (11) lar modification in the behavior of an inflaton field. For our
calculation’s sake we can assume that the modified evolution

. . . . i > <0.09 i
where® and ¥ are gauge invariant metric potentials. The of the inflaton forw =500 andy<0.09 is

Fourier modes satisfy the following equations of motion sin(myt)
which are derived perturbing the Einstein’s equations dw[1+(9(y)]—t. (18
[20,21]. My

For our purpose the exact numerical expression @)
b=, (12) does not matter because we are retaining the lowest order in
v. Simplifying the perturbed BD field Eq14) with the help
L of Eq. (18) and noting thathy can be rescaled by introducing
. . ) . _ 4302 _
(I)+H(I)=E[X5X+e*”¢8¢>+e*”cr§cr], 1z U a”qt) ox(t) andz=m,t, we get
du | K 37 57 qonlumo. o
o e e

. . k2 42 .
Sx+3HOx+| = — e P2+ 4y*e 2. V(p,0) |5
X X a2 2 ¢ 4 (¢.)]0x The above equation resembles the Mathieu equ4fi®h
+7e_7X¢5¢—276_27XV(<]5,0'),¢5¢ x"+[A(k)—2q cos Z]x=0 (20)
—Zye_ZVXV(d),a')YU&r with
— 4D y+4e2V(,0) D, (14) k2 342
A(k)z > 2+Z—2, (21)
a“mj, z
. . k?
6¢p+(3H—yx) b+ —2+e_7XV(¢,U),¢,¢ 0] 5 72
z

+e NV(,0) 4,00 yhSx—ve  XV(,0) 45X
. Since g<1 we are never in the broad resonance regime
=4dp—2e "V(p,0) 4P, (15  which is essential to amplify the modes during the oscilla-
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FIG. 1. The evolution of Iy for g(¢§/m3)=9x10° k=0, and FIG. 2. The evolution of Io for g(¢5/m3)=9x10% k=0
vy=1.22 corresponds tB =6 extra compactified dimensions. and y=1.22 corresponds tD =6 extra compactified dimensions.

while the corresponding time derivatives are set to 2éfbe
tions of the scalar field in presence of expansion. In this casmitial condition for o is that of a plane wave solution and the
we are always in the narrow resonance regjte BD-dilaton field y is assumed to be very smad1 to match
During preheating the resonant modes should grow athe present strength of the gravitational constare Figs. 1
Sx*exp(ut), whereu, is the Floquet index and its analyti- and 3.
cal estimation has been done in REf] for the bosonic We have plotted the fluctuations in the BD-dilaton field
fields, Mkwln(1+2e*”(k’ag‘/’0)2—Q), where Q is contributed ~and the perturbations in the field for k=0 (see Figs. 2 and
by the initial and final quantum states of the created boson€}). In the weak limit fory=0.09, the perturbations do not
which in the case of preheating are not thermal but have thgrow much and they saturate much earlier in comparison
characteristics of a squeezed sfdfe As it has been pointed With the strong coupling limit, such ag=1.22, which, in the
out in Ref.[13], the resonant production of newly created case of a Kaluza-Klein theory corresponds to six extra di-
bosons grows forkk=0, so the super-Hubble modes are mensions compactified to a six-dimensional torus. In the
present even in the absence of metric perturbation. In thi§trong limit case the nonlinearity is achieved as soon as the
case, however, the BD modes are not amplified. We recognetric perturbatiornb = 1. It is obvious that for Kaluza-Klein
nize that in the Einstein equations as we perturb the matte¢heories and for string motivated theories the linear theory
sector we automatically perturb the gravitational sector, an§oon becomes invalid unless the backreaction is taken into
gravity being a source of negative heat capacity it can onlyaccount. It is important to notice that ogmparameter is not
transfer energy to the metric perturbation which acts back téhe same as in general relativity. Instead of defining ghe
the matter sector enhancing the resulting perturbation in thparameter to be1=g(¢§/m§5), where ¢, is the initial am-
matter fields. Energetically it is easier to transfer energy tglitude of the inflaton field, which is 0.08p, in our case, in
the lowest modes so most of the energy is transferabltg,  presence of the BD field| is modified by an exponential
and that is the reason why=0 is favored. factorq=g(¢§/mfﬁ)e‘ YX. The negative sign in the exponent
t drags down they parameter. For the figuray( ¢5/m3)=9
X 10%. There is some difference between the perturbations in
o and y as visible from the plot$see Figs. 1-4 It is im-
C. Numerical result portant to note thag has as such no potential with minima

