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Abstract 

 

Sales forecasting at the UPC level is important for retailers to manage inventory. In this paper, we 

propose more effective methods to forecast retail UPC sales by incorporating competitive information 

including prices and promotions. The impact of these competitive marketing activities on the sales of 

the focal product has been extensively documented. However, competitive information has been 

surprisingly overlooked by previous studies in forecasting UPC sales, probably because of the high-

dimensionality problem associated with the selection of variables. That is, each FMCG product 

category typically contains a large number of UPCs and is consequently associated with a large 

number of competitive explanatory variables. Under such a circumstance, time series models can 

easily become over-fitted and thus generate poor forecasting results. 

  

Our forecasting methods consist of two stages. At the first stage, we refine the competitive 

information. We identify the most relevant explanatory variables using variable selection methods, or 

alternatively, pool information across all variables using factor analysis to construct a small number of 

diffusion indexes. At the second stage, we specify the Autoregressive Distributed Lag (ADL) model 

following a general to specific modelling strategy with the identified most relevant competitive 

explanatory variables and the constructed diffusion indexes.  

 

We compare the forecasting performance of our proposed methods with the industrial practice method 

(benchmark model) and the ADL model specified exclusively with the price and promotion 

information of the focal product. The results show that our proposed methods generate substantially 

more accurate forecasts across a range of product categories. 
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1. Introduction 

 

Grocery retailers have been struggling with stock-outs for years. Stock-outs cause a direct 

loss of potential sales and lead to dissatisfied customers. The stock-out of individual items 

not only has negative impact on its own sales but also on the sales of the whole product 

category (Kalyanam et al., 2007). Recent studies show that customers whom we once 

believed to either purchase substitutes or delay purchases when their preferred products are 

out of stock are actually more likely to switch stores and never come back (Corsten and 

Gruen, 2003). To avoid the out-of-stock condition, retailers may deliberately increase safety 

stock (i.e. to over-stock), which substantially reduces profit (Cooper et al., 1999). Under such 

a circumstance, retailers face a dilemma: they need to balance the loss due to stock-outs and 

the cost of safety stocks. One of the keys to resolve the cost and service trade-off is to 

provide accurate forecasts for product sales at the UPC level
2
 (Corsten and Gruen, 2003). In 

supply chain management, accurate forecasts are critically important for Just-In-Time (JIT) 

delivery (Kuo, 2001).  

 

However, forecasting retailer product sales at the UPC level is difficult. Product sales are 

driven by a large number of factors including price reductions and promotion activities of the 

focal product (Ali et al., 2009; Blattberg et al., 1995; Christen et al., 1997; Cooper et al., 1999; 

Gupta, 1988; Lattin and Bucklin, 1989; Mulhern and Leone, 1991), price reductions and 

promotion activities of competitive products  (Demirag et al., 2011; Struse, 1987; Walters, 

1991; Walters and Rinne, 1986), various types of advertisement which target specific 

customer segments (Chandy et al., 2001; Tellis et al., 2000), and product category 

characteristics (Baltas, 2005; Nijs et al., 2001). Today’s grocery retailers spend a large 

proportion of their marketing budget on price reductions and promotion activities due to more 

intense competition (Kamakura and Kang, 2007; Raju, 1995). Price reductions and promotion 

activities can substantially boost the sales of the focal product, but also cause brand switching 

and stockpiling, which amplifies the variation of the product sales and makes product sales 

                                                           
2
 UPC (Universal Product Code) and SKU (Stock Keeping Unit) are both tracking methods specifying a product 

exactly in terms of all of its features such as flavour, colour, and packaging size etc. SKU may however include 

other elements including the store in which the item is sold. UPC and SKU are used interchangeably in this 

study as used in the literature.  
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more difficult to forecast (Ailawadi, 2006). The sales of the focal product may also be subject 

to the negative impact of price reductions and promotion activities of other competitive 

products exacerbating the forecasting problem (Struse, 1987; Walters, 1991; Walters and 

Rinne, 1986) 

 

In practice, many retailers use a base-times-lift approach to forecast product sales at the UPC 

level. Under this approach, retailers initially generate a baseline forecast with simple methods 

and then make adjustments for any incoming price reduction and promotional event. The 

adjustments are estimated based on the lift effect of the most recent price reduction and/or 

promotion, and also the judgements made by brand managers (Fildes et al., 2008). Evidence 

shows that the forecasting accuracy of this approach is far from satisfactory (Cooper et al., 

1999; Fildes et al., 2008). In the recent literature, some studies focus on how the adjustment 

should be made. For example, a string of studies have tried to help managers with their 

judgmental decisions for the lift effect (Goodwin, 2002; Lee et al., 2007; Nikolopoulos, 

2010). In contrast, Cooper et al. (1999)  developed a model-based forecasting system based 

on promotional events. The system uses a regression style model with a large number of 

variables related to price, promotions, and store/category specific historical information. 

Others have proposed time series forecasting models with Taylor (2007) extending an 

exponential smoothing approach. However, exponential smoothing methods have been 

criticized for their inability to capture the effects of special events such as promotions, 

announcements, changes in regulations, and strikes etc. (Lee et al., 2007). In order to capture 

promotional effects, Kuo (2001), Aburto and Weber (2007) and Ali et al. (2009) all proposed 

machine learning based approaches which include promotional variables. All apart from 

Taylor (2007) examined a small number of SKUs however with a limited forecast validation 

exercise. We discuss the approaches employed in these studies in the next section. 

 

While these studies have incorporated the price and promotion of the focal product in 

forecasting retailer product sales at the UPC level, they overlooked certain potentially 

important features of the product market. For example, the time dependence of promotional 

effects was excluded. Also, the focus of this article, the potential importance of price 

reductions and promotions of other competitive products was not considered. Past research 

has established the importance of competitive information on the sales of the focal product 

(e.g. Dekimpe et al., 1999; Nijs et al., 2001; Van Heerde et al., 2003; Van Heerde et al., 

2000). A well-known example is the SCAN*pro model and its extensions which measures 
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cross price elasticity at the brand level (Andrews et al., 2008; Wittink et al., 1988). More 

recent studies have analysed the cross price elasticity for each individual items and for each 

store (Wedel and Zhang, 2004). The negative impact of the competitive marketing activities 

is further divided into the cannibalization effect and the brand switching effect depending on 

if the impact originates from the products of the same brand or from different brands (Nijs et 

al., 2001). Some other studies tried to establish a link between the magnitude of the effect of 

competitive marketing activities, category characteristics, and brand image (Bandyopadhyay, 

2009; Blattberg and Wisniewski, 1987; Kamakura and Kang, 2007). However, these studies 

focus on identifying and estimating the effects of competitive prices and competitive 

promotions, and they do not consider the operational question facing the retailer of designing 

models to forecast product sales at the UPC level. 

