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Abstract 

A major problem for many organisational forecasters is to choose the appropriate 

forecasting method for a large number of data series. Model selection aims to identify 

the best method of forecasting for an individual series within the data set. Various 

selection rules have been proposed in order to enhance forecasting accuracy. In theory, 

model selection is appealing, as no single extrapolation method is better than all others 

for all series in an organizational data set. However, empirical results have 

demonstrated limited effectiveness of these often complex rules. The current study 

explores the circumstances under which model selection is beneficial. Three measures 

are examined for characterising the data series, namely predictability (in terms of the 

relative performance of the random walk but also a method, theta, that performs well), 

trend and seasonality in the series. In addition, the attributes of the data set and the 

methods also affect selection performance, including the size of the pools of methods 

under consideration, the stability of methods’ performance and the correlation between 

methods. In order to assess the efficacy of model selection in the cases considered, 

simple selection rules are proposed, based on within-sample best fit or best forecasting 

performance for different forecast horizons. Individual (per series) selection is 

contrasted against the simpler approach (aggregate selection), where one method is 

applied to all data series. Moreover, simple combination of methods also provides an 

operational benchmark. The analysis shows that individual selection works best when 

specific sub-populations of data are considered (trended or seasonal series), but also 

when methods’ relative performance is stable over time or no method is dominant 

across the data series.  

Keywords: automatic model selection, comparative methods, extrapolative methods, 

combination, stability. 
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1. Introduction and literature review 

Forecasters regularly face the question of choosing from a set of alternative forecasting 

methods. Where the task the forecaster faces is one of forecasting many series 

repetitively automatic approaches to selecting the appropriate method are needed – the 

forecaster has insufficient time to devote to selection for each time series in any one 

time period. The forecasting methods usually considered are simple, one of a limited 

range of extrapolative methods including such stand-byes as exponential smoothing. 

Two distinct approaches have been proposed for dealing with this problem: aggregate 

selection where the totality of data series are analysed and a method chosen and then 

applied subsequently to all the time series and individual selection, where, for a 

particular series, each method is compared and the best chosen to produce forecasts for 

that series (Fildes, 1989). Both methods can be updated period by period. Aggregate 

selection has the benefit of simplicity but in principle different time series with their 

different characteristics (e.g. trend and seasonality, stability) would be better forecast by 

an individual model that matches those characteristics.  Does individual selection 

generate these expected benefits in terms of improved accuracy? Fildes (2001) shows 

that if selection could be done perfectly then the gains would be substantial. So the 

question is worth asking – can we implement practical model selection algorithms that 

lead to forecasting accuracy gains? Is the complexity of individual selection 

worthwhile? Additionally, the question is important because simple selection algorithms 

are implemented in commercial software such as SAP APO. 

     The task of selecting an appropriate forecasting method is first conditioned by the 

problem context and the data available. Armstrong (2001), and Ord & Fildes (2013) 

offering a simplified version, have proposed selection trees that aim to guide the 

forecaster to an appropriate set of methods. Here we consider the more limited case of 

choosing between extrapolative forecasting methods where there are substantial data 

available on which to base the choice. This problem has a long history of research, 

primarily by statisticians. Broadly, the approach adopted is to assume a particular class 

of model where selection is to take place within that class, e.g. within the class of 

ARIMA models. Accuracy measures based on within-sample fit to the available data are 

used in the selection, modified in various ways to take into account the number of 

estimated parameters in each of the models, penalising more complex models. The two 
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best known criteria are the AIC and BIC based on mean square error with a penalty 

function for the number of parameters in the model, the latter penalising a larger 

number of parameters more. 

     From the early days of forecasting comparisons, the issue of the strength of the 

relationship between out-of-sample forecasting accuracy (on the test data) and in-

sample fit has been controversial with first Makridakis & Winkler (1989) and then Pant 

& Starbuck (1990) arguing that there was little if any relationship at all. Pant & 

Starbuck examine three different measures of fit and corresponding measures of  

forecasting performance with mean squared fitted error proving a particularly 

inadequate guide. But the other measures were not much better. If in-sample fit is 

inadequate as these authors have argued, then an alternative approach to selection is 

clearly needed.  In response, the forecasting literature became increasingly satisfied 

with the naïve principle that what has forecast the most accurately, will forecast the 

most accurately on the out-of-sample data. To operationalize selection based on out-of-

sample performance it is necessary to break the available data into the data used to fit 

the model (often called the training data), the data used to provide an estimate of out-of-

sample fit (the validation data) and the test data where various selection approaches can 

then be compared.  

     Beyond the examination of in-sample measures of fit and their link to performance 

on test data, earlier empirical research has been sparse. One distinct approach has been 

to use the data characteristics of the series to predict performance with Shah (1997) and 

Meade (2000) demonstrating some success, but such selection rules are complex. 

Collopy & Armstrong (1992) also use series characteristics to develop rules that 

combine various extrapolative models depending on the data conditions. Rule based 

forecasting has shown promising performance in various empirical comparisons. A 

contrasting approach which benefits from simplicity is to consider past performance as 

the critical factor predicting future performance. A recent contribution is Billah, King, 

Snyder & Koehler (2006) consider selection within the class of exponential smoothing 

models where there is an overarching general model. Their results for a subset of the 

M3 data demonstrated information criteria outperform the use of the validation data in 

selection, but as they remark, the sample of out-of-sample validation forecasts is small 

which, they conjecture, might explain their findings. The differences are also small 
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between selection methods so a reasonable conclusion to draw might be that selection is 

not worthwhile – but that only applies to their particular data set and extrapolative 

forecasting methods they considered. However, with the M3 data, automatic individual 

selection based on Forecast Pro’s algorithm (Goodrich, 2000) proved effective, beating 

most aggregate selection approaches post hoc. Further work has been reported by Crone 

& Kourentzes (2011) who, using a different data set, demonstrate the benefits of using 

out-of-sample error measures compared with in-sample. In short, earlier research has 

produced conflicting results. 

     The contradictory conclusions leads to the following observations: individual 

selection can never be worthwhile if there is a dominant aggregate forecasting method 

in the data set and similarly, it will not provide benefits if the methods under 

consideration produce similar results.  

     This paper aims to provide evidence on the effectiveness of the various selection 

criteria we have introduced. Following on from the above argument, we will need to 

vary the methods considered for selection and also the data sets on which selection 

algorithms are tested. In section 2 we introduce the forecasting methods included in the 

selection comparisons and the error measures we will use to assess their accuracy. 

Section 3 considers the meta-data set (part of the M3 database), introduces the simple 

selection rules and also explains the rationale behind the different data sets we analyse. 

Section 4 contains the results and discussion, with the conclusions drawn out in section 

5. The key question we address is whether we can we identify individual selection rules 

which generate accuracy benefits beyond various simple benchmarks. 

