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We study in detail the possibility that the flat directions of the minimal supersymmetric standard model
(MSSM) could act as a curvaton and generate the observed adiabatic density perturbations. For that the flat
direction energy density has to dominate the Universe at the time when it decays. We point out that this is not
possible if the inflaton decays into MSSM degrees of freedom. If the inflaton is completely in the hidden sector,
its decay products do not couple to the flat direction, and the flat direction curvaton can dominate the energy
density. This requires the absence of a Hubble-induced mass for the curvaton, e.g. by virtue of the Heisenberg
symmetry. In the case of hidden radiatior; 9 is the only admissible direction; for other hidden equations of
state, directions with lowen may also dominate. We show that the MSSM curvaton is further constrained
severely by the damping of the fluctuations, and as an example, demonstrate that in no-scale supergravity it
would fragment intdQ balls rather than decay. Damping of fluctuations can be avoided by an initial condition,
which for then=9 direction would require an initial curvaton amplitudeﬂflO’sz, thereby providing a
working example of the MSSM flat direction curvaton.
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[. INTRODUCTION radiation. Second, the flat direction field should stay in the
right place to yield the right amount dfsocurvature fluc-

The minimal supersymmetric standard mo@diSSM) is  tuations. Third, the fluctuations produced during inflation
well known to have flat directions, made up of squarks andnust not die out during the whole process[12], we have
sleptons, along which the scalar potential vanishes above ttféudied the conditions for the later energy domination, and
soft supersymmetry breaking scalel TeV [1,2]. The partly the amplitude of the fluctuations during inflation.
MSSM flat directions have important cosmological conse-Studying the consequences of all these constraints compre-
quences for the early Universe and may seed Affleck-Dindiensively is the main purpose of this article.
baryo/|eptogenesiél,3,4], give rise to nonthermal genera- The structure of the paper is as follows. In Sec. Il we
tion of supersymmetric dark mattg$,6] or B-ball baryogen-  discuss general constraints which the flat directions need to
esis below the electroweak scdld, and may also act as a obey in order to be viable curvatons. In Sec. Ill, we follow
source for isocurvature density perturbatidBs-10] (for a the dynamics of the flat direction, and study which directions
review, sed11]). may act as a curvaton. The behavior of the fluctuations is

Inflation wipes out all the inhomogeneities along a givenconsidered in Sec. IV. In Sec. V, we study the MSSM flat
flat direction, leaving only the zero mode condensate. Howdirection in no-scale supergravity, and show tQaball for-
ever, during inflation quantum fluctuations a|ong the flat di-mation is inevitable. Sec. VI is devoted to our conclusions.
rections impart isocurvature density perturbations on the
condensatg8]. The isocurvature fluctuations can later be Il. ELAT DIRECTION AND INFLATION
converted into adiabatic perturbations at the time when the ) )
flat direction decays into the radiation of the MSSM degrees 1he degeneracy of the effective potential of the MSSM
of freedom[12], provided the flat direction dominates the flat direction is lifted by supersymmetr§SUSY) breaking
energy density of the Universe at the time of the decay. Obeffects and some nonrenormalizable operators. In general,
viously, during inflation the flat direction should be subdomi-We can thus write the potential as
nant and its mass should be smaller than the Hubble param- 1
eter. This is an example of the so-called curvaton scenario, _ 2,2
which in its present incarnation was first discussed in the V()= 5m5d"+ Vi, @
context of pre-big band13] and then applied to ordinary
inflation[14]. In many early papergl4,15 the curvaton po- \2p2(-1)
tential was simply taken as a quadratic poterial m?¢?2. VR

