
Twenty-first century Corpus Workbench:
Updating a query architecture for the new millennium

Stefan Evert* and Andrew Hardie†
* University of Osnabrück

† Lancaster University

Abstract

Corpus Workbench (CWB) is a widely-used architecture for corpus analysis, originally designed at the IMS,
University of Stuttgart (Christ 1994). It consists of a set of tools for indexing, managing and querying very large
corpora with multiple layers of word-level annotation. CWB’s central component is the Corpus Query Processor
(CQP), an extremely powerful and efficient concordance system implementing a flexible two-level search
language that allows complex query patterns to be specified both at the level of an individual word or
annotation, and at the level of a fully- or partially-specified pattern of tokens. CWB and CQP are commonly
used as the back-end for web-based corpus interfaces, for example, in the popular BNCweb interface to the
British National Corpus (Hoffmann et al. 2008). CWB has influenced other tools, such as the Manatee software
used in SketchEngine, which implements the same query language (Kilgarriff et al. 2004).

This paper details recent work to update CWB for the new century. Perhaps the most significant development is
that CWB version 3 is now an open source project, licensed under the GNU General Public Licence. This
change has substantially enlarged the community of developers and users and has enabled us to leverage
existing open-source libraries in extending CWB’s capabilities. As a result, several key improvements were
made to the CWB core: (i) support for multiple character sets, most especially Unicode (in the form of UTF-8),
allowing all the world’s writing systems to be utilised within a CWB-indexed corpus; (ii) support for powerful
Perl-style regular expressions in CQP queries, based on the open-source PCRE library; (iii) support for a wider
range of OS platforms including Mac OS X, Linux, and Windows; and (iv) support for larger corpus sizes of up
to 2 billion words on 64-bit platforms.

Outside the CWB core, a key concern is the user-friendliness of the interface. CQP itself can be daunting for
beginners. However, it is common for access to CQP queries to be provided via a web-interface, supported in
CWB version 3 by several Perl modules that give easy access to different facets of CWB/CQP functionality.
The CQPweb front-end (Hardie forthcoming) has now been adopted as an integral component of CWB.
CQPweb provides analysis options beyond concordancing (such as collocations, frequency lists, and keywords)
by using a MySQL database alongside CQP. Available in both the Perl interface and CQPweb is the Common
Elementary Query Language (CEQL), a simple-syntax set of search patterns and wildcards which puts much of
the power of CQP in a form accessible to beginning students and non-corpus-linguists.

The paper concludes with a roadmap for future development of the CWB (version 4 and above), with a focus on
even larger corpora, full support for XML and dependency annotation, new types of query languages, and
improved efficiency of complex CQP queries. All interested users are invited to help us shape the future of
CWB by discussing requirements and contributing to the implementation of these features.

1. Introduction

This paper outlines recent development work on the Corpus Workbench or CWB software,
aimed particularly at bringing a tool whose origins lie in the early 1990s up to date with the
requirements that contemporary users have for a twenty-first century corpus analysis system.
CWB, of which the present authors are the current lead developers, is a widely-used, and

 2

extremely powerful and flexible, architecture for index-based querying of large and/or
linguistically annotated corpora.

The paper is organised as follows. In section 2, we provide some background on CWB,
exploring in particular three key features: the overall structure of the system; the model of
corpus data, organised into a series of corpus attributes, on which it is based; and the query
syntax associated with the central Corpus Query Processor (CQP) component. We will also
briefly review a number of web-based corpus analysis systems which use CWB/CQP as their
back-end – these being the route through which most corpus analysts have made use of CWB,
given that the core system itself is an expert-level tool not targeted at beginners.
Subsequently, in section 3, we discuss five different areas in which recent versions of CWB
(beginning with version 3.0) have changed to reflect updated design requirements. Each of
these five areas – the development process, CWB’s support for multiple operating systems
including Windows, the shift to a 64-bit environment, CWB’s support for multiple character
encodings including Unicode, and advances towards more user-friendly interfaces –
represents a point where CWB’s design was perfectly reasonable by the standards of the early
1990s, when the project to develop CWB began at the IMS Stuttgart, but is no longer
reasonable in the changed landscape of the 2000s and early 2010s. Finally, in section 4, we
discuss ways in which we anticipate the development of CWB will continue from this point
forward, adapting yet further to the demands placed on it by its user community.