 

2. Forecasting methods and accuracy metrics 

2.1 Extrapolative forecasting methods 

In this evaluation of selection methods we wish to emulate typical practice such as that 

embedded in forecasting software. The forecasting methods we consider are therefore 

chosen broadly to represent standard approaches but are not themselves nested in an 

overall model, such as in the exponential smoothing class of Billah et al. (2006). They 

have been chosen from those considered in the forecasting competitions, in particular 

the M3 competition (Makridakis & Hibon, 2000) in which larger numbers of series have 

been analysed and a large number of extrapolation methods have been compared. All 
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are practical alternatives in commercial applications. Computer intensive methods such 

as neural networks have been excluded. Therefore, we focus on simple extrapolation 

methods, methods widely used in practice, and also including some that have 

demonstrated significant performance in past forecasting exercises. In that sense, we 

consider the simplest forecasting technique, Random Walk or Naive, along with widely 

used models from the exponential smoothing family (ETS, Hyndman, Koehler, Snyder 

& Grose, 2002), namely Simple Exponential Smoothing (SES), Holt, Holt-Winters, 

Damped Trend and Damped with multiplicative seasonality. Moreover, despite its 

limited use in practice, ARIMA models have been included as they remain a standard 

statistical benchmark.  

     We estimate the exponential smoothing methods using the forecasting package for R 

statistical software (Hyndman & Khandakar, 2008). We also use the Automatic ARIMA 

function (auto.arima) implemented in the same package to identify and estimate the 

ARIMA models. The auto.arima function conducts a search over possible models and 

returns the best ARIMA model.  

     In all cases mentioned above, the methods are applied directly to the raw data. 

However, in previous large forecasting exercises, such as the M3-Competition 

(Makridakis & Hibon, 2000), the non-seasonal methods were applied to the 

deseasonalized data. Deseasonalisation of the data is usually conducted with 

multiplicative classical decomposition, where the seasonal indices calculated are used 

for the reseasonalization of the final forecasts. In order to be in line with the results of 

this research, we also consider simple and widely used models (Naive, SES, Holt and 

Damped) applied to the seasonally adjusted data instead of the raw data.  

     Lastly, the Theta model (Assimakopoulos & Nikolopoulos, 2000), which was the top 

performer in M3-Competition, is considered. The Theta model proposes the 

decomposition of the data in two or more “Theta lines”, defined by the short term 

curvature and any long term trend. These “Theta lines” are extrapolated separately, 

while final forecasts are derived from the combination. Again, the Theta model’s 

procedure requires, prior to forecasting, seasonal adjustment of the data. 

     The full set of methods considered in this paper, along with the respective short 

names, is presented in Table 1. 

Table 1. Forecasting methods 
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# Method Short Name Applied to 

1 Naive  Naive1 Raw data 

2 Naive 2 Naive2 Deseasonalized data 

3 SES Expsmoo Raw data 

4 SES 2 DExpsmoo Deseasonalized data 

5 Holt Holt Raw data 

6 Holt 2 DHolt Deseasonalized data 

7 Holt-Winters HoltWint Raw data 

8 Damped Damp Raw data 

9 Damped 2 DDamp Deseasonalized data 

10 Damped with multiplicative 

seasonality 

DampMult Raw data 

11 Theta Theta Deseasonalized data 

12 ARIMA ARIMA Raw data 

 

2.2 Measuring Forecast Error 

Measurement of each method’s forecasting performance is needed in two distinct 

phases of this research. Firstly, the forecasting performance of each method can be 

calculated over the validation data set (which we define rigorously in Section 3.1), and 

these measures can then be used in the selection of an appropriate method. The fit of the 

models in-sample can also be calculated.  Secondly, metrics for measuring the 

performance of the methods and selection rules are necessary in order to assess the 

efficacy of the latter. Towards this direction, we consider measures for bias, accuracy 

and variance of the forecasting errors. 

     If we let       be the actual value of series i for time period t and  ̂ 
       be the 

point forecast of the same series for method m at forecast origin t for lead time h, then 

   
       is the error measure of series i for method m at origin t for lead time h. Error 

Measure (EM) may be one of the following: 

 Signed Error (E):   
                ̂ 

       

 Squared Error (SE):      
         

        

 Absolute Error (AE):      
          

        

 Absolute Percentage Error (APE):       
       |

  
      

        
|      (%) 

     Signed Error is used to demonstrate any consistent differences in terms of the bias of 

different approaches, whereas the other three are basic measures of the error deviations 

arising from the various forecasting methods.  
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     We will rely on the mean out-of-sample performance (of series i for a method m) 

averaged over forecast origins (and potentially over forecast horizons). We give here 

examples used later in the paper: the general formulae are given in the Appendix. 

     A wide range of different error measures are available. A summary of the arguments 

surrounding their differences has recently been given by Davydenko & Fildes (2013). 

Based on this, we therefore present results for two measures, Mean Absolute Percentage 

Error (MAPE), and a relative error measure. MAPE is the Mean APE summarized across 

all N time series, as:  

     
 

 
∑         

      

 

   

 

that is the mean absolute percentage error averaged over series, for forecast horizon 1, 

and all available forecast origins, t. It can be easily extended to include multiple 

horizons as defined in the appendix. MAPE has been included here as it is the most 

widely adopted in practice (Fildes and Goodwin, 2007). 

     Relative error measures have the advantage of negating the effects of outliers 

somewhat showing how a forecasting method compares to a benchmark (such as the 

random walk). Summarizing relative errors across series using geometric mean has 

proved to be robust and more normally distributed than alternative measures. Define the 

relative Mean Absolute Error (over forecast horizon h for a series i ) as:  

   
    

    
  

where b is a benchmark method. Then 

          (∏   
 

   
)
   

  

     It is also easily interpretable as showing the average percentage improvement (as 

measured by the MAE) from using one method (m) compared to the benchmark method 

(b). 

     We, also, need to calculate the past forecasting performance, PFP, which is the 

average of the MAPE or in the case of our relative measure, the MAE, over the available 
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validation data and across single or multiple lead times (full definitions are provided in 

the Appendix). 

 

3. Experimental design 

3.1 Forecasting procedure and database 

Let T denotes the number of observations of an individual time series. Each series 

considered in this paper is divided in three time intervals. The first interval contains all 

observation from origin 1 to origin T1, having a length of T1, and acts as an initialisation 

interval, that is the training data. Observations from origins T1+1 to T2 are included in 

the second interval, the validation data, while the third interval contains observations 

between origins T2+1 to T. The second and the third intervals have respectively length 

(T2- T1) and (T-T2). Both corresponding sets of data are used as hold-out samples, 

meaning that forecasts are produced without prior knowledge of these values. Once the 

first set of forecasts is produced, using just the T1 in-sample observations, one additional 

observation, the first observation of the validation data, is added to the in-sample data 

and new forecasts are calculated. This procedure is repeated until every single 

observation of the validation and test intervals is embodied into the in-sample vector. In 

other words, we employ rolling forecasting where the forecasts (and selected models) 

are updated at every single origin. As a result, (T2- T1) + (T-T2) = T-T1 sets of forecasts 

are calculated, each one containing h point forecasts, where h denotes the forecasting 

horizon considered.  

     The second interval is used only as validation data, in terms of evaluating single 

extrapolation methods and selecting the most appropriate one for forecasting each series 

(individual model selection) or a method to apply to all series (aggregate model 

selection). The third interval is used as both test data for the final evaluation of the 

selection rules proposed later in this paper, and as the forecast origin is rolled forward it 

also extends the associated validation data. Multiple lead-time forecasting enables the 

set-up of simple selection rules that apply to the various forecasting horizon. 