 

Competitive information has previously been used to forecast product sales at the brand level. 

For example, Curry et al. (1995) proposed a Bayesian VAR model to forecast product sales at 

the brand level, and Zhong et al. (2005) extended the model to a Bayesian VECM model 

which captures the potential co-integration relationship. Divakar et al. (2005) proposed a 

regression model to forecast beverage sales for manufacturers at the brand level. The 

regression model contains the price and promotion of the focal product and its main 

competitors (e.g. Coca versus Pepsi), and it includes varying parameters to take into account 

the heterogeneity across different distribution channels. While the impact of competitive 

information is not analysed directly, it does however prove important in specifying a 

complete model. 

 

These earlier studies do not imply that we can generate more accurate forecasts by including 

the competitive information at the UPC level. The data at the disaggregate UPC level 

contains more noise than at the brand level and it is well known that the impacts of 

competitive prices and competitive promotion are not as strong as the impacts of the price 

and promotion of the focal product (see Hoch et al., 1995). Thus it is possible for the overall 

impact of competitive prices and competitive promotion to be submerged in the noise of the 

data. Moreover, we face a high-dimensionality problem when incorporating competitive 

information at the UPC level. Today’s grocery retailers typically sell tens of thousands of 

products and each product category may contain over hundreds of items. Market theory 

suggests all these items are competing with one another, but it is not possibly to incorporate 

the competitive information of all these products when forecasting the sales of the focal 
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product. Therefore, in this paper we explore the value of the competitive information in 

forecasting retailer product sales at the UPC level. The research is significant because unlike 

most earlier studies it focuses on developing parsimonious econometric models for 

promotional forecasting using best practice evaluation methods. Methodologically our 

research offers a novel evaluation of different variable selection approaches in a high 

dimensionality problem, an issue of theoretical and practical significance in a world of ‘big 

data’. Besides the theoretical interest, the results have practical significance in that they offer 

operational guidance to the retail forecaster as to how to produce more accurate forecasts as 

simply as possible. 

 

The remainder of this paper is organized as follows. In section two, we review previous 

studies and address their limitations. In section three we explain the high-dimensionality 

problem when incorporating competitive information. In section four we present our 

methodology. Section five describes the data. Section six introduces the models. Section 

seven demonstrates our experimental design. In section eight we present the results. In the 

last section we draw conclusions on the value of competitive information in UPC retail 

forecasting, both when the focal product is being promoted and when it is not. 

 

2. Related Literature  

 

Various regression type models have been developed to analyse retailer sales in order to 

understand the effect of marketing activities at the brand level (Foekens et al., 1992; Foekens 

et al., 1994). These studies did not directly address the retailer’s forecasting problem 

associated with operations and stock management because their level of aggregation is too 

high (i.e. brand rather than UPC) and they exclude any dynamic effects of marketing 

activities. At the UPC level, perhaps surprisingly given the level of theoretical interest in 

supply chain planning and the bullwhip effect (Ouyang, 2007; Sodhi and Tang, 2011), there 

has been very limited empirical work with Rinne and Geurts (1988) considering forecasting 

performance as a part of an evaluation of promotional profitability. Their model omitted 

dynamic and competitive effects and offered no evidence on forecasting accuracy. Preston 

and Mercer (1990) examined a limited number of product categories and again developed 

static models without competitive effects and with no comparative accuracy evidence. 

 



6 
 

In practice, many retailers use the base-times-lift approach to forecast product sales at the 

UPC level. The approach generates a baseline forecast and then makes adjustments for any 

incoming promotional events. Typically, the baseline forecasting model is a variant of 

exponential smoothing and the adjustment is made judgementally (Fildes et al., 2009). The 

choice of the baseline is inevitably important and commercial software typically offers users 

a variety of alternatives. Taylor (2007) applied the quantile exponential smoothing method to 

generate robust point forecasts for daily supermarket sales. The evaluation was based on 

comparative error measures (e.g. the average MAE/RMSE relative to exponential smoothing 

methods), and the model outperformed the benchmark model especially for short horizons. 

On the other hand, judgmental adjustments are expensive and potentially prone to systematic 

bias (Fildes et al., 2009; Franses and Legerstee, 2010). An approach to overcome this whilst a 

multivariate extension of exponential smoothing to monthly supplier data compared to 

judgmental adjustment has been shown to be effective by Trapero Arenas et al. (2013). A 

more established approach is due to Cooper et al. (1999) who developed a promotional-event 

forecasting system which again adopts the “two-step” procedure. The forecasting system first 

produces a baseline forecast, and then estimates the adjustment but with a more sophisticated 

model: a regression model with a variety of promotional conditions and store/category 

specific information as explanatory variables. The regression model was subsequently 

extended to contain information related to manufacturers and product categories (Cooper and 

Giuffrida, 2000; Trusov et al., 2006). The forecasting system exhibited superior forecasting 

performance compared to the base-time-lift approach in terms of the Mean Absolute Error 

(MAE). However, the regression model is static and the cross-sectional regression model is 

based on promotional events: thus it ignores the carryover effect of price reductions and 

promotions and also the time since the last price reduction and/or promotion. Moreover, the 

system overlooks the impact of competitive prices and competitive promotions on the sales of 

the focal product.  

 

Some recent studies have tried to forecast product sales at the SKU level using complex time 

series models to capture promotional effects. Kuo (2001) proposed a fuzzy neural network 

model to forecast daily milk sales for a convenience store (CVS) franchise company. The 

neural network model is integrated with a genetic algorithm which learns fuzzy IF±THEN 

rules for promotions obtained from marketing experts. Their model outperforms conventional 

simple statistical methods and a single neural network model in terms of the Mean Squared 

Error (MSE). However, the performance of the models is evaluated with only one single SKU 
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(i.e. 500 cl container of papaya milk.). Aburto and Weber (2007) proposed a hybrid model to 

forecast SKU sales for a Chilean supermarket. They initially forecast the product sales with a 

seasonal ARIMA model and then predict the residual of the seasonal ARIMA model using a 

neural network model with the price and promotional information of the focal product. The 

hybrid model has better forecasting performance in terms of the Mean Absolute Percentage 

Error (MAPE) compared to using the SARIMA model and the neural network model 

separately. The evaluation of the models is also based on only one single SKU (i.e. vegetable 

oil, 1L). Ali et al. (2009) evaluated the performance of various machine learning algorithms 

in forecasting retailer sales at the SKU level. The models include the support vector 

regression (SVR) and the regression tree methods with different priori settings. Their models 

incorporate the statistics of historical information (i.e. average, sum, trend, standard deviation, 

etc.) of unit sales and price for the past 4 to 12 weeks, as well as promotion stocks. The 

forecasting performances of these models are compared in terms of the MAE for non-

perishable food products. The SVR model has poor forecasting results. The regression tree 

method, which has the best forecasting performance overall, outperforms the base-times-lift 

approach when the focal product is being promoted, but gets outperformed when the focal 

product in not on promotion. The model in their study ignores the carryover effect of the 

price and promotion, and also overlooks the impact of competitive promotional activities on 

the sales of the focal product.  