For the MSSM flat direction curvaton, the potential is
determined by the supersymmetry breaking but it is usually
dominated by nonrenormalizable operators at large ampliwherem ~TeV is the soft SUSY breaking mass, and the flat
tudes. There are three conditions such a potential should satirection condensate i = ¢e'?/\/2. M is the cutoff scale
isfy. First, the energy density of the flat direction must con-for the low energy effective theory, usually taken to be the
tribute negligibly during inflation but should dominate the Planck scaleM ,=2.4X 10* GeV; \ is a coupling constant;
Universe at later time when the flat direction decays intcandn=4,...,9 is thedimension of the nonrenormalizable
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operator lifting the flat direction, the value of which dependsmust decay into particles of the observable sector. The other
on which particular flat direction one is discussifigr de-  possibility, discussed within the context of the MSSM curva-
tails, sed11]). ton scenarid12], is to assume that the inflaton decays into
In supergravit SUGRA) theories, the flat direction often the hidden sector and that the baryons originate solely from
acquires the mass of orderbecause of the SUSY breaking the flat direction curvaton decay.
effect due to the finite vacuum energy during inflatjdn If If the inflaton decay products consist @fIS)SM par-
so, the fluctuation amplitude along the flat direction dies outicles, one should consider the behavior of the flat direction
completely during inflation. We thus demand that the infla-in a thermal background which interacts with the condensate
tion model is such that mass term as largeHas not in-  field. It has been argued by Postfi®] that the flat direction
duced. One example is the SUX-term inflation, which  condensate decays by thermal scattering before its domina-
during inflation leads to a vanishing Hubble-induced masgion. However, in her analysis the thermal decay rate was
term for the flat direction§16]. Another example is models taken to be~f4T?/m, whereas in a thermal environment
obtained from SUGRA theories with a Heisenberg symmetryshould be replaced bff (f is here some couplingNever-
on the Kaler manifold[17]. These give rise to a Kder theless, the conclusion remains essentially the same, as we

potential of the form now argue. The energy densitgmplitude of the flat direc-
tion field in V~T?¢? behaves ap =a 2" pxa 219
G="f(n)+In[W()[*+a(Ya), (3 during the inflaton-oscillation dominated Universe, while

pyra *(¢pcat) during radiation domination. In either
with »=z+2* — ¢ ¢;, wherez is the Polonyi field, ands;  case, its energy density decreases not slower than that of
andy, are respectively the observable and hidden fields. Theadiation, and the amplitude becomes so small that the flat
latter are defined as the ones that have only Planckdirection condensate cannot dominate the energy density af-
suppressed couplings to the observable sector. In this caser the zero temperature par@df becomes important.
there is no mass term in the tree-level potential for the flat These difficulties can be avoided if one takes the inflaton
direction. No-scale modelsl8], for which f(7)=-31In7,  sector to be completely decoupled from the observable one
are a particular realization of the Ker manifold Heisen- [12]. Indeed, there is not a single realistic particle physics
berg symmetry. However, even with a Heisenberg symmetrynodel which would embody the inflaton into the family of
there will be radiatively induced mass squared which is smalihe observable fields. In almost all the models the inflaton is
and negative withm? .~ —10 ?H? [17]. Such a small a gauge singlet which largely lives in the isolated inflaton
mass term has only negligible damping effect on the fluctuasector as if it were part of a hidden world. The coupling of
tion amplitude. such a singlet to the SM degrees of freedom is usually set by
In what follows we simply assume that during inflation hand. Under such circumstances, perhaps a hidden sector in-
the flat direction does not get any appreciable Hubbleflaton would be a logical conclusion. Such an inflaton would
induced mass, e.g. by virtue of the Heisenberg symmetry, alecay into(light) particles in the hidden sector, but the hid-
by some other reasons. den thermal background would not interact with the flat di-
In order for the curvaton scenario to work, fluctuations ofrection condensate. Note that the reheating of the observable
the inflaton should not contribute significantly to the adia-degrees of freedom in the Universe takes place due to the
batic density perturbations, so that the Hubble parameter dudecay of the MSSM flat direction into the NISM) degrees
ing inflation is H*~pi1,ﬁl\/lp< 10" GeV. (Needless to say, of freedom. The curvaton mechanism works successfully if
the energy density of the flat direction should be negligiblethis temperature is high enough. We will come back to this
compared to that of the inflatop,,<pj,¢.) Then the isocur-  point later.
vature fluctuation of the flat direction i§¢~H, /27, If
Splp,~H, | p,~10 5 whereg, is the amplitude during
inflation, obtained from\/”(qs*)~Hi , the right amount of [ll. LATE DOMINATION OF THE FLAT DIRECTION
density perturbation can be generated provided there is no ENERGY DENSITY
later damping. A simple analysis shows that during inflation
the flat direction field condensate is slow-rolling in the non-
renormalizable potentia¥/yr. Thus, the Hubble parameter
and the amplitude of the field can respectively be estimate
as,

For a successful MSSM curvaton scenario, the energy
density of the flat direction condensate should dominate the
E’Jniverse at the time of its decay. The condensate starts to
oscillate wherH~m,, and the amplitude at that time is

H*N)\*l/(n*B)é(n*Z)/(n*3)Mp, (4)

m¢M n—3\ 1/(n—-2)
oscN( ) . (6)

¢*N)\—l/(n—3)51/(n—3)Mp, (5) A
whereé=686¢/p, ~H, /¢, .