     The data series selected for this study are a sub-set of the monthly M3-Competition 

data set, where the total length of available observations is equal to or greater than 

T=126, giving a total of 998 series. Data series longer than the desired 126 observations 

are truncated. We set T1=48 and T2=90. Thus, the first set of forecasts is calculated from 
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time origin T1 (=48).  The forecasting horizon was set to h=18 periods ahead, to 

correspond earlier analyses of the same data (Makridakis & Hibon, 2000).  

     Upon the calculation of the point forecasts for each method using the first 48 data 

points, an additional point is added and a new set of points forecasts are calculated for 

each approach. This procedure is repeated until the origin 108, where the last 1-18 

steps-ahead forecasts are produced. The remaining data points (observations 109 to 126) 

are only used in the evaluation of the last origin’s forecasts. So, in total, we are 

producing 18 point forecasts for each origin (origins 48-108, 61 origins in total) and for 

each method (12), while the out-of-sample performance of all methods plus the model 

selection rules are evaluated through observations T2+1 to T, the test data. The selection 

of the most appropriate method, based on past forecast performance of the methods in 

hand as calibrated over the validation data set, takes place at observations T1+1 (=49) 

through  T2+k (periods 90 to 108 with k =0 to 18 indexing the test data). These 998 

series provide the meta data set within which we will examine subsets of the data. 

 

3.2 Choosing a best method 

The objective of any selection rule is to choose the method at time t with the most 

promising performance. For the purposes of the current research, we examine various 

simple selection rules, based on the past forecasting performance (PFP) of each method 

as well as for the different lead time. Assuming that we want to perform model selection 

at the T2+k origin, the PFP is measured between origins T1 to T2+k as is the fitted 

performance The method to be selected is the one with the most promising past 

performance. The four simple rules implemented and examined in this research are 

defined as follows: 

Rule 1. Use the method with best fit as measured by the minimum one-step 

ahead in-sample Mean Squared Error (using all the data up to the forecast origin). 

Rule 2. Use the method with the best 1-step-ahead forecast error, in terms of 

Mean Absolute Percentage Error, and apply that method to forecast for all lead times. 

Rule 3. Use the method with best h-step-ahead forecast, in terms of Mean 

Absolute Percentage Error, and apply it to forecast for the same lead time. 

Rule 4. Use the best method to forecast for all lead times as measured by Mean 

Absolute Percentage Error averaged over forecast horizons, 1 through h. 
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     While the mathematical expressions are complex (as shown in the appendix) the ideas 

behind them are simple. Rule 1 selects the method that has fitted the data best and applies it to 

forecasting from forecast origin t over the next forecast horizons. Rules 2 to 4 select the best 

method depending on how the methods performed as measured on past forecast performance 

over the validation data set up to the forecast origin. Rules 1, 2 and 4 ignore any horizon effects 

while only Rule 3 attempts to match selection to the forecast horizon. The selections derived 

from these rules are updated over the test data set (i.e. as k increases), including all available 

errors in origins T1 to T2+k. Moreover, the proposed rules can be applied to aggregate selection 

where the error measures are summarized over all series and the best method is applied to all 

series, or to individual selection where a particular method is chosen for each series. 

 

3.3 Research questions and preliminary analysis 

The main objective of the current research is to investigate the conditions under which 

model selection may be beneficial. In order to achieve this objective, we consider two 

primary segmentations of the available time series. Firstly, data are classified as trended 

or not trended and seasonal or not seasonal. These categorisations have been chosen a 

priori based on the fact that some of the models are designed to incorporate trend and 

seasonal (e.g. ARIMA, Holt-Winters) whilst others (e.g. Random walk, Simple 

Exponential Smoothing) will introduce unnecessary error when applied to series with 

these characteristics. A further feature believed to affect relative performance is the 

predictability of the time series. We propose to define a specific time series as 

unpredictable if the performance of the non-seasonal Random Walk forecasting method 

(method 1) is better than the median performance of all other methods under 

investigation as defined by Mean Absolute Error in the validation data (from origins T1 

to T2) for all forecasting horizons. Note that this classification is available to us ex ante 

and does not use the test data. 

     In terms of trend, we perform the robust Cox-Stuart test for trend on the 12-period 

centred moving average,to remove any contamination from seasonality. Lastly, the 

potential seasonal behaviour of the monthly series considered is tested by Friedman’s 

non-parametric test. As a result, we consider six segments of the time series data set, 

namely “predictable”, “unpredictable”, “trended”, “non-trended”, “seasonal” and “non-

seasonal” and this suggests the first research question..  
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RQ1. Is individual model selection more effective when applied to groups of time series 

with specific characteristics?       

A second factor that may limit the value of individual selection is the number of models 

included in the pool of alternatives. Effectively a variant of over-fitting, the more 

models included, the higher the probability that the wrong model is chosen due to the 

randomness in the data. Given that the largest pool can be structured with all methods 

introduced in Section 2.1 (twelve in total), we also examine every possible combination 

of smaller pools of two (2) up to twelve (12) methods. For example, in the case of a 

pool of methods equal to four (4), all 495 possible pools of methods are checked, the 

number of 4-combination in a set of 12 or (
  
 

). This leads to our second research 

question: 

RQ2. What are the effects on individual selection of including more methods in the pool 

under consideration? 

     Many of the methods included in typical extrapolative selection competitions are 

similar which may be difficult to distinguish using a selection rule. The methods 

themselves produce correlated errors and these are shown in Table 2. Values under 0.5 

are presented in bold. Many methods are highly correlated, most obviously those with 

similar seasonality components.  

Table 2. Correlation of methods in terms of signed errors (all series) 

Methods 
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Naive2 0.65 1.00           

Expsmoo 0.94 0.59 1.00          

DExpsmo

o 0.60 0.91 0.64 1.00         

Holt 0.70 0.42 0.72 0.43 1.00        

DHolt 0.46 0.75 0.46 0.80 0.46 1.00       

HoltWint 0.16 0.49 0.15 0.51 0.17 0.53 1.00      

Damp 0.88 0.54 0.93 0.59 0.85 0.51 0.17 1.00     

DDamp 0.54 0.84 0.57 0.92 0.47 0.92 0.52 0.59 1.00    

DampMult 0.40 0.70 0.41 0.74 0.33 0.70 0.74 0.41 0.74 1.00   

Theta 0.59 0.89 0.63 0.98 0.45 0.83 0.52 0.59 0.92 0.75 1.00  

ARIMA 0.64 0.69 0.69 0.78 0.50 0.66 0.34 0.66 0.75 0.58 0.79 1.00 
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     We see that Holt and Holt Winters have the fewest high correlations with the 

remaining methods. More promisingly for selection, we also note that ARIMA is the 

method least correlated with any of the others. Selection between methods that are 

similar cannot prove valuable. The average error correlation from the various methods 

participating in a specific pool is therefore examined. In order to measure the effect of 

correlation between the methods taking part in a specific combination, the combinations 

in each pool size are separated into high and low correlated; a certain combination is 

considered as highly correlated if the average correlation of the methods’ outputs is 

equal to or greater than 0.7. Thus, the following research question deals with the effect 

of correlation among methods.  