 

All the studies mentioned above suffer from the problem of: a limited evaluation exercise, too 

few products, inappropriate errors measures, the failure to use a rolling origin, and a fixed 

lead time design (Tashman, 2000). As a consequence we remain unsure about both the 

appropriate econometric specification, and, the relative accuracy of alternative models. These 

earlier studies by neglecting the dynamics of the market and competitive effects leave 

unresolved various methodological questions which we now discuss. 

 

3. The high-dimensionality problem 

 

Previous studies have used competitive information to forecast product sales at the brand 

level (e.g. Curry et al., 1995; Divakar et al., 2005; Foekens et al., 1994). The competitive 

information typically includes the price and promotion of the main competitive brands. 

However, it is not straightforward to identify the competitive information at the UPC level. 

Today’s grocery retailers sell tens of thousands of products purchased from a large number of 
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manufacturers and distributors. A typical product category in the FMCG industry such as Soft 

Drinks may contain hundreds of items of different flavours, package sizes, and brands. These 

products are all competitors with each other because they satisfy similar customer needs and 

wants (Kotler, 1997). Thus when we incorporate competitive information, we face a high-

dimensionality problem (Martin and Kolassa, 2009). That is, there are a large number of 

competitive explanatory variables for possible inclusion in a promotional forecasting model. 

Time series models can easily get over-fitted and in an extreme case cannot even be 

estimated because of more explanatory variables than observations. The consequences are 

poor forecasts. 

 

4. Methodology 

 

In this study, we incorporate competitive information to forecast retailer product sales at the 

UPC level. To address the associated high-dimensionality problem, we propose a forecasting 

method that consists of two stages. At the first stage of the method, we refine the competitive 

information we want to incorporate in the forecasting model. Specifically, we identify the 

most relevant competitive explanatory variables using variable selection methods (Castle et 

al., 2008).  

 

The most popular variable selection method is probably the stepwise selection. The method 

starts with a null model and adds explanatory variables, step-by-step. At each step, the 

variable with the most significant contribution to the fit of the model is considered for 

addition while those variables in the model are examined to identify the one with the least 

significant contribution which is then considered for removal. In each case a threshold is 

established to determine whether or not the action takes place. The process is complete when 

no additional actions meet the thresholds.  

 

The stepwise selection method has been heavily criticized for being more likely to retain 

irrelevant explanatory variables (Flom and Cassell, 2007; Harrell, 2001). Friedman et al. 

(2001) proposed the Least Absolute Shrinkage and Selection Operator (LASSO) selection 

procedure. The explanatory variables and the dependent variables are initially standardized to 

have zero mean values and unit standard deviations. The procedure then estimates a 

regression model including all the potential explanatory variables but with a constraint for the 

sum of the absolute values of all the parameter coefficients. That is, 
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where 

   is the vector of observations on the dependent variable 

  is the matrix of the explanatory variables 

u is the identically distributed random error 

  is the vector of unknown parameters 

N is the number of parameters 

   is the shrinkage factor which equals to the sum of all the parameter coefficients. 

 

With the constraint, some of the parameter coefficients will tend to be zero, which means that 

their corresponding explanatory variables will be removed from the regression model. In the 

selection procedure, the shrinkage factor is determined by an information criterion such as the 

Akaike Information Criterion (AIC). 

 

Flom and Cassell (2007) compared the performance of LASSO with stepwise selection based 

using simulation. Their results suggests that stepwise selection tends to miss the relevant 

explanatory variable when sample size is small and also retain irrelevant explanatory 

variables, while LASSO has better performance. However, as stated in Efron et al. (2004) 

variable selection methods may not be able to find a simple model with the most important 

variables simply because they do not utilize any domain knowledge.  

 

Variable selection methods identify the most relevant competitive explanatory variables and 

the performance of the resulting forecasting model can relies exclusively on these variables. 

Alternatively, we can pool information across all the competitive explanatory variables and 

condense them into a small set of estimated factors at an acceptable cost of information loss 

(Stock and Watson, 2002a, 2002b). Many studies in the macroeconomics literature used 

factor analysis to summarize variations among a large set of variables (e.g. Engle and Watson, 

1981; Forni and Reichlin, 1996). In particular, Stock and Watson (2002b) constructed a 

number of factors (named as diffusion indexes) with factor analysis to measure the common 

movement in a set of macroeconomic variables, and then used them to forecast real economic 

activities such as price inflation. Their “dynamic factor” model has the following form: 
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where  

   is an N-dimensional multiple time series of explanatory variables 

   is the matrix with   common factors of latent diffusion indexes 

   is the t value of the dependent variable  

   is a vector of the lagged dependent variable 

   and    are the vectors of the parameter coefficients 

   and    are the errors which are assumed to be     and uncorrelated with each other.  

 

In the model, the original   competitive explanatory variables,   , have been condensed into 

  diffusion indexes at a cost of information loss (i.e.   ). Stock and Watson (2002b) found 

that much of the variation in a large number (>100) of macroeconomic time series (i.e. 39% 

of the total variation) can be accounted for by only six diffusion indexes. Their proposed 

models with diffusion indexes outperform the benchmark autoregressive models and VAR 

models, and they found that the models with the best forecasting performance only contain 

one or two diffusion indexes.  

  

In this study, we implement both the variable selection method and the principal component 

analysis at the first stage of the forecasting method. For the variable selection method, we 

apply both the stepwise selection and the LASSO selection procedure, and we take the 

explanatory variables selected by the two methods in combination, which limits the 

possibilities of missing important explanatory variables but at a cost of efficiency. For the 

principal component analysis, we construct diffusion indexes based on competitive prices and 

competitive promotions separately, and we choose the most representative factors (e.g. those 

with eigenvalues substantially larger than others) while keeping the number of factors as 

small as possible, following the findings by Stock and Watson (2002b)
3
. 