Our analytical approximation breaks down as we increaséinlike ¢ and o fields which oscillate around the minima of
the numerical value for the Coup”ng Constanand the per- their reSpeCtive pOtentialS and for the modes outside the ho-
turbation equations become intractable as we introduce thézon the perturbeg field almost stops oscillating and starts
metric perturbations. Hence we solve the system of 14 firsgrowing exponentially. The increment in the perturbations in
order differential equations numerically. Here while solvingthe strong coupling limit can be understood qualitatively. Let
the homogeneous equation forwe consider 0n|y the zero us first see how the scale factor behaves in these two cases.
mode contribution, hence EQ]_O) can be treated as a homo- As we have already discussed the oscillations in the inflaton
geneous background equation for the linear perturbatien in field on average correspond to zero pressure. This suggests
with k=0. By doing so we neglect the zero mode contribu-that the BD7d|Iaton field on average evolves similar to the
tion from the metric potential and including the zero modeMatter dominated era, and in presence of the BD-dilaton
metric contribution can only lead to enhancement in the ama(t) =ao(t/to) >3/ "4, For largew and smally, the
plification in the matter and the BD-dilaton sector as dis-9rowth ina(t) is roughly the same as in general relativity,
cussed in Ref[13]. For our numerical calculation we have
assumed that the perturbation ¢ and in y contains the
generic, scale invariant spectrum produced during inflation. lwe have chosen our initial conditions to be scale-invariant, i.e.,
We setd,(to) =10 > and we also consider the same initial independent ok. There are, however, other subtleties involved in
conditions for the fluctuations in the BD-dilaton and the fluc-deciding the initial conditions. For a recent discussion we refer to
tuations in the matter field8y,_o= 8px_o=d0y_o=10"°>  Ref.[13].
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FIG. 3. The evolution of ISy for g($3/m3) =9x10°, k=0 and FIG. 4. The evolution of Io for g(¢5/m3)=9x10% k=0
v=0.09 corresponds t@=500 in JBD theory. and y=0.09 corresponds t@=500 in JBD theory.

but for smallw and y close to \/f the departure of the Ref.[18] that at the end of inflation wheg is very close to
behavior of the inflaton oscillations from general relativity is zero the metric perturbation is dominated by the adiabatic
quite significant. Sincep~ 1t~ 1/a®«*/(22*3) for small  contribution and at the time of horizon crossing the fractional
o, the amplitude of the inflaton decreases slowly compareénergy density fluctuations ig are much smaller than the

to the general relativity limit, therefore leading to a remark-adiabatic ones. This suggests that the isocurvature fluctua-

able growth in the production af particles. tions in the JBD model are negligible. If we assume that the
BD field is a candidate for the cold dark matter then one can
D. Perturbing Newton's constant estimate its energy density from the exact solution of the BD

In [22] the authors have considered the oscillations in thef'EId during the dust era, which is a good approximation

Newton’s constant by introducing a potential for the BD field during the oscillatory phase vyhen the average pressure be-
explicitly and concluded thaG oscillates about its mean comes zero and energy density falls as Bince

value and for reasonable values of the mass of the BD field 1.

(m=1 Ge\), the oscillations have very high frequency PXZEXZE Y?p, (23
v~1<1 s, compared to the Hubble expansion. In their case,

however, the amplitude of the oscillations is exponentially , . . . .
small, and the oscillation energy is dissipated throughVNerep is the post inflationary energy density of the uni-

Hubble redshift. Considering our scenario, where we do not€rs€. it is obvious that the energy density of the BD fie!d is
have to invoke the potential for the BD explicitly, the per- negligible when compared to the total. Usually for multiple
turbations in the BD field will cause the oscillations in thefields the difference between the relative perturbations are