After inflation, the inflaton ultimately decays into relativ- If the reheating by the hidden inflaton occurs earlier, the
istic degrees of freedonA priori, there are two possibilities. Universe is dominated by hidden radiation at this time. Since
Because the inflaton should give rise to all the observabléhe energy density of the condensatexia 3«cH ™32 we
baryons, conventionally one usually assumes that the inflatofind that
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at the time it equals the hidden radiation denspy f | |
~HZoM3. Thus the Hubble parameter at the equality time n=4
is 10°
m¢M”‘3 4/(n—2)
Heq=My| ——=—- ® 1}
AMD

In order for the flat direction condensate to have a chance td% (53— —5 o5 5 19 6 15—
dominate the Universéigq should be larger thahl at the W

time the curvaton condensate decays. If the decay rate is

written asF¢~f2m¢, wheref is some Yukawa or gauge
coupling, we have a constraint on the coupling constan

FIG. 1. Constraint on the coupling far=4,6,7, and 9. The
llowed region is below these lines and abdwel0 ©.
f

which reads
2n-2) 2(n-3)/(n—2) Notice that this is the same as H§) for w=1/3. We show
f<)\2/(“2)(%) (M) ) the constraints fon=_4,6_,7, and 9_ in Fig. 1. As d_|scussed_ in
D M, [12], then=9 direction is essentially the only viable option

for the hidden radiation case, but ever6 directions can
In the opposite case, when the reheating in the hiddebe acceptable if the hidden sector fluid has a stiff equation of
sector occurs after the oscillation of the flat direction startedstate (v=1). Notice thatn=4 directions can never domi-
i.e.,Hyosc>HRgy, the energy density evolves as nate the Universe at any point and are thus completely ruled
out as a curvaton candidate.
HRH)Z( HEQ)3/2

P¢|EQ”P¢|03:(WSC Hrn

[ T

IV. EVOLUTION OF PERTURBATIONS

N ™Mo EQ’ (10 So far we have assumed that the isocurvature perturbation
P created during inflation does not evolve. This is strictly true
so that taking into accourt,sc>Hgy We actually get the in the miq&z potential, since both the homogeneous and the
same constraint as in E¢p). (linean perturbation parts obey the same equations of mo-
Even for a small coupling of the order of the electrontion. Here we shall see whether this assumption holds in
Yukawa coupling such a$~10"8, all n<6 cases fail to More general cases.
satisfy the condition Eq9), whereasn=7 is marginal when
A~1.
The condition Eq(9) depends on the equation of state of A. Slow rolling in the nonrenormalizable potential
the inflaton decay products in the hidden sector. Let us there- For the MSSM curvaton scenario to work, the flat direc-

fore write the equation of state ag=wpy, and assume that tion must have a vanishingpr more precisely, negligible
the hidden energy has already dominated the Universe Wherﬂass during inflation. In such a casep the fie)I/(’Jl WilfJ bge slow-
the oscillations along the flat direction begin. Then we obtain__| Ing ’ o )
the ratio of the energy densities rolling in the nonrenormalizable potential Vg

~N22=VM20=3)  |n addition, we assume here that

ps Ps ( H )2W/(l+w) there is no Hubble-induced mass term even after inflation, so
osc

, that the field will continue slow-rolling in/yg down to the

Ph Ph Hosc amplitude ¢,s., Which is determined byVyr(®osd
a2 | ewiew ~Mjd5sc. N general, the equations of motion for the ho-
_ ( e ) ( ) _ (11) mogeneous and fluctuation parts are written respectively as
AM,, Hosc
d+3Hp+V'($)=0, (13

This ratio becomes unity whehl~Hgq. Imposing Heq
>TI",~f?my, we obtain
( my )1/(n2) (1+w)/2w K2
AM,

f< (12 St 3HIPt — S+ V" () 6hy=0,  (14)
a

103507-3



ENQVIST et al. PHYSICAL REVIEW D 68, 103507 (2003

where the prime denotes the derivative with respectto B. Positive Hubble-induced mass term
Since we are interested only in the super horizon mdde ( The Hubble-induced effective potential can be written as
—0), using the slow roll approximation we have

1
3Hb+V' (¢)=0, (15) Vi=5CuH? 9% (20)