  

At the second stage, we incorporate the refined competitive information into econometric 

forecasting models. In this study, we initially construct models with an Autoregressive 

Distributed Lag (ADL) structure and then simplify the models following a general-to-specific 

modelling strategy (Hendry, 1995). The general-to-specific modelling strategy starts with a 

general model assuming that this model properly describes the salient features of the data 

                                                           
3
   We choose to retain four diffusion indexes for competitive prices and four diffusion indexes for competitive 

promotions. For each product category, the percentages of explained variation in the competitive price data 

series range from 51% to 79%, and the percentages of explained variation in the competitive promotion data 

series range from 32% to 69%. 
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generating process. It then simplifies the general model by seeking out valid parsimonious 

restrictions. The ADL model has the advantage of taking into account the carryover effect of 

the price and the promotional variables, and with the general-to-specific modelling strategy it 

is immune to the spurious regression problem. In the literature, the general-to-specific ADL 

model has exhibited superior forecasting performance in other areas including manufacturer 

sales, tourism, and air passenger flows (see Albertson and Aylenb, 2003; Fildes et al., 2011; 

Song and Witt, 2003). The following example shows the general ADL model with the most 

relevant competitive explanatory variables identified by the stepwise selection and the 

LASSO selection procedure: 
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where  

          is the log sales of the focal product at week   

            is the log price of the focal product at week     

               is the promotional index of the focal product at week     

            is the log price of competitive product   at week     

               is the promotional index of competitive product   at week     

  is the number of competitive price variables selected by the variable selection methods 

  is the number of competitive promotional variables selected by the variable selection 

methods 

                 is the     four-week-dummy variable 

                   is the dummy variable for the     calendar event at week    . When 

   , the dummy variable represents the week of the calendar event, and the week before 

the event if    .   takes the values from 1 to 9 representing all the calendar events 
4
 

                                                           
4
 The calendar events include Halloween, Thanksgiving, Christmas, New Year’s Day, President’s Day, Easter, 

Memorial Day, 4th of July, and Labour Day. 
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                               are the parameters 

   is the error term and we assume              

  is the order of the lags
5
 

 

The general ADL model will ideally pass all the misspecification tests (e.g. the F-test, the 

Breusch-Godfrey test for autocorrelation, and tests for heteroskedasticity and normality).  

The model may be estimated by OLS with the usual interpretations of the statistics whether 

or not the data series are stationary, because sufficient lags were included to remove any 

autocorrelation (although with some potential loss of efficiency) (Song and Witt, 2003). A 

well-specified ADL model can then be simplified following the general-to-specific strategy. 

For example, we first estimate the general ADL model and remove the explanatory variable 

with the highest p-value for the parameter restriction test. We then estimate the reduced 

model and re-conduct all the misspecification tests. If the reduced model passes all these tests, 

we move on to remove the variable with the highest p-value in the new estimation, provided 

that the previous variable has already been removed, and so forth. Otherwise we will add the 

variable back and repeat the process by removing the variable with the second highest p-

value for the parameter restriction test. In the modelling process we remove the variables 

with incorrect signs. We also remove the explanatory variables which are not economically 

significant (i.e. with very small parameter coefficients) to achieve parsimony. The final 

simplified ADL model must pass all the misspecification tests which are passed by the 

general ADL model. The model is estimated by OLS with robust estimators in the presence 

of heteroscedasticity. The following example shows the general-to-specific ADL model with 

the diffusion indexes: 

                                                           
5
 In the preliminary analysis, L is initially set as two. If the general model does not pass the misspecification 

tests, more lags of the price, promotion, and sales variables are added to the general model. In our modelling, for 

most UPCs, the ADL models do not contain more than two lags of these variables. 
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where 

                            is the     diffusion index of competitive prices at week    . 

                                 is the     diffusion index of competitive promotion at 

week    .  

P and Q are the number of initially retained diffusion indexes, and       

 

5. The data 

 

In this study we use the weekly data from Dominick’s Finer Foods, a large U.S. retail chain 

in the Chicago area. The data is publicly available from the University of Chicago website
6
. 

An advantage of using this dataset is that a large number of studies have been conducted 

based on this dataset and many of them focus on identifying and measuring the effectiveness 

of the marketing mix activities (e.g. Fok et al., 2006; Kamakura and Kang, 2007; Song and 

Chintagunta, 2006). However, perhaps surprisingly given the importance of forecasting at the 

UPC level, none of the studies using this dataset focuses on evaluating the performance of 

forecasting models. The dataset contains product information at the UPC level including unit 

sales, price, and promotions for 399 weeks. There are three different types of promotions: 

“Simple price reduction”, “Bonus buy”, and “Coupons”. “Bonus buy” is the dominant type, 

which corresponds to over 75% of the all the promotional events; 24.5% of promotions are 

“Simple price reduction”; only less than 0.5% of promotions are “Coupons”. In this study, we 

use one single variable to represent the presence of all the promotional activities. We 

aggregate the data across 83 stores using constant weights based on the percentage of All 

Commodity Volume (ACV) of each store (see Hoch et al., 1995; Pauwels and Srinivasan, 

                                                           
6
 The data are available at: http://research.chicagogsb.edu/marketing/databases/dominicks/. 

http://research.chicagogsb.edu/marketing/databases/dominicks/
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2004)
7
. In this study, we conduct our evaluation based on 122 products from 6 diverse 

product categories including Bottled Juice, Soft Drinks, Bath Soap, Front-End-Candies, 

Frozen Juice, and Bathroom Tissue
8
.  

 

Table 1 Characteristics of the data series for the products in each category 

 

Product category Selected 

UPCs 

Promotional 

intensity 

Promotional 

index 

Lift 

effect  

Std/Mean 

ratio of 

sales  

Std/Mean 

ratio of 

price 

Bottled juice 34 0.21 (0.09) 0.78 (0.05) 169% 0.76 0.53 

Soft drinks 20 0.27 (0.09) 0.78 (0.12) 812% 1.63 0.86 

Bath Soap 20 0.13 (0.04) 0.55 (0.09) 113% 0.44 0.62 

Front-End-Candies 15 0.14 (0.13) 0.84 (0.05) 57% 0.40 0.23 

Frozen Juices 15 0.22 (0.11) 0.80 (0.10) 187% 0.88 0.75 

Bathroom Tissues 18 0.30 (0.09) 0.82 (0.05) 335% 1.26 1.49 

 

 

In Table 1 we summarize the characteristics of the data series for the 122 products during a 

time period of 200 weeks. First, it summarizes the promotional intensity. For example, we 

choose 34 products from the Bottled Juice category. On average, these 34 products are being 

sold on promotion for 42 weeks during the 200 weeks (i.e. an intensity of 0.21, with a 

standard deviation of 0.09). Second, it summarizes the average promotional index value. For 

example, the average promotional index value for the Bottled Juice category is as high as 