Newton's constant in the Jordan frame even if the modes ardfined as entropy perturbatic®; , [24] by

well within the horizon. Such oscillations will not only have

a temporal but also a spatial variation. As we approach to S - op1 _ op2 (24)
k=0 mode, gradually the amplitude of such oscillations also L2 bt p1 patpy’

increases exponentially in time and causes a large variation

in the Newton'’s constant. Such oscillations are certainly perwherep,, p,, p;, p, are respectively the energy densities
missible but whether they would withstand all known tests, 4 pressures. For nonadiabatic initial conditiofig/ x
from cosmology and general relativity is not known at the - o .
moment. It is expected that the classical fluctuations Willijflfoijgag’eﬁﬁg’ SX'eUr t,urall)r;?[i(?ﬁ(ibn;/}lgglgsr\ﬁéllv::losﬂtlsi de
lead to nonlinearity after some time and the linear theory Oiihe hFc))rizon T%]us forp)s/up erhorizon modes isocurvature fluc-
perturbation will break down whee = 1. Such provocative tions wc;uld evolve tlck)]ou h adiabatic fluctuation would
! . , ati

interpretation of the'Nevvton s constant and the nondecayabl ave frozen. The growth in tr?e isocurvature perturbation out-
property of the BD field could be the source of dark matter mside the horizon gives the tilt in the spectrum, which is usu-
our universe. Had we introduced a potential with a minimum . . T

for the BD-dilaton field, superimposed on the exponentialail\llz ?]lql;essshgteuda?en%fr?#ghclzlssggit?azégﬁ)r?itg do;r?gfec-
growth, we should also see small oscillations with frequenc d

: . ._square of the Hubble expansion. }fis treated as a CDM
and amplitude depending on the exact form of the potentlalfield then the effective mass is roughpV(, o), the main

contribution coming from the large coupling 85202, but

the coupling is subdued by the presencey®f provided we
During inflation the presence of BD field renders theare in a weak limit JBD theory. In string motivated and in

three-curvature of comoving hypersurfaces in terms ofKaluza-Klein theories the effective mass increases a lot. Dur-

Bardeen’s gauge invariant quantifytime varying on super- ing preheating the Hubble expansion is very small compared

horizon scales, thus producing not only adiabatic but alsao the effective mass and thus results in an extreme blue tilt

isocurvature perturbatior/48,23. It has been estimated in specially in string motivated theories.

E. Entropy perturbations
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F. Shaking the Kaluza-Klein modes ondary phase of inflation. Such a phase is also desirable to
As we have described, depending on the numerical valugmoothen the large superhorizon resonances as mentioned in

of the coupling constant, the role ofy also changes, and in Ref. [13].
fact it covers a wide range of theories from effective action

for superstring models to JBD theoriesdiy is interpreted lll. CONCLUSIONS
as a homogeneous field which appears as an effective mass
term for the Kaluza-Klein model25] in the effective four- We have studied the preheating scenario in the context of

dimensional Kaluza-Klein action defined Mﬁz(q)so) then, scalar-tensor theories. We have discussed the linear pertur-
as mentioned before, the BD-dilaton can be related to th&ation theory and showed that the perturbations in BD-
radius of the compactifieB dimensions if the compactifica- dilaton field grow outside the horizon. The interpretation of
tion is done on @ dimensional torus or on sphere. In terms such modes is not very clear at the moment but one may
of x: hope that by including backreaction in a consistent way may
solve this problem. Nevertheless, including perturbations in
the BD-dilaton field introduces new physics well within the
horizon such as temporal and spatial variation in Newton’s
constant. Such perturbations could play an important role

D(D+2) during structure formation and it is important to see whether
XomN "7

X=Xoln by’ (25

(26)  such variations irG could be detected or not. In the strong
coupling regime fluctuations iy field grow faster than the
fluctuations in the case of weak couplitgBD theory for