RQ3. Do pools of methods with low correlation, in terms of forecast error, provide 

better forecasting performance when individual selection rules are considered 

compared to more highly correlated pools? 

     Individual selection would be unlikely to be beneficial when a single method is 

dominant for the obvious reason that if a single method was appropriate for all series, 

selection rules would be dominated by the effects of noise. Table 3 presents summary 

one-step-ahead error statistics over the validation and test data sets for MAPE and 

AvgRelMAE. Also, the percentage of times where each method was ranked among the 

three top methods for each origin and each series is presented (column “Top 3”). 

Table 3. Performance of all methods measured by the one-step-ahead performance, 

averaged across series and origins. 

Method 

MAPE (%) AvgRelMAE Top 3 (%) 

Origins 

48-

108 
(All) 

48-89 
(initial 

selection 

sample) 

90-108 
(test 

sample) 

48-108 
(All) 

48-89 
(initial 

selection 

sample) 

90-108 
(test 

sample) 

48-

108 
(All) 

48-89 
(initial 

selection 

sample) 

90-108 
(test 

sample) 

Naive1 11.76 11.73 12.52 1.000 1.000 1.000 25.4 25.1 26.3 

Naive2 10.93 10.98 11.74 0.899 0.908 0.939 24.5 23.8 26.1 

Expsmoo 10.82 10.87 11.72 0.934 0.934 0.944 25.7 25.5 26.2 

DExpsmoo 9.48 9.53 10.45 0.821 0.826 0.864 21.5 21.2 22.3 

Holt 10.77 10.80 11.52 0.912 0.903 0.897 27.0 27.4 26.0 

DHolt 9.45 9.53 10.37 0.811 0.811 0.842 24.7 24.7 24.5 

HoltWint 9.65 9.59 10.20 0.844 0.837 0.862 25.5 26.0 24.5 

Damp 10.77 10.84 11.67 0.903 0.897 0.900 27.4 27.7 26.7 

DDamp 9.47 9.56 10.43 0.803 0.804 0.836 22.7 22.8 22.4 

DampMult 9.49 9.48 10.13 0.804 0.801 0.830 24.2 24.6 23.3 

Theta 9.34 9.39 10.27 0.808 0.806 0.838 20.0 19.9 20.27 
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ARIMA 9.97 10.05 11.32 0.795 0.792 0.816 31.1 31.0 31.4 

 

     Interestingly the three error measures show different performance rankings, 

particularly for the best performing methods with the largest discrepancies in the 

relative performance of ARIMA, Theta and DExspsmoo. Figure 1 illustrates the results 

in a different way showing how the relative performance of the different methods 

measured by one-step ahead MAPE and AvgRelMAE (relative to the Naïve model) 

changes over time. It is immediately apparent that the relative performance of Naïve 2 

improves relative to Holt and that AvgrelMAE, with its more robust attribute, points to 

the better relative performance of ARIMA. For all series, Theta performs best as 

measured by MAPE though with AvgRelMAE ARIMA is the overall best performer. 

 

Figure 1. The relative performance of methods over time 

     A second segmentation is, therefore, considered: to divide the data series into two 

groups in terms of the performance of one of the best methods. For this purpose, we 

have chosen Theta. In the M3 Competition the Theta method proved a strong performer 

and as can be seen in Table 3 it also performs well over the subset of 998 series. The 

aim here is identify sub-populations where there is (or is not) a dominant method. The 

threshold for a specific time series to be grouped in one of the two groups will be the 

Theta model’s achievement to be ranked (or not) among the top three (out of twelve) 

methods. In other words, past forecasting performance, as measured by Mean Absolute 

Error for the validation data, must be lower (or higher) than the value of the first 

quartile, that is: 

1
st
 Group: Theta’s performance in the top three (measured by MAE) 
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2
nd

 Group:  Theta’s performance outside the top three 

RQ4. Individual method selection is of most value when there is no dominant method 

across the population. 

     We also analyse the performance of the different methods for their stability. Using 

the validation and test data and error measures calculated for leads 1-6 for each data 

point we can measure stability in a specific series by the average (across time origins) 

Spearman’s rank correlation coefficient where the ranked performance of methods at 

each forecast origin is correlated to the rank of the average performance of the method 

summarized across all origins. A value of 1 implies the rankings of all methods remain 

the same over time. The median of our stability measure is 0.45 with range 0.01 to 0.91. 

Thus, we may segment further the 998 series considered in regards to the stability of 

methods’ performance. We define a series as stable when its Spearman’s rho falls in the 

top quartile of the data set (>0.59). As a result, we suggest the final research question: 

RQ5. Individual selection is only effective compared to aggregate selection when 

relative performance in the pool of methods under consideration is stable. 

     In total, segmentations of data considered in the current research are summarized in 

Table 4, where the respective populations of the groups are displayed. 

Table 4. Segmenting the data set: number of time series per segment 

Segment Number of series 

Entire data set 998 

Predictable 694 

Unpredictable 304 

Trended 894 

Non-trended 104 

Seasonal 608 

Non-seasonal 390 

Theta Best 428 

Theta Worst 570 

Stable performance 250 

Unstable performance 748 

 

4. Empirical results 

4.1 Out-of-sample performance of methods 

Firstly, we examine the out-of-sample performance of the forecasting methods 

considered in this study using error measures averaged across all origins through T2 to 
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T2+18 and across all lead times (1 to 18). Table 5 presents the results when MAPE is 

selected as error measure. Each row refers to a single extrapolation method (please, 

refer to Table 1 for the abbreviations). At the same time, each column refers to a 

specific segmentation of the data, as described in Table 4. 

     Even a quick view of this table unveils some very interesting observations. Firstly, 

across all segments, the best performance, in terms of accuracy is recorded for Theta 

followed by SES, when applied on the seasonally adjusted data, and seasonal versions 

of Damped. Over all series, Holt and Naive demonstrate the worst performance, 

neglecting as they do seasonality or any deterministic trend. Theta and Deseasonalised 

exponential smoothing, correlated at 0.98 from Table 2, perform very similarly for all 

segments and are the top performers. The largest differences across the methods are 

recorded for predictable and seasonal series, where methods with specific features, such 

as the ability to handle seasonality, perform better than benchmark methods, like 

random walk. On the other hand, simpler methods catch up with more complex ones 

when unpredictable on non-seasonal series are considered. The presence of trend or 

seasonality naturally favour methods with the ability to capture these features. SES on 

deseasonalized data (DExpsmoo) performs interestingly well and better than ARIMA.  