0.78 (with a standard deviation of 0.05), which indicates that the products in this category 

tend to be promoted simultaneously across all the selected stores. Third, Table 1 summarizes 

the lift effect of the promotions. Take the Bottle Juice category as an example, the 

promotions in this category increase the sales of focal product by 169% on average compared 

to the baseline predicted sales assuming there were no promotion. Finally, Table 1 exhibits 

the average ratio of standard deviation versus mean for both sales and price of the products in 

                                                           
7
 Our study is based on 83 stores because some other stores have limited historical data; All Commodity 

Volume (ACV) is the total annual revenue (i.e. the U.S Dollar, in this context) of the store. Notice that the ACV 

is calculated based on the products of the entire store, rather than the products of a specific category. For 

example, suppose a product is being sold on 3 dollars with promotion in a store and the ACV of  the store is 100 

million dollars, and it is being sold on 2 dollars without promotion in another store with an ACV of 10 million 

dollars. The aggregated price would be 3*(100/110)+ 2*(10/110)= 2.91 dollar, and the promotional index would 

be 1*(100/110)+ 0*(10/110)=0.91. In our study, as pointed out by Hoch et al. (1995), the retailer tends to adopt 

a uniform pricing strategy where they increase or decrease the price for all the stores at the same time. 
8
 The products are chosen with comparably high sales volumes.  
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each category. Among these product categories, Bath Soap and Front-end-Candies have the 

least variations for their product sales and price, and they also have the least intensive 

promotions. In contrast, Soft Drinks and Bathroom Tissues are heavily promoted and exhibit 

highly variations for the sales and price of their products. Therefore, our study covers data of 

a wide range of sales and promotional conditions. 

 

Figure 1 is an example for one product in the Bottled Juice category (i.e. Tree Top Apple 

Juice 48Oz). The figure exhibits its unit sales, price (in U.S dollar), calendar events, and 

promotional periods which are highlighted in darker bars. The length of the darker bars 

indicates the value of the promotional index which is between 0 and 1. The price and 

promotional index are both aggregated across multiple stores based on the percentage of 

ACV of each store. We applied the Augmented Dickey–Fuller test to investigate the 

stationarity of these data series for all the data series of the 122 products, and we find that 

most data series are stationary
9
. 

 

Figure 1 The data series for one product in the Bottled Juice category  

 

6. The benchmark models  

 

                                                           
9
 We find 110 out of 122 data series for unit sales, 106 out of 122 data series for price, and all the data series for 

promotional indexes as stationary. 
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In this study we consider two basic benchmark models: 1) the robust simple exponential 

smoothing (SES) model which focuses exclusively on the pattern of previous product sales; 2) 

the industrial base-times-lift approach which first produces baseline forecasts and then makes 

adjustments for any incoming promotional event. In practice, the adjustment of the base-

times-lift approach is either determined by estimates from historical data or managers’ 

judgement. In this study, we approximate the former following Ali et al. (2009): 

 

                {
                  

                        
 

                                    

 

where    is the baseline forecast for week   generated by a simple exponential smoothing 

model.      is the actual sales value in the previous week when the focal product was not on 

promotion.   is the parameter which is estimated by minimizing the mean squared error in 

the estimation period. The adjustment is calculated as the increased sales from the most 

recent promotion of the focal product. In this study, we use aggregated data across multiple 

stores, thus the effects of promotions are represented by promotional indexes instead of 

promotional dummies. For example, if the most recent promotion has a promotional index 

value of 0.6 and we consider the “lift” effect as L. Then the adjustment for the forthcoming 

promotion with an index value of 0.9 will be (0.9/0.6)* L = 1.5L.  

 

In this study we propose two forecasting methods which both capture the effect of 

competitive information but in distinct ways. The first method is the general-to-specific ADL 

model with the most relevant competitive explanatory variables identified by the variable 

selection methods (i.e. the ADL model). The second is the general-to-specific ADL model 

with the diffusion indexes constructed using factor analysis (i.e. the ADL-DI model). We 

include the competitive price and promotion variables for most products of each product 

category
10

. To understand the value of the competitive information, we also include the 

general-to-specific ADL model which is constructed exclusively with the price and 

promotional information of the focal product (i.e. the ADL-own model). 

 

7. Experimental design 

                                                           
10

 We implement the variable selection methods and the principal component analysis based on the price and 

promotional variables of a total number of 307 competitive products including the focal 122 products. We try to 

include as many products as possible provided their data are available. 
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All the studies we have identified which forecast product sales were conducted with a single 

fixed forecasting origins (e.g.Ali et al., 2009; Cooper et al., 1999; Divakar et al., 2005). 

However, evaluation results based on single forecast origins can be unreliable when the 

forecasting results are sensitive to both randomness and possible systematic business cycle 

effects (Fildes, 1992). In this study, we evaluate the performance of our models with 70 

rolling forecast origins, which partially controls for the effect of any specific effects arising 

from a particular origin. Forecast horizon should also be fixed in any forecast comparisons. 

We first estimate the models with a moving window of 120 weeks and forecast one to   

weeks ahead. The forecast horizons were chosen to take into account typical ordering and 

planning periods, and we set   to be 1, 4, and 12. We then move the estimation window 

forward week by week throughout the remaining sample period and we re-estimate the 

models based on the updated data sets. Finally we have 70 sets of one to   weeks ahead 

forecast. We generate forecasts using the actual value of the explanatory variables and the 

forecasted values of the lagged dependent variables when the lead times are greater than one. 

The promotional variables are usually known to the retailer as they form part of an agreed 

promotional plan with suppliers. We specify the ADL models with the data from week 1 to 

week 200, which represents the model that would ideally be selected based on a 

foreknowledge of the data (Fildes et al., 2011). Alternatively, the models can be re-specified 

for each rolling event based on each the moving estimation window. 

 

We evaluate the forecasting performance of the various models using five error measures: the 

MAE, the Mean Absolute Scaled Error (MASE), the MAPE, the symmetric Mean Absolute 

Percentage Error (sMAPE), and the Average Relative Mean Absolute Error (AvgRelMAE). 

The MAE has been widely used in practice but has been criticized for its limitation of being 

scale dependent. For example, suppose that a model has good forecasting performance for 

one product category with large sales volumes but poor forecasting performance for another 

product category with smaller sales volumes. If we compare the results across the two 

product categories, the results for the product category with large sales volumes would 

dominate the overall results, and we would be misguided to believe that the model has 

universal good forecasting performance (Chatfield, 1988). In this study, the MAE for data 

series   calculated with forecast horizon   for the     rolling event is: 

         
 

 
∑|        ̂     |
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where        is the     actual value in the forecast period for data series   based on the     

rolling event, and  ̂      is the     forecast value for data series   based on the     rolling 

event
11

.  