3HS8G+V"($)5h=0. (16)  The sign of the coefficienty is usually determined by the

higher order nonminimal Kaer potential, so there are equal
Hereafter we omit the subscrifsf understanding thadé is poss?bilities for pc_J_sitive and negative mass terms. Let us first
for the super horizon mode. Then it is easy to obtain theonsider the positive case. When the Hubble-induced effec-
evolution of the ratio of the fluctuation and the homogeneoudiVe potential dominates, the equations of motion for the ho-

mode in aVygx 621 potential. The result is mogeneous and the fluctuation mode have the same form,
8¢ (5¢) ‘ﬁ)zm) i+ 3H Y+ ey H2Y=0, (21
_ | — — , 1
s 1 olla 7

whereys= ¢ or §¢. From the viewpoint of the evolution of
the relative amplitude of the fluctuations, there is no damp-
ing. However, the amplitude itself diminishes considerably.
If c,>9/16, the decrease isxHY2 At the onset of curva-
ton oscillations, whei ~m,,, the amplitude of the curvaton
is then

wherei denotes the initial values.
During inflation the homogeneous field obeys E#5),
which can be easily integrated to yield

& V() ) ~1/2(n-2)

Ef(” 32n-3) 12

AN . (18 bose V2= 5= (- 0120-3) )2, 22)

whereAN is the number of e-folds. Since we are concermned>Nced=10"°, a maximum is achieved for the largestor

with the slow-roll regime, it is reasonable to require "=9: Posc™ 10%(myM)*?, which is just 18 times larger
V"(¢;)/H?<1. Hence we haveb/¢;~0.95 for the last 50 than in the case ai=4, and~ 102_t|mes smaller than in the
e-folds in then=9 case, for example. This implies that the SIOW roll n=6 case discussed in the previous subsection.
amplitude of the fluctuation relative to its homogeneous parf\Netice that the amplitude has the same behavior as in the
decreases only by facter2. Hence during this stage there is SIOW-roll case fom=4.) Thus, at the time of its decay, the
essentially no damping. Notice that the slower the condenEN€rgy density of the flat direction condensate cannot domi-
sate field rolls during the last 50 e-folds, the less dampind'ate the Universe.

there is.

After inflation the curvaton condensate slow-rajtsbeit C. Negative Hubble-induced mass term
marg|nall)),_|.e.,_\/”(¢)~H_2, and we can still use the slow- |, this case, the homogeneous field is trapped in the in-
roll approxmathn equat|onf_{15) anq (16).. During this stantaneous minimum¢m~(HMn—3/)\)1/(n—2)ocH1/(n—2)_
stage, n_;he 1/(nf_'§|)d amplitude is given by ¢ Tnen ypto a numerical factor, the equation of motion for the
~(HM""/\) » while the Hubble parameter changes f,ctyation is identical to the positive Hubble-induced mass
fromH, tom,. As a consequence, there is a huge dampingase. Hence the amplitude of the fluctuation decreases as

given by s¢pcHY2 Therefore, the ratio of the amplitudes of the ho-

56 mogeneous and the fluctuation modes is given by

(—) 2 5 6¢ 5¢ m (n—4)/2(n—2)

?ose (Ma]? sty aos Mo P [ ,

5¢ H, M/’ ¢ osc ® )\ *

? ~ )\ (=4)/2(n—2)(n~3) 5~ (n—4)/2(n~3)

*
(19 . m¢) (n—4)12(n—2) 3

where we have used, ~\ ~Y(173)5(=2)/("=3)\ in the last M

equality, andé=H, /¢, is the fluctuation during inflation.

Even forn=4, the damping factor is 13° for M = M, and  Since the field is released from the trap wHen-m,, the
5~105. The situation is still worse for the directions with subsequent energy domination condition is the same as dis-
largern. Hence the primordial fluctuations of the MSSM flat cussed in the previous sectigsee Fig. 1 Thus, the only
direction curvaton appear to be effectively wiped out. How-viable direction isn=9 (and highly marginallyn=7). We
ever, before drawing any definite conclusions, one shouldnow that for the curvaton scenartd, <10 GeV so that
also consider the effects of Hubble-induced mass termthe fluctuations of the flat direction condensate during infla-
which can appear after inflation. This is the case, for extion cannot be too largei<3(6)x 10 * for n=9(7). Thus,
ample, inD-term inflation. the conclusion is that ratio of the fluctuation to the homoge-
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neous mode is much less than PCat the onset of the flat tions generated by a curvaton are not damgédcan be
direction condensate oscillations. computed from the renormalization group equatiR&ES,
One may wonder whether the damping effect becomesvhich to one loop has the form

any milder for|c|<9/16. Such a situation may be realized

in the context of the no-scale SUGRA. However, a small amiz ) ) 5
Hubble-induced mass term reduces to the case in Sec. IV A, 7:% aigmg_g ha( ; bijmj+Aq
where the field slow-rolls in a nonrenormalizable potential.
Thus, the amplitude of the fluctuations will be wiped out.