     The segment of data series containing the non-trended series suffers from relatively 

high levels of inaccuracy (an average MAPE across methods of 24.4% compared with 

14.7% overall), almost doubling for some methods. As expected, Holt performs worst, 

failing to estimate the zero trend. When segmenting on the stability in the methods’ 

performance is recorded, the performance of the non-seasonal methods is uniformly 

poor suggesting stability in performance is related to the ability of a method to capture 

persistent seasonality. For the 748 unstable series differences in performance are much 

smaller. Finally, the last row presents MAPE values for perfect information, meaning 

that the best method is selected for each series (individual selection) in an ex-post 

manner. It is apparent that possible margins of improvements are between 25 to 30% for 

all segments, compared to the best method in each segment applied to all series (ex-post 

aggregate selection). Therefore, individual model selection is worth investigating as 

Fildes (2001) had previous argued. In addition, the segmentation we are using 

emphasizes the importance of trend, seasonality and stability. 
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     The out-of-sample performance analysis was performed for two more error 

measures, MdAPE and AvgRelMAE. The use of MdAPE results in significant lower 

errors, as expected. Decreases across the different methods on each segment are 

consistent, resulting in stable ratios of MdAPE/MAPE. The smallest improvements are 

recorded for unpredictable series, where MdAPE is, on average, 35% lower than MAPE, 

while the largest improvements (57%) are observed for non-seasonal data. SES’s 

performance on deseasonalized data (DExpsmoo) is also enhanced relatively to other 

methods when MdAPE is examined, especially in the case of unstable data. AvgRelMAE 

confirms the superiority of Theta and DExpsmoo across all series and for most of the 

segments, with Naive1 being among the best methods for unpredictable and non-

seasonal series. Lastly, the relative performances of Holt on deseasonalized data 

(DHolt) and Holt-Winters are, across all series, worse than that of Naive1. 

 

Table 5. MAPE (%) of single methods across all lead times for the test data per segment 

of series. 
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Naive1 17.1 18.2 14.7 15.6 29.8 21.1 10.9 19.1 15.7 20.9 15.8 

Naive2 14.2 14.1 14.3 13.3 21.6 16.1 11.2 14.6 13.9 13.1 14.6 

Expsmoo 15.7 16.4 14.3 14.3 28.2 19.3 10.2 17.2 14.6 19.3 14.5 

DExpsmoo 12.8 12.4 13.6 12.0 19.6 14.3 10.4 12.8 12.8 11.5 13.2 

Holt 18.1 19.0 16.1 16.3 33.2 22.5 11.2 20.5 16.3 22.9 16.5 

DHolt 14.6 13.8 16.3 13.8 21.3 16.4 11.7 15.0 14.2 12.3 15.3 

HoltWint 15.3 14.5 17.3 13.8 28.4 17.6 11.8 15.1 15.5 13.7 15.9 

Damp 16.0 16.5 14.9 14.5 28.8 19.7 10.2 17.8 14.7 19.5 14.8 

DDamp 13.0 12.3 14.7 12.2 19.9 14.6 10.6 13.0 13.1 11.1 13.7 

DampMult 13.2 12.6 14.4 12.2 21.6 14.8 10.6 13.3 13.1 11.6 13.7 

Theta 12.6 12.3 13.3 11.8 19.3 14.2 10.2 12.7 12.6 11.6 13.0 

ARIMA 14.2 13.5 15.7 13.3 21.8 16.3 10.9 14.6 13.9 12.4 14.7 

Perfect 

Information 
9.2 9.1 9.5 8.7 14.1 10.7 7.0 9.6 9.0 8.4 9.5 
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4.2 Performance of selection rules 

Having analysed the performance of single extrapolation methods, we will now present 

the performance results of the simple selection rules presented in section 3.2. We focus 

on the cases improved by performing individual selection versus the two simple 

benchmarks: 

(i) aggregate selection. This uses the single best method based on the one-step-ahead out-

of-sample performance on the validation sample  

(ii) the combination of methods using equal weights to each method included in the 

selection pool. Thus, the accuracy gains (or losses) through using simple individual 

selection rules is examined through the percentage of cases where individual selection 

rules performed better than the above benchmarks.  

     Accuracy performance across all series in each case is calculated through Median 

Absolute Percentage Error (MdAPE). The results are presented for each segment of the 

data (Table 4) separately, and are segmented by the sizes of the pools of methods under 

consideration (e.g. a pool size of two when just ARIMA and Expsmoo are being 

considered) and the correlation of methods in a specific pool (e.g. ARIMA and 

Expsmoo have a low correlation). In each table, the first column displays the number of 

methods considered in a selection pool (i.e. the size of the pool)  grouped into three 

classes (2-4, 5-8 and 9-12 methods). Columns 2 and 3 break down the selection pool 

into those groups of methods which are highly correlated on average and which are 

low, showing the number of combinations in each group. Each of the remaining 

columns refers to the improvements in performance for individual selection (as a 

percentage of comparisons) compared to the two benchmarks.. Improvements in more 

than 50% of the cases are presented with bold interface. “NA” means that no 

combinations for this specific group of pools sizes and correlation is available.  

     Table 6 presents the percentage of cases improved in terms of accuracy when all 

series are considered. Recall that Rule 1 uses in-sample fit, Rule 2, 1 period ahead past 

forecast performance, Rule 3 matches the lead time in individual selection while Rule 4 

takes a more aggregate approach with selection based on average performance over all 

lead times. 

     Overall, there are fewer cases with methods characterized as highly correlated. The 

first observation is that the relative number of cases improved by individual selection is 
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higher when the rules are applied to low correlated or uncorrelated methods, especially 

when small pools are considered. Also as the pools’ size increases, we observe that 

individual selection generally becomes better. At the same time, these improvements are 

only achieved for Rules 2 to 4, with Rule 1 (best in-sample fit) having the worst 

performance.  Moreover, individual selection always outperforms both aggregate 

selection and combination in more than 80% of the cases when Rule 4 is applied to 

methods identified as low correlated. 

Table 6. Percentage (%) of cases with on average improved forecasting accuracy when 

all series (998) are considered. 
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2-4 
Low 611 31.3 65.0 44.4 86.4 33.4 75.0 83.1 90.0 

High 170 13.5 65.3 55.3 75.3 18.8 60.6 70.6 80.6 

5-8 
Low 2712 17.4 51.5 47.7 92.7 38.6 80.7 89.5 97.5 

High 291 4.8 78.7 62.2 90.7 9.6 84.5 82.1 95.9 

9-12 
Low 295 3.7 46.4 41.7 97.6 45.1 91.2 95.3 100.0 

High 4 0.0 100.0 25.0 100.0 25.0 100.0 100.0 100.0 

 

     The cases displaying improvements for the 694 predictable and the 304 

unpredictable series are presented in Table 7. For predictable series, the majority of the 

pools are characterized as low correlated while for the unpredictable series they are 

highly correlated. For predictable series, aggregate selection works best for almost all 

pools. Recall the definition of a predictable series is made on the validation data and 

therefore offers guidance on whether to use individual selection. In addition, for 

predictable series, aggregate selection works better than combination since in most 

combinations, consistently poorer methods are included. 

     Moreover, individual selection works efficiently against combination only for 

“predictable” series, with a much limited improvements for “unpredictable” series and 

just for large pools of methods. The exact opposite is observed against aggregate 

selection. So, model selection (in an individual or, especially, an aggregate manner) is 

more successful when investigating series identified as “predictable”, with combination 
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being more robust in “unpredictable” series. Once again, Rules 2 to 4 perform best, 

while Rule 1 has very limited value, especially against combination. The results also 

prove robust across the range of error measures we have considered (MAPE and 

AvgRelMAE), with gains from using model selection being more apparent in predictable 

series, while individual selection outperforms aggregate selection when unpredictable 

series are investigated. 