 

The MASE was proposed by Hyndman and Koehler (2006). It can be considered as a 

“weighted” arithmetic mean of the MAE based on the variations of the sales data in the 

estimation period. The MASE calculated across   data series with forecast horizon   for the 

    rolling event is: 
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where in the equation of       , the numerator,         , is the MAE for data series   

calculated with forecast horizon   for the     rolling event. The denominator is the sum of 

one-step-ahead errors by a no change naïve model in the estimation period.        is the 

   actual value of data series   in the estimation period for the     rolling event, and    is the 

total number of observations in the estimation period. The MASE has good properties such as 

being robust to zero actual values and scale independent, but it puts more weights to the data 

series which are comparatively stable (e.g. given the same MAE,        will be extremely 

large if the no change naïve model generates very small errors), which makes it vulnerable to 

outliers. 

     

The MAPE is the error measure most widely used in practice (Fildes and Goodwin, 2007). It 

penalizes the forecasts above actual values more heavily than the forecasts below actual 

values (Armstrong and Collopy, 1992).  The sMAPE was proposed to overcome this 

disadvantage (Makridakis, 1993). The two error measures calculated for data series s with 

forecast horizon   for the     rolling event are shown as follows: 

 

                                                           
11

 Note that, in this study, although our econometric models are based on log sales, we calculate all the error 

measures after we transform them back to original levels. 



19 
 

          
 

 
∑ |

        ̂     

      
|

 

   

 

 

           
 

 
∑ |

        ̂     

         ̂        
|

 

   

 

 

However, both percentage error measures including the MAPE and the sMAPE can be 

distorting when the actual values and the forecast values are relatively small compared to the 

forecast error, in which case the resulting percentage errors become extremely large 

(Hyndman and Koehler, 2006). The sales at the UPC level exhibit high degree of variations 

due to seasonal effects, changing stages of product life cycle, and particularly promotional 

activities. Under such a circumstance, it is very likely to have large forecast errors associated 

with relatively low product sales, which makes the percentage based error measures less 

advisable in our context (Davydenko and Fildes, 2013). 

  

The four error measures are all approximations of the unknown loss function of the retailer, 

and they penalize the forecast errors from different perspectives. To make a fair comparison, 

we assess the overall forecasting performance of the candidate models by calculating the 

mean value of all the four error measures across      rolling events and       data 

series considering different forecasting horizons  :  
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where       ,        ,         , and         are the error measures calculated 

across   data series and   rolling events based on forecast horizon   (i.e.      ,     , 

and  =1, 4 and 12). We can test the statistical significance for the difference between the 
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forecasting results of the various models using the Wilcoxon signed rank (SR) test. The 

Wilcoxon SR test can be considered as a non-parametric version of a paired sample t-test but 

does not assume the errors follow any specific distribution.  

 

Considering the limitations of the four error measures, Davydenko and Fildes (2013) 

recommended the AvgRelMAE, which is a geometric mean of the ratio of the MAE between 

the candidate model and the benchmark model. In this study, we take an average of the 

AvgRelMAE across all the   rolling events (i.e.     ) and       data series with 

respect to forecast horizon  : 
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where         
  is the MAE of the candidate model for data series   calculated with forecast 

horizon   for the     rolling event and     
  is the MAE of the benchmark model for data 

series   calculated with forecast horizon   for the     rolling event.              is the 

AvgRelMAE calculated across   data series and   rolling events with respect to forecast 

horizon   (i.e.      ,     , and  =1, 4 and 12). The AvgRelMAE has the advantages 

of being scale independent and robust to outliers, also with more straightforward 

interpretation: a value smaller than one indicates an improvement by the candidate model.  

 

8. Results 

 

We investigate the models’ relative forecasting performance under conditions of two 

dimensions which may influence the outcome: 1) different forecast horizons; 2) whether the 

focal product is being promoted. Earlier research by Ali et al. (2009) compares the 

forecasting performance of different methods for the promoted forecast periods and non-

promoted forecast periods separately. Their regression tree model beat the base-times-lift 

benchmark model when the focal product is being promoted but is outperformed by the 

benchmark model when the focal product is not on promotion. Their explanation is that the 

sales of the focal product are relatively stable when the focal product is not on promotion, 

and this stability would benefit simple models such as the exponential smoothing method. 

This explanation neglects the fact that, even during the periods when the focal product is not 
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being promoted, its sales could also be driven by promotions of other competitive products. 

In this study, we therefore divided the forecast period as promoted period and non-promoted 

period. 

 

Table 2   The models’ forecasting accuracy and rankings: averaged over forecast horizons 

from one to twelve weeks (122 UPCs) 

 

Model MAE Rank MASE Rank SMAPE Rank MAPE Rank 

Whole forecast period 

SES 1984 5 0.93 5 42.30% 5 66.40% 5 

Base-times-lift 1498 4 0.81 4 32.70% 4 32.00% 3 

ADL 969 1 0.64 2 23.80% 2 28.40% 2 

ADL- own 1079 3 0.67 3 25.60% 3 32.50% 3 

ADL-DI 992 2 0.63 1 23.00% 1 27.30% 1 

Promoted forecast period 

SES 2949 4 1.78 4 49.10% 4 47.50% 5 

Base-times-lift 3149 5 1.81 5 55.10% 5 41.70% 4 

ADL 1875 1 1.19 2 28.10% 2 31.80% 2 

ADL- own 2031 3 1.2 2 29.10% 2 34.90% 3 

ADL-DI 1969 2 1.16 1 27.30% 1 31.50% 1 

Non-promoted forecast period 

SES 1423 5 0.72 5 42.30% 5 81.30% 5 

Base-times-lift 390 2 0.5 3 22.30% 2 27.80% 2 

ADL 369 2 0.47 2 21.70% 2 26.20% 2 

ADL- own 463 4 0.49 3 24.10% 4 31.10% 4 

ADL-DI 330 1 0.45 1 20.60% 1 24.30% 1 

 

Table 2 exhibits the forecasting accuracy of the various models averaged over horizons from 

one to twelve weeks based on the various absolute error measures as well as the rank of each 

model. Note that some models will have the same rank if their performances are not 

significantly different from each other according to the Wilcoxon sign rank test
12

. For the 

whole forecast period, the base-times-lift approach has better performance compared to the 

SES method. These two benchmark models are both significantly outperformed by the ADL-

                                                           
12

 We adopt a 5% significance level. 
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own model for all the error measures, which suggests that the ADL model captures the effects 

of the price and the promotional activities more effectively than the base-times-lift approach. 