. (29

wherea;y andb;; are constantang are the gaugino masses,
A, the A-terms h, the Yukawa couplings,=In(Mx /) with
D. The way out My the GUT scale, andn, are the masses of the scalar
As seen above, the energy nondomination and/or th@artners. All the soft SUSY breaking scalar masses \_/anish at
damping of the fluctuation amplitude usually kill the MSSM {ree-level at the GUT scale except the common gaugino mass
flat direction curvaton scenario. Damping arises because tH81/2- o ] ) )
curvaton has to slide from the slope of the nonrenormalizable  The full renormalization group equations are given in
potential down to a value at which oscillations commence, 421]- We neglect all the other Yukawa couplings except the
process which takes place slowly and is thus associated witijird generation. We assume that the top, bottom and tau
a considerable redshift. Yukgwa coupllngs unify at the GUT scale and normalize the
We have found that there are essentially two ways td'nified coupling through the top quark mass by
avoid all these problems. One is that the couplngf the
nonrenormalizable term is small enough so that the potential _ .
is effectively of the formnidﬂ. In this case, during inflation Miop(Miop) = E top(Miop)v SINB,
the amplitude of the flat direction ig, ~M, with H,
~10'° GeV. The other possibility is that the field amplitude wherem,,=174.3 GeV[22], v =246 GeV and & < /2
at the end of inflation happens to be of the same order as the 5 free parameter constrained by LEP asg@ar2.4 [23].
amplitude¢,s.. Such a situation may be realized by an ex-\e find that Yukawa coupling unification does not produce
tremely long period of inflation, or simply by chance. For thethe correct top-Yukawa coupling given by E@6) unless
n=9 direction, ¢os~10'° GeV, which is only an order of tang=2.9. The unification is actually supported by fan
magnitude less than the “natural” value fef, . It is con-  —40-50[22], so that our calculation clearly covers the rel-
ceivable that such a low value ¢f, could be given e.g. by evant range. Ifi24] tang=1 and only the top-Yukawa cou-
some chaotic initial conditions. Hence we may conclude thapjing was taken into account, which is applicable for small
hidden inflation with a MSSM curvaton can indeed providetgng.

the correct adiabatic density perturbations, although with The mass of the flat direction scaléris the sum of the

(26)

some difficulty. masses of squark and slepton fielgis constituting the flat
direction, m3=3;|p;|*m?, wherep; is the projection of¢
V. FRAGMENTATION OF THE FLAT DIRECTION a|ong d)i , and Ei|pi|2: 1. The parameteK is then given

One should also consider the dynamics of the curvatorfimPIY by [24]
after its oscillations begin. So far, we have not taken into )
account the running of the mass of the flat direction. In gen- _ 1 Jmj 27
eral, in the gravity mediated SUSY breaking case the mass
term in the effective potential can be written [&3

> .
2my O | ogmy u)

To computeK, we have to choose the scale The ap-
$? (24) propriate scale is given by the value of the flat direction field
' when it begins to oscillate so that~ ¢,s., see Eq(6). We
have calculatedK for two flat directions:n=7 direction
whereK is a coefficient obtained from one-loop corrections.LLddd (lifted by H,LLLddd) and n=9 direction QuQue
MSSM curvaton dynamics is complicated by the fact that(lifted by QuQuQuHee) [28]. We find thatK is generically
when K is negative, the flat direction condensate naturallynegative. In Fig. 2 we show the coefficieftplotted against
fragments intoQ balls soon after it starts the oscillations the parameter tgé for the two flat directions with different
[6,20]. Then the isocurvature fluctuations of the condensat@ixtures of stop, sbottom and stau. In Q&Quedirection
remain trapped in the& balls, and will only be released there are values of tge whereK is positive. This is due to
through the decay of th@ balls. They will be converted into the fact that forn=9 the scale of oscillationsg,s.~1.5
adiabatic perturbations only if the energy density of @e Xx10° GeV, is very close to the GUT scalély~3
balls dominates the Universe at the time when they decay. X 10*® GeV. For low tars the Yukawa coupling at the GUT
As a concrete example, let us consider no-scale SUGRAscale is large and dominates over the gaugino terms in the
During inflation, the Heisenberg symmetry then guaranteesenormalization group equation, drivimgnizlat negative and
the vanishing of the tree-level Hubble-induced mass. Let usnaking K positive. When the renormalization group equa-
further assume that initiallyp, ~ ¢osc SO that the perturba- tions are run further, the Yukawa couplings become smaller