Table 7. Percentage (%) of cases with on average improved forecasting accuracy when 

predictability is examined. 
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 2-4 
Low 698 23.8 44.6 28.2 50.1 45.8 78.2 75.8 84.5 

High 83 19.3 53.0 22.9 36.1 32.5 56.6 41.0 49.4 

5-8 
Low 2948 11.2 24.3 14.0 34.7 40.3 76.3 74.7 87.7 

High 55 3.6 41.8 1.8 9.1 7.3 32.7 20.0 21.8 

9-12 
Low 299 1.0 10.0 3.7 21.1 37.8 80.9 87.0 96.3 

High 0 NA NA NA NA NA NA NA NA 

U
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2-4 
Low 47 83.0 76.6 93.6 89.4 12.8 19.2 53.2 57.4 

High 734 43.9 60.6 78.8 74.9 10.6 27.5 40.5 45.9 

5-8 
Low 4 100.0 100.0 100.0 100.0 0.0 0.0 25.0 50.0 

High 2999 23.6 61.5 90.0 84.4 1.7 23.4 45.7 51.8 

9-12 
Low 0 NA NA NA NA NA NA NA NA 

High 299 8.0 71.2 98.0 97.0 0.0 18.1 60.2 69.6 

 

     Table 8 presents the percentage of cases improved in terms of accuracy when trended 

and non-trended series are considered, respectively. When trended data are examined, 

the majority of pools are identified as highly correlated. Individual selection versus 

aggregate selection seems to work reliably only for Rules 2 and 4. At the same time, 

Rules 2, 3 and 4 results in significant improvements when contrasting individual 

selection to simple combination of methods.  

     On the other hand, when non-trended data are examined, almost all pools are 

classified as low correlated. Improvements in more than 50% of the cases are now 

limited to only low correlated pools of methods. Individual is better against aggregate 
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selection for small pools of methods. In contrast, the bigger the pool of methods, the 

larger the percentage of cases improved against combination. For all cases, low 

correlated pools, in terms of methods’ outputs, produce higher improvements in contrast 

to higher correlated ones. One plausible explanation is the ability of selection to identify 

methods that include trend. We therefore investigated the cases improved when trended 

(or non-trended) series are extrapolated only with methods with the potential for 

incorporating (or excluding) trend. As expected, excluding non-trended methods when 

extrapolating trended series, results in better forecasts for simple combinations, though 

individual selection is still best for smaller pools of methods. No significant differences 

are recorded in the case of non-trended series. 

Table 8. Percentage (%) of cases with on average improved forecasting accuracy when 

trend is examined. 
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2-4 
Low 201 46.3 63.2 57.2 80.1 19.9 67.7 67.2 83.1 

High 580 13.1 53.6 41.4 60.2 22.1 67.9 70.7 79.0 

5-8 
Low 263 36.9 48.7 46.4 75.7 9.9 76.8 66.2 87.8 

High 2740 6.7 39.7 37.2 66.7 16.1 71.0 70.0 84.2 

9-12 
Low 0 NA NA NA NA NA NA NA NA 

High 299 0.7 20.1 27.8 77.3 10.7 81.3 84.3 98.7 

N
o
n
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n
d

ed
 2-4 

Low 711 28.6 47.0 66.5 61.6 26.7 75.5 87.1 85.5 

High 70 31.4 24.3 30.0 27.1 8.6 21.4 34.3 38.6 

5-8 
Low 2954 21.0 23.8 45.3 35.0 35.7 68.0 84.4 82.4 

High 49 10.2 8.2 8.2 6.1 4.1 32.7 28.6 36.7 

9-12 
Low 299 14.0 7.0 20.4 18.7 56.5 60.9 90.6 88.3 

High 0 NA NA NA NA NA NA NA NA 

 

     According to Table 9, improvements for seasonal data are substantial, especially 

when Rules 3 and 4 are applied, suggesting reliance on 1-step ahead forecasts for 

monthly seasonal forecasting is unwise. Both against aggregate selection and 

combination, individual selection effectiveness increases as we consider more methods 

in a selection pool. Essentially, selection is capturing the persistent seasonality in the 
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series. Improvements are higher against aggregate selection in the case of high 

correlated pools of methods, while, as expected, the reverse is true against the 

combination of methods. Individual selection does not usually work when non-seasonal 

series are examined.  

     The examination of only seasonal methods applied to seasonal series did not 

demonstrate any significant differences in the percentage of cases improved. On the 

other hand, percentage of cases improved using individual instead of aggregate selection 

raised when non-seasonal series are extrapolated with only non-seasonal methods, but 

the small number of cases (26 combinations) does not allow any strong generalisations. 

Table 9. Percentage (%) of cases with on average improved forecasting accuracy when 

seasonal component is examined. 
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2-4 
Low 678 24.3 46.5 58.6 72.7 33.8 75.5 97.2 97.8 

High 103 20.4 48.5 74.8 77.7 21.4 46.6 77.7 74.8 

5-8 
Low 2893 7.9 29.2 75.0 83.8 40.1 73.1 98.9 99.4 

High 110 0.0 30.0 90.9 93.6 0.9 18.2 86.4 90.9 

9-12 
Low 299 0.3 10.7 95.7 96.3 59.9 79.3 100.0 100.0 

High 0 NA NA NA NA NA NA NA NA 
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2-4 
Low 3 100.0 66.7 100.0 100.0 0.0 33.3 0.0 0.0 

High 778 36.0 49.1 47.6 51.5 6.0 16.1 9.0 12.5 

5-8 
Low 0 NA NA NA NA NA NA NA NA 

High 3003 22.3 25.0 18.4 37.7 0.5 4.5 0.8 2.7 

9-12 
Low 0 NA NA NA NA NA NA NA NA 

High 299 17.7 4.0 1.0 22.4 0.0 0.0 0.0 0.0 

 

     We have also analysed the results from segmenting the series using the performance 

of the Theta method (Table 10). We first examine the segment containing the series that 

Theta fell into the top three performers. Unsurprisingly aggregate selection is the best 

option (although recall Theta is not necessarily included in each case). The advantages 

of using individual selection are way more promising when applied to Theta Worst 

segment where no other method proves dominant. Rules 2 and 4 work very well for 
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individual selection versus aggregate selection and combination with some cases where 

the percentage of times performing better is greater than 90%. Once more, the gains are 

significantly higher when pools of methods with low correlated outputs are examined. 