The ADL model and the ADL-DI model both incorporate the competitive information and 

they significantly outperform the ADL-own model for all the error measures. 

 

Table 2 also shows the forecasting performance of the various models for the promoted 

forecast period. The SES method and the base-times-lift approach are significantly 

outperformed by the ADL-own model, which is consistent with the result for the whole 

forecast period. However, the ADL model no longer outperforms the ADL-own model 

significantly when ranked by the MASE and the sMAPE. There are two possible reasons. 

First, the impact of the promotional activities of the focal product is substantially larger than 

the impact of the competitive promotion activities (Hoch et al., 1995). Thus the impact of the 

competitive promotion activities may become submerged in the impact of the promotional 

activities of the focal product. Second, retailers benefit from the sales of the whole product 

category rather than individual brands or UPCs, and they tend to avoid simultaneously 

promoting the product and its main competitors, which will not necessarily increase store 

sales (e.g. a large proportion of the sales increase come from brand switching) but definitely 

lower the profit margin (Gupta, 1988; Van Heerde et al., 2003). As a result, when the focal 

product is being promoted, the competitive information missed by the ADL-own model tends 

to become less valuable and the ADL model will tend to generate similar forecasts with the 

ADL-own model. However, the ADL-DI model significantly outperforms the ADL-own 

model for all error measures even for the promoted period. One explanation is that the 

diffusion indexes used in the ADL-DI model incorporates competitive information not only 

from the most relevant competitive explanatory variables but also by pooling across all the 

competitive explanatory variables.  

 

In Table 2, for the non-promoted forecast period, again the SES method has the poorest 

forecasting result, but the base-times-lift approach has very good forecasting performance- it 

significantly outperforms the ADL-own model for all the error measures expect for the 

MASE. This is consistent with the findings by Ali et al. (2009) that when the focal product is 

not on promotion, the base-times-lift approach can be hard to beat. Essentially it uses only the 

data from the non-promoted periods to calculate the smoothing forecast, removing the 

promotional peaks.  The ADL model outperforms the base-times-lift approach for the MASE 
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but has comparable performance for all the other error measures. However, the ADL-DI 

model still significantly outperforms the base-times-lift approach for all the error measures. 

 

Table 3   The models’ forecasting accuracy and rankings: with one week ahead forecast 

horizon (122 UPCs) 

. 

Model MAE Rank MASE Rank SMAPE Rank MAPE Rank 

Whole forecast period 

SES 1980 5 0.79 5 39.10% 5 60.70% 5 

Base-times-lift 1456 4 0.69 4 29.00% 4 26.70% 4 

ADL 928 1 0.53 2 20.60% 2 23.30% 2 

ADL- own 991 3 0.53 2 21.00% 3 24.40% 3 

ADL-DI 941 2 0.52 1 19.90% 1 22.60% 1 

Promoted forecast period 

SES 3036 4 1.56 4 45.90% 4 44.90% 5 

Base-times-lift 3159 5 1.67 5 52.40% 5 39.10% 4 

ADL 1860 1 1.00 1 25.50% 2 28.10% 2 

ADL- own 1967 3 0.99 1 25.10% 2 29.00% 2 

ADL-DI 1921 2 0.98 1 24.30% 1 27.80% 1 

Non-promoted forecast period 

SES 1363 5 0.59 5 38.60% 5 73.00% 5 

Base-times-lift 345 3 0.39 4 18.50% 2 21.50% 2 

ADL 320 2 0.36 2 18.10% 2 20.50% 2 

ADL- own 361 3 0.36 2 19.00% 2 22.00% 2 

ADL-DI 293 1 0.35 1 17.40% 1 19.20% 1 

 

  

 

 

Table 4   The models’ forecasting accuracy and rankings: averaged over forecast horizons 

from one to four weeks (122 UPCs) 

. 

Model MAE Rank MASE Rank SMAPE Rank MAPE Rank 

Whole forecast period 
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SES 1963 5 0.84 5 40.00% 5 61.80% 5 

Base-times-lift 1474 4 0.72 4 30.30% 4 28.50% 3 

ADL 955 1 0.58 2 22.30% 2 25.70% 2 

ADL- own 1033 3 0.58 2 23.10% 3 27.70% 3 

ADL-DI 969 2 0.57 1 21.30% 1 24.60% 1 

Promoted forecast period 

SES 2984 4 1.67 4 47.20% 4 46.30% 5 

Base-times-lift 3150 5 1.71 5 53.60% 5 40.50% 4 

ADL 1873 1 1.12 2 27.10% 2 30.30% 2 

ADL- own 1986 3 1.09 2 27.20% 2 31.90% 2 

ADL-DI 1948 2 1.07 1 25.90% 1 29.80% 1 

Non-promoted forecast period 

SES 1364 5 0.64 5 39.80% 5 74.70% 5 

Base-times-lift 369 2 0.42 2 19.80% 2 23.50% 2 

ADL 349 2 0.41 2 19.90% 2 23.10% 2 

ADL- own 414 4 0.42 2 21.40% 4 25.60% 4 

ADL-DI 314 1 0.39 1 18.80% 1 21.30% 1 

 

 

Table 3 and Table 4 show the forecasting performance of the various models for different 

forecast horizons. The results are in consistent with the results we observe for the one to 

twelve-weeks-ahead forecast horizon.  

 

We also calculate the relative error measures proposed by Davydenko and Fildes (2013). 

Table 5 shows the AvgRelMAE of various candidate models for different forecast horizons. 

When we compare the candidate models to the benchmark base-times-lift approach, the 

values are all smaller than 1, which indicates that the ADL model, the ADL-DI model, and 

the ADL-own model all outperform the benchmark base-times-lift model. In addition, the 

improvements by these models become more substantial as the forecast horizon increases. 

For example, the AvgRelMAE for the ADL-DI model decrease from 0.861 to 0.746 as the 

forecast horizon increase from one week to one-to-twelve weeks. Table 5 also calculates the 

AvgRelMAE of the candidate models compared to the ADL-own model. The values for the 

ADL-DI model are all smaller than 1, which indicates that the ADL-DI model outperforms 

the ADL-own model for all forecast horizons. Again we see the improvements become more 
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substantial as the forecast horizon increases (from 0.953 to 0.931). The values for the ADL 

model are all smaller than 1 except for one week forecast horizon (i.e. the value is 1.005), 

which indicates the ADL model is outperformed by the ADL-own model for the one-week-

ahead forecast horizon, although only slightly. However, as the forecast horizon increases, 

the value of AvgRelMAE for the ADL model decreases below 1 (e.g. 0.982 and 0.957), 

which suggests that it has superior forecasting performance than the ADL-own model which 

just relies on the price and promotional information of the focal product. 