If the extra dimensions are compactified on a sphere then thtde zero mode and can also excite the Kaluza-Klein modes
massM(x) of the four-dimensional Kaluza-Klein fielh, by lowering the mass o, ,,. Such excitations can give rise

in terms ofy to highly noninteracting quanta which can be a very good
candidate for the present dark matter.
. I(1+D—1) We have also discussed the entropy perturbations during
Mf(x)= e (D+2ixo, (27)  reheating which are solely due to the fact that there is more
bg than one scalar field and the initial conditions in the relative

density fluctuations in the respective components are nona-
In the usual casey is assumed to be very close to zero afterdiabatic. In general relativity the reason behind such super
inflation and its variation is assumed to be negligible in ra-amplification in the fluctuations is due to the enhancement in
diation and matter dominated eras. That leads to very higthe entropy perturbations outside the horizon. In our case
mass of these modes, very close to Planck scale and propauch amplification is even stronger especially in the strong
tional to the inverse square of the radius of the extra dimeneoupling case because we have an extra field which contrib-
sions. During reheating the perturbationyirgrows exponen- utes its fluctuations to the entropy perturbation. Isocurvature
tially in time and that causes fluctuations in the mass of théluctuations will be generated with a large tilt in string mo-
Kaluza-Klein modes. The perturbations effectively give risetivated and Kaluza-Klein theories provided BD-dilaton is
to the Casimir force as a fluctuating boundary condition fortreated as a CDM field.
the D-dimensional sphere. This in fact can stabilize the po- Here we must point out that we have intentionally ne-
tential for the homogeneous scalar field, in our notationglected the potential term coming from the dilaton sector.
dgp. Though we have neglected such potentials in ouiSuch a scheme is possible provided the extra dimensions are
analysis since we have concentrated on the compactificatiocompactified on a torus and not on a sphere. Compactifying
on a torus, in this case the Kaluza Klein mass scale is stilbn a sphere gives rise to a term proportional to the curvature
inversely proportional to the square of the size of the comof the sphere and such a term acts as a potential for the
pactification radius. If the compactification is done on adilaton. However, as we noted before, the curvature term
sphere and if a potential term for the dilaton is taken intolacks the global minima in the direction of the dilaton field
account then the effect of resonance will be even more proand one has to invoke the first order Casimir corrections at a
nounced. However, the potential lacks a local minima and irone-loop level to give rise to a global minimum. Parametric
order to stabilize it one needs to invoke the Casimir effects aéxcitations of the Kaluza-Klein modes in such a potential
a one-loop level. The issue raises a few questions such dmve already been discussed in R&6] but the author has
particle creation in the external dimensions due to fluctuatingiot taken the metric perturbations into account. Inclusion of
boundary and their stability requires a detailed study. the dilaton potential may even enhance the metric perturba-

If the Kaluza-Klein modes are excited their excitationstion as it acts as an extra source term for Edy). Concrete

may also give rise to some undesirable particles such as thgredictions requires a detailed study and it is worth investi-
pyrgon[26], whose energy density decreasesaas, giving  gating this point as a separate issue. We must mention that
during the radiation ergpyqon/prag—a. Their stringent re-  recently there has been an intense discussion upon the initial
quirement to decaf26] can enhance their lifetime and they conditions for the perturbations in the matter and in the BD-
can be a candidate for dark matter. Overproduction of suclilaton fields. We have chosen our initial conditions to be
particles could have overcome the critical density, but theiiscale invariant. There have been other proposals such as the
number density could have been diluted by invoking a seceommonly used quantum plane wave initial conditions for
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the fluctuations in the fields. This, however, favors snkall leave them for future investigation. We also point it out that
modes more than the largemodes. Another attractive pro- our analysis has ignored the the contribution coming from
posal can be evolving the BD-dilaton from @dfoldings  &,_, to the background evolution equations. Inclusion of
before the end of inflation wheaH<k until the horizon  such terms will certainly help to amplify the fluctuations
crossing and then subsequently evolving the fields during theven faster and we can expect the fluctuations to become
oscillatory phase. These are open issues which require fufonlinear before. The aspects of nonlinearity in the gravita-
ther investigation. Our analysis was mainly restricted to thejonal sector is least understood and the further evolution of
k—0 mode but we should also expect the same physicahe nonlinear modes will become important leaving an im-
consequences for other modes excited during preheating ajrint on the cosmic microwave background radiation which

though with a much smaller magnitude. will be the ultimate verification for the validity of such
The issue of backreaction becomes important after a few|aims.

inflaton oscillations and the subject becomes almost intrac-

table as we increase the number of fields gradually. Backre-

gction hqs b(_aen considered before by many autﬁr]rs.but. ACKNOWLEDGMENTS
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