Table 10. Percentage (%) of cases with on average improved forecasting accuracy when 

Theta’s performance is considered. 
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Low 717 11.3 27.3 20.2 28.3 39.6 68.1 73.6 80.9 

High 64 17.2 28.1 23.4 21.9 20.3 51.6 45.3 53.1 

5-8 
Low 2986 3.9 11.8 7.0 20.0 57.0 69.4 81.7 88.5 

High 17 0.0 0.0 0.0 5.9 11.8 29.4 41.2 52.9 

9-12 
Low 299 0.3 0.7 0.7 15.7 76.6 80.9 93.3 96.3 

High 0 NA NA NA NA NA NA NA NA 

T
h
et

a 
W

o
rs

t 2-4 
Low 261 46.7 59.0 59.8 75.9 42.9 74.0 70.9 85.1 

High 520 26.2 56.9 45.6 54.4 23.3 72.3 61.9 73.8 

5-8 
Low 681 30.4 55.8 52.4 65.5 26.3 83.4 74.6 88.5 

High 2322 13.9 36.4 30.6 39.3 9.8 62.5 46.1 67.0 

9-12 
Low 11 9.1 72.7 63.6 63.6 0.0 100.0 100.0 100.0 

High 288 3.5 19.8 17.4 20.1 4.5 67.4 35.1 72.2 

 

     Finally, Table 11 contrasts any differences when series are segmented with regards 

to the stability of methods’ ranked performance. This classification results in pool sizes 

with low average correlation for methods with stable performance. With stability in a 

method’s performance it is of course easier to identify the best individual and also 

aggregate selection. Improvements against aggregate selection are therefore limited in 

contrast to combination, with Rules 2 and 4 being effective. Moreover, the 

improvements in both cases get bigger as we consider larger pools of methods.  

     On the other hand, series with unstable methods’ performance are characterized 

mostly by highly correlated point forecasts. The differences in cases improved are also 

substantial with combination typically outperforming selection apart from the situation 

of highly correlated methods. Individual selection does however improve over 

aggregate selection. 
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Table 11. Percentage (%) of cases with on average improved forecasting accuracy when 

stability of methods’ performance is examined. 
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2-4 
Low 722 31.3 65.0 37.4 55.8 62.5 87.8 89.6 92.4 

High 59 18.6 61.0 42.4 50.8 23.7 67.8 52.5 52.5 

5-8 
Low 2987 17.3 49.1 32.4 68.6 76.9 95.4 95.6 98.1 

High 16 6.2 50.0 18.7 50.0 12.5 56.3 43.7 50.0 

9-12 
Low 299 3.7 17.4 26.1 83.3 91.0 99.0 99.0 100.0 

High 0 NA NA NA NA NA NA NA NA 

U
n
st
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le

  

2-4 
Low 83 72.3 71.1 74.7 80.7 7.2 6.0 25.3 39.8 

High 698 33.5 45.8 52.7 63.8 13.3 19.8 38.7 51.7 

5-8 
Low 26 73.1 73.1 73.1 76.9 0.0 0.0 7.7 30.8 

High 2977 22.0 30.6 40.2 69.6 4.6 12.7 27.8 49.9 

9-12 
Low 0 NA NA NA NA NA NA NA NA 

High 299 13.4 12.0 15.0 82.9 1.3 7.0 12.4 51.8 

 

     Table 12 presents the summarised MdAPEs for aggregate selection, simple 

combination and individual selection (applied by Rule 4) when the selection pools 

contain 2, 6 or 10 methods. For all cases, the formation of larger pools of methods 

results in better accuracy results with lower variance, thus better forecasting 

performance. Moreover, when comparing aggregate selection and combination versus 

individual selection, the latter results in lower median MdAPE (especially for large 

pools), while the variance is also lower in the small pools. Essentially, individual 

selection is on average slightly more accurate than the two simple benchmarks but more 

importantly, it is more reliable.  

    The same comparisons have been applied to the various segmentations. The results 

show relatively little gains in terms of accuracy, with largest differences arising in the 

cases of seasonal and stable series. At the same time, individual selection results in the 

lowest interquartile ranges for most of the times. This observation proves robust across 

the range of error measures we have considered, in particularly MAPE and the robust 

AvgRelMAE. 
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Table 12. Summarized MdAPEs across series for aggregate selection, simple 

combination and individual selection. 

Methods in a 

selection pool 

Aggregate Selection Combination 
Individual Selection 

(Rule 4) 

Q1 Median Q3 Q1 Median Q3 Q1 Median Q3 

2 7.36 7.51 8.45 7.55 7.85 8.10 7.33 7.50 7.81 

6 7.36 7.36 7.51 7.48 7.61 7.82 7.16 7.24 7.32 

10 7.36 7.36 7.36 7.50 7.57 7.72 7.13 7.15 7.20 

 

4.3 Discussion 

     The empirical findings of this study provide some interesting evidence on the 

efficiency of selection rules. First, segmenting the series helps us to identify suitable 

sub-populations of data with specific characteristics, where the application of individual 

selection is more effective (RQ1) compared to the simples rules of aggregate selection 

or combination. Individual selection is particularly effective against our two simple 

benchmarks for seasonal and trending series as well as those series with no dominant 

method (theta worst). Individual selection works well against combination for all 

segments, except for unpredictable, non-seasonal and unstable segments. These are all 

segments where the risk averaging aspect of combinations was expected to work well. 

Aggregate selection works most effectively where there is a dominant stable method, as 

Fildes (1989) shows in analysing a method, robust trend, designed for the specific data 

set, or when data are identified as predictable.  

     RQ2 questioned the effects of including more methods in the pool under 

consideration. In most cases improvements from individual selection over aggregate 

selection are recorded when small pools of methods are considered. However, when 

comparing against combination, more methods in the selection pool generally results 

(except in the case of non-seasonal series) in a larger numbers of cases improved. This 

is because of the incorporation of methods not performing particularly well in the 

combination while the selection pool benefits is not disadvantaged by the poorer 

methods. In the case of non-seasonal segmentation, the differences among methods are 

relatively small (Table 5) so there is little or no loss and the usual benefits of 

combination are available. 

     With regard to the correlation of the methods in the selection pool, it is obvious from 

almost all segments of data that segments identified as low correlated offer the greatest 
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opportunity for individual selection. Specifically, when individual selection is 

contrasted against combination, the cases improved from selecting pools containing 

methods identified as low correlated are in some cases almost double (for example, 

Table 12, Rules 3 and 4 with median improvements of over 9% for pools with up to 

four methods). In answer to RQ3 therefore, pools of methods with low correlation 

generally provide a better foundation for individual model selection. However, some 

exceptions apply, specifically seasonal series and series characterized as unstable when 

comparing with aggregate selection and combination respectively.  

     Aggregate selection is expected to produce better results than individual selection, 

when a single method displays dominant performance across a specific sample of series 

(RQ4). The hypotheses is verified through segmenting the data in series where Theta 

achieved (or not) a ranking among the top three methods (out of twelve in total). 

Aggregate selection works better than individual selection in the Theta Best sample of 

series, with median improvements of 1.6%. On the other hand in the Theta Worst series 

where there is no dominant method, aggregate selection produces lower improvements 

(up to 0.5%). In addition, individual selection displays significant gains over 

combination for both segments (whether a specific method is dominant or not). 

Combination has, on average, 4.5% higher MdAPE than aggregate selection. 

     Lastly, as expected, when stability in methods’ ranked performance is used as a basis of 

segmentation, individual selection produces more accurate forecasts for most of the pools of 

methods examined and especially for Rules 2 and 4 (RQ5). Stability in performance of methods 

enables the accurate selection of the most appropriate method individually, with average 

performance improvements of 2.8% and 16% against aggregate selection and combination 

respectively. This is a direct result from the great differences in the performance of methods 

over these series (Table 5). This difference also allows individual selection to work effectively 

with larger pools of methods without any negative consequences. On the other hand, for the 

unstable segment, the combination of methods is the most robust choice, displaying the smallest 

AvgRelMAE. At the same time, individual selection outperforms aggregate selection for the 

smaller pools examined. 