 

Table 5   The AvgRelMAE of the candidate models for different forecast horizons 

 

AvgRelMAE Benchmark: base-times-lift Benchmark: ADL-own 

Horizon ADL ADL-DI ADL-own ADL ADL-DI 

1 0.911 0.861 0.917 1.005 0.953 

1-4 0.825 0.793 0.840 0.982 0.946 

1-12 0.767 0.746 0.802 0.957 0.931 

 

 

9. Conclusions and future research 

 

Today one of the main concerns of grocery retailers is to reduce stock-outs while controlling 

the safety stock level. Stock-outs directly lead to profit loss and also dissatisfied customers. 

One of the keys to overcome this tension relies on more accurate forecasts. 

 

In practice, many retailers use the base-times-lift approach to forecast product sales at the 

UPC level. The approach is based on a simple method and takes into account the effect of 

promotions in an ad hoc way. In the literature, studies have proposed sophisticated data 

mining models and machine learning algorithms, trying to capture the effect of promotions 

more effectively (Ali et al., 2009; Cooper et al., 1999). However, these methods have several 

limitations. For example, they ignore the carryover effect of promotions and overlook the 

effect of competitive information. These models are also too complex and difficult to 

interpret. They rely on expertise that may well not be available and the company instead 

substitutes judgment for more formal modelling efforts (Fildes and Goodwin, 2007). 
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In this paper, we investigate the value of the promotional information including competitive 

price and competitive promotional variables in forecasting retailer product sales at the UPC 

level. We propose a forecasting method of two stages. At the first stage, we deal with the 

high-dimensionality problem associated with the retail data at the UPC level using two 

distinct methodologies. First we identify the most relevant competitive explanatory variables 

with two variable selection methods in combination (i.e. the stepwise selection and the 

LASSO procedure). Alternatively we pool information across all the competitive variables 

and condense them into a handful number of diffusion indexes at the cost of some 

information loss, based on factor analysis. At the second stage, we incorporate the identified 

most relevant competitive explanatory variables and the constructed diffusion indexes into 

the Autoregressive Distributed Lag (ADL) model following a general-to-specific modelling 

strategy. The general ADL model captures the carryover effect of price and promotions, and 

the general-to-specific modelling strategy ensures the parsimony and data congruence of the 

model. The model also benefits from good interpretability. For example, managers can make 

inference about how the sales of the focal product are driven by marketing activities of the 

focal product and other competitive products. 

 

Both the ADL model and the ADL-DI we propose in this study significantly outperform the 

two basic benchmark models and the ADL-own model which is construct exclusively with 

the price and promotion information of the focal product, and the improvements in 

forecasting accuracy become more substantial as the forecast horizon increases, which proves 

the value of the competitive information in forecasting retailer product sales at the UPC level. 

We have also investigated the forecasting performance of the models considering whether or 

not the focal product is being promoted. For the promoted forecast period, the ADL-DI model 

significantly outperforms the benchmark models and the ADL-own model, while the ADL 

model significantly outperforms the benchmark models but has comparable forecasting 

performance with ADL-own model. For the non-promoted period, although simple methods 

are hard to beat when product sales are relatively stable, the ADL-DI model significantly 

outperforms the benchmark models and the ADL-own model for all the error measures and 

for all the forecast horizons. The ADL model also significantly outperforms the ADL-own 

model and the SES model, although has comparable forecasting performance with the base-

times-lift approach. 

 



27 
 

There remains the potential to improve the forecasting model. One way is to identify the 

competitive products more effectively. For example, we have included most products within 

each product category when implementing the variable selection methods and the factor 

analysis, and the uncertainty could potentially be reduced if a “short list” of the main 

competitors for each item can be constructed based on the market knowledge of category 

managers (Dekimpe and Hanssens, 2000). Also in this study we do not take into account the 

effect of advertising. Thus one possible way to improve the forecasting accuracy is to 

incorporate advertising information, although previous studies found the effect of advertising 

temporary and fragile (Chandy et al., 2001). Datasets such as this may also contain evidence 

on the different types of promotions such as simple price reduction, bonus buy, and coupon, 

and it may be possible to distinguish between them. However, this would substantially 

increase the number of competitive explanatory variables, which adds more uncertainty to the 

selection of competitive explanatory variables and the construction of diffusion indexes. An 

additional possible way to improve the model is to further incorporate information from other 

substitutive and complementary product categories (Bandyopadhyay, 2009; Kamakura and 

Kang, 2007; Song and Chintagunta, 2006). Again the effect would be to increase the size of 

the variable set dramatically and demand even more of the practitioner.  

 

Two other modelling issues might merit further work, an examination of the exogeneity of 

the promotional variables (though this would be unlikely to lead to forecast improvements) 

and the use of Bayesian estimation methods, an approach which has the merit of permitting a 

more disaggregate approach. This study was carried out using weekly aggregate data (across 

stores). While such forecasts are needed for ordering and distribution decision making, store-

level forecasts on a daily basis are also needed. They can of course be derived from simple 

proportionate disaggregation processes, an approach often used in practice, but it is an open 

research question as to whether daily explicit model-based disaggregate forecasts are to be 

preferred. 

 

In this study, we constructed the general-to-specific ADL model manually. The modelling 

process is subjective and relies overmuch on our tacit knowledge of modelling specification. 

Alternatively, Hendry and Krolzig (2001) proposed the PcGive software which automatically 

constructs the model. The software starts with a general model and simplifies the model 

exclusively based on diagnostic tests. However, the software does not incorporate marketing 

theory and Fildes et al. (2011) found that the ADL model built manually by the model builder 
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outperformed the one constructed by the PcGive software. In preliminary work here the 

automatic approach also did not prove effective. 

 

The industry standard benchmark method proved of limited value for capturing promotional 

effects. This paper shows that for practical purposes the company forecaster could achieve 

superior forecasting performance by incorporating competitive information, either through 

variable selection methods or factor analysis, with the ADL model built manually following 

the general-to-specific strategy. Although the development of an automatic ADL model 

proved costly in terms of forecasting accuracy, and we see this as difficult to implement for 

most organizations without the support of expert staff (Montgomery, 2005), the benefits of 

embracing a more sophisticated model building approach have proved substantial (e.g. the 

ADL-DI model has reduced the sMAPE by around 30% compared to the bases-times-lift 

model for the one-to-twelve weeks forecast horizon) and if implemented should lead to 

substantial savings in the distribution chain. 
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