2

¢
1+Klog W

V(p)=mj
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L Ldsb (), LLdsb( ) QtQtt (), QtQte (), QuQ T (), QuQ.ue ()
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0.1984 : L . -
2.9 5.0 10 20 50 o

tan
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FIG. 2. K vs tanB. On the leftLLdsbflat direction with a choice of stau in the flat directitolid line) and no stau in the flat direction
(dashed ling On the rightQuQueflat direction withu from 3rd generatiorithick lineg andQ from 3rd generatiorithin lines, e from 3rd
generation(solid line) ande from 1st or 2nd generatiofdashed ling

and thusK becomes negative. This is why thédsbdirec- its decay, while during inflation its contribution must be neg-
tion has a negativK for all tang. ligible. One ingredient is that during inflation the Hubble-
Thus in most case€ <0 in no-scale SUGRA, so that the induced mass term should be negligible, a situation that oc-
flat direction condensates will not decay but instead fragmergurs in SUGRA models with a Heisenberg symmetry.
into lumps which eventually forn® balls. In general, these At large amplitudes the effective potential of the flat di-
are long-lived and hence give rise to a reheat temperaturgction is dominated by nonrenormalizable terms, and hence
which is low (see, e.g.[11]). If R-parity is conserved, de- it is important to fo_IIow the dynarr_ucs of both th.e homoge—
caying Q balls will produce LSPs but with a low reheat N€0US and quctuatlon.modes_ during and after inflation. We
temperature, their density might come out to be too hig ave found that there is considerable damping of the fluctua-

[6,25]. The fragmentation of the flat direction condensate istions, 5!”0' in_ge_zneral itis h_ard to obtain a successful_curvaton
yet another complication for the MSSM curvaton scenario Scenario. Within one particular example of the Heisenberg

: . symmetry, the no-scale model, we have also shown that typi-
Wh'Ch we do not attempt to an_alyze systematically here. Th ally the curvaton may fragment and fo@balls rather than
sign qf.K depends on the running of the RGES and hence o'alecay directly, which will further complicate matters. Indeed,
the initial conditions for the soft SUSY breaking parameters

it is not quite obvious whethe balls would be a help or a
for which there is no generic form in the class of SUGRAhindrancqe. @ P

models with a Heisenberg symmetry. Damping of the fluctuations may however be avoided for
a class of initial values for the condensate field after infla-
VI. CONCLUSION tion. Perhaps the most promising candidate for the hidden

L inflation MSSM curvaton would be the=9 QuQue 3rd
To conclude, an MSSM flat direction curvaton appears to eneration direction with an initial amplituded,

be very much constrained, although not completely ruled_;n-2p  based on a SUGRA model such that there is no

out. First of all, we have argued that the constraints depen@_ba” forr)r’nation at least in some parts of the parameter

on the inflaton sector. If the inflaton reheats the Universespace. In such a case one recovers the hot Universe at the

with MSSM degrees of freedom, the finite temperature eftemperature-10° GeV, which is high enough for baryogen-

fects on both the effective potential of the flat direction andesis to occur during the electroweak phase transi28j.

its decay(or evaporationprocess are crucial. As pointed out Moreover, the reheat temperature is sufficiently low in order

in Sec. Il, the energy density of the flat direction dominatednot to create thermal or nonthermal gravitin@y]. More

by the thermal mass term cannot overcome the radiation destudies are nevertheless needed to settle the open issues in

sity, so that the curvaton will never dominate the Universemore detail.

This seems to exclude flat direction curvatons in the presence Note added in proofAfter the completion of this paper

of MSSM radiation. Ref. [29] appeared which also discusses the issue of the
However, if the inflaton is completely in the hidden sec-damping of the perturbations.

tor, there will be no thermal corrections to the flat direction.

In this case, the curvaton has to provide both the adiabatic ACKNOWLEDGMENTS

density perturbations as well as dark and baryonic matter. SK. is grateful to M. Kawasaki for useful discussions.
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