     In our introduction we did not speculate on the effectiveness of the different selection rules, 

merely noting the existing evidence was conflicting. In the results we have presented Rule 1 

based on a measure of fit is uniformly ineffective compared to rules based on the validation 

sample and in particular Rule 4 which looks at aggregate performance averaged over lead times. 
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Rule 3 which attempts to match selection for a specific forecast horizon to its corresponding 

past accuracy on the validation sample performed poorly. 

 

5. Conclusions 

     When forecasting a population of time series, individual selection of the most 

appropriate method is intuitively appealing and may result in substantial gains. In the 

current research we analysed the circumstances under which selection of an 

individualised method per series should be preferred to selecting a single method 

(aggregate selection) for the whole population of series or by a combination of methods. 

To explore the conditions when individual selection is most likely to be of benefit, the 

entire data set was segmented into sub-populations with regard to basic series 

characteristics (predictability, trend and seasonality). Moreover, we examined the 

efficacy of individual selection when a specific method is dominant and when the 

methods’ performance are stable across forecast origins. Lastly, we considered the 

effect of the number of methods taking part in selection (pool size) and the correlation 

between methods.  

     Empirical results, based on the long monthly series of the M3-Competition provided 

insights with regards to the effectiveness of individual selection versus the simple rules 

of aggregate selection or combination. When a population of series is divided in sub-

populations with specific characteristics, then selection per series is more effective, 

especially for series identified as seasonal, without a dominant method (Theta worst) or 

non-trended. In addition, individual selection is superior when methods’ ranked 

performance in each series is stable. On the other hand, aggregate selection is the best 

choice when one single method is dominant across a sub-population of series, while 

combination is efficient when there is a lack of stability. Finally, with some exceptions, 

individual selection works better (especially against aggregate selection) when small 

pools of uncorrelated methods are selected. 

     Of the various individual selection rules we considered, Rule 4, which relied on 

aggregated forecast performance over horizons, proved better than relying on 1-step 

ahead rules, or even Rule 3 which matched selection to the corresponding horizon. 

Simply relying on past performance over the fitted data proved inadequate. 
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     The practical implications of the current research are significant. Given that we only 

considered simple and widely used extrapolating methods, the outcomes are generally 

applicable. The insights provided can be directly applied to broadly used ERPs and 

Forecasting Support Systems (e.g. SAP), as to further enhance the integrated automatic 

selection procedures. SAP uses a selection rule applied across all series using 10 similar 

base methods. However, a single method approach, which would combine seasonal and 

trend features (such as DDamp or Theta), continues to work well, with minimum losses 

when contrasting its median performance against aggregate or individual selection. 

     A natural path for future research is to extend the range of methods to include ones 

with distinctive performance characteristics, such as Neural Networks. Moreover, the 

selection rules used in this study are only based on model fit and past forecast 

performance of methods across single or multiple lead times. These could be enhanced 

by a large number of variables proposed in the literature (Shah, 1997; Meade, 2000; 

Adya, Collopy, Armstrong & Kennedy, 2001). Lastly, the current research does not 

fully take into account the specific features of each extrapolating method, with all pools 

of possible methods being handled in the same manner. This is done in an attempt to 

gain a holistic view on the effectiveness of the individual selection rules over the 

aggregate selection and simple combination of methods. However, in a managerial set 

up it would provide additional insight to include only the appropriate methods in the 

selection pool that match the characteristics of a specific sub-population of data (e.g. 

trended or seasonal series). As ever with forecasting competitions, an extension of the 

range of series considered to distinct homogenous populations should prove 

illuminating, not least to identify the populations where the performance differences 

between extrapolative methods are large enough to be important. 

     We conclude by noting that for many applications selection rules are likely to deliver 

improved forecast accuracy. While for most sub-populations (if the population we have 

analysed here is informative) the gains are not usually large, the reliability is improved. 

While aggregate selection, perhaps the standard simple rule in application, can clearly 

deliver where there is a specific stable structure to the time series population (e.g. the 

telecoms data of Fildes(1989)), where the data are more heterogeneous as here, 

individual selection is needed. A final note, the simple rule of combining proved 

ineffective for most of the segmented data sets. 
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Appendices 

A1. Error measures 

Let us define the error made in forecasting series from time origins t2 to t2 averaged over 

horizons h1 to h2 as  
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Mean Absolute Percentage Error (MAPE) is the Mean APE summarized across all N 

time series, as: 
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that is the mean absolute percentage error averaged over series, forecast horizons and 

origins. 

     The relative Mean Absolute Error for a series i can be defined as: 

   
    

    
  

where     
  – MAE for baseline forecast for series  ,     

  – MAE for method m for 

series  .     
  and     

  can be obtained from the arithmetic mean absolute error 

averaged across all forecast origins and forecast horizons h1 to h2  for series i: 
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     Davydenko & Fildes (2013) showed that when making comparisons between 

methods, the use of arithmetic means rather than geometric can lead to 

misinterpretations. Instead, they proposed the use of a geometric average relative MAE. 

          (∏   
 

   
)
   

  

     As is standard practice, we also use Absolute Percentage Errors and Squared Errors 

in the simple selection approaches in order to select the most promising single 

forecasting approach from a specific pool of methods. The average Past Forecast 

Performance (PFP) of  series i for a method m for origins t1 through t2 may be 

calculated as the performance over a fixed lead time (h) or multiple lead times (h1 to h2) 

measured by an EM as follows: 

Single lead time:           
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Multiple lead times:           
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     Note that in the special case where we are only interested in one horizon, h1=h2, the 

two equations are equivalent. 

 

A2. Model Selection Rules 

Assuming that we want to perform model selection at the T2+k origin, the PFP is 

measured between origins T1 to T2+k as is the fitted performance The method to be 

selected is the one with the most promising performance. To this direction, we select the 

method with the minimum error (the smallest PFP), for the different lead times: 

Single lead time:                   [             
        ] 

Multiple lead times:                   [             
            ] 

     In the following, the four simple rules implemented and examined in this research 

are defined. These rules are applied, as previously mentioned, in a rolling origin matter. 

As such, the most appropriate method identified and applied for the calculation of the 

forecasts for the next origin may change over time. Nevertheless, in each origin h point 
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forecasts are calculated. Note that in all cases m is the index referring to each one of the 

methods examined by a specific rule. 

Rule 1. Use the method with best fit as measured by the minimum one-step 

ahead in sample Mean Squared Error: 

               
                              [               

        ] 

Rule 2. Use the method with the best 1-step-ahead forecast error, in terms of 

Mean Absolute Percentage Error, and apply that method to forecast for all lead times: 

               
                             [              

        ] 

Rule 3. Use the method with best h-step-ahead forecast, in terms of Mean 

Absolute Percentage Error, and apply it to forecast for just the same lead time: 

               
                          [              

        ] 

Rule 4. Use the best 1-18 steps-ahead, in terms of Mean Percentage Absolute 

Error, method to forecast for all lead times: 

               
                             [              

           ] 

 

 