2. Some background on CWB

2.1. What is CWB?

CWB, the IMS Open Corpus Workbench,1 is somewhat misleadingly named, as it is not in
any sense a comprehensive or general “workbench” for corpus linguistics. Instead, it is a
powerful and flexible system for indexing and searching corpus data. It is especially designed
for use with annotated data, particularly medium to very large corpora with multiple kinds of
linguistic annotation at word level (e.g. part-of-speech tags, lemmatisation, semantic tags or
chunk boundaries). To this end it provides a powerful and flexible data model and query
language. As such, CWB stands in contrast to concordancers such as WordSmith (Scott
1996)2 or AntConc (Anthony 2005, 2009).3 Systems like AntConc and WordSmith are
designed to work with plain-text corpora (although WordSmith does also have a mode where
it can create and work with indexed data), generally of rather small extent; they lack built-in
support for complex annotation; their query language is based on regular expression or
wildcard queries on the raw, underlying text; but they have the very great benefit of allowing
novice users to perform automated analysis on ad hoc datasets. They are thus ideal tools for
beginners and especially students. CWB differs from such systems on all these points. Most
particularly, it is not really targeted at the beginner, and requires a reasonably detailed
understanding of its data model and a familiarity with working with command-line tools.
CWB can, then, be fairly characterised as an expert system for advanced users of corpus tools
– although, as we will illustrate, systems that use CWB as a back-end can be targeted at
beginners in a way that CWB itself is not.

1 So called because it was developed at the Institut für Maschinelle Sprachverarbeitung (IMS) at the University
of Stuttgart and later released as open-source software.
2 See http://www.lexically.net/wordsmith/.
3 See http://www.antlab.sci.waseda.ac.jp/software.html#antconc.

 3

In its current form, CWB actually consists of three different software packages: (i) the CWB
core, including the low-level Corpus Library (CL), the CWB utilities, and the Corpus Query
Processor (CQP); (ii) the CWB/Perl interface – itself divided into three separate Perl
packages, namely CWB,4 CWB-CL and CWB-Web; and (iii) CQPweb, the most recent
addition, which we will discuss in section 3.5. It is the CWB core itself which most users
think of as “Corpus Workbench”, and it is this core system that we will mostly focus on in
this paper.

The CWB core has a number of strengths as a corpus analysis tool. Notable among them is its
status as a tool of long standing; its original implementation was created in the early 1990s
(see Christ 1994) and it has been in continual widespread use, and under continual
development, since then (see Evert 2008). Of course, this is equally true of some other
concordancers, for example WordSmith. But among the most powerful expert-level systems
for corpus analysis, CWB is the best-established; its long persistence and wide adoption, as
other software has come and gone, stands testament to its utility. A side effect of CWB’s
staying power is that certain aspects of its design – most particularly, the input format for
data to be indexed, and the query language it implements – have become de facto standards in
the field, largely by virtue of being implemented in other analysis tools. For instance, the
Manatee software (Rychlý 2007),5 used as a back-end by the SketchEngine interface
(Kilgarriff et al. 2004), adopts CWB’s input format and query language, and the Poliqarp
system6 implements a similar (but not identical) query language alongside an alternative input
format. Other than string-level regular expression syntax itself, we are not aware of any other
corpus query language which has been adopted across multiple concordancers in this way.
Another aspect of the de facto standardisation of CWB’s query language is that it has been
adopted by some authors as a means of expressing precisely in reports of their research the
nature of the corpus queries on which their analysis is based (e.g. Lee 2000, Mohamed 2011,
Evert 2006).

Other than its long and influential history, CWB’s primary virtue is that it can function both
as a server back-end for large-scale, centralised client/server architectures and as a tool that
an individual expert analyst can download, install and use on their own personal computer.
This is possible because CWB’s basic hardware requirements are relatively modest – though
on a more powerful computer, larger corpora can be handled more quickly. The analyst using
CQP on their own computer can employ either a command-line interface or an HTML-based
graphical user interface (GUI). When CWB is used as a back-end for a multi-user
architecture, of course, the type of interface is at the discretion of the system administrator,
but an HTML-based GUI is most typical.

Many linguists have encountered CWB not by using the system directly, but rather via one or
more public web-interfaces whose server side is based wholly or partly on CWB. This
reflects CWB’s nature as a very powerful tool with restricted user-friendliness: a web-
interface can provide the accessibility that direct access to CWB does not (but see section 3.5
below). Perhaps the most widely-used interface based on CWB is BNCweb (Hoffmann et al.

4 The basic package CWB contains several different Perl modules (CWB, CWB::CEQL, CWB::CQP and
CWB::Encoder), plus three shell scripts that facilitate corpus encoding (cwb-make, cwb-regedit and cwb-align-
import)..
5 See http://nlp.fi.muni.cz/trac/noske.
6 See http://poliqarp.sourceforge.net.

 4

2008).7 This interface to the British National Corpus8 was originally a front-end for a SARA
server (see Aston and Burnard 1998), but was rewritten as a CWB application to benefit from
the greater speed and expressiveness of CQP queries (see Hoffmann and Evert 2006). In
BNCweb, query processing is done by running CQP as a slave process on the web server;
additional functionality, such as calculation of collocations and query sorting, is
accomplished using a MySQL relational database.

However, BNCweb is far from the only online system to use a CWB back-end. Other
examples include the “Leeds CQP” open interface to a collection of large English, Russian
and Chinese corpora,9 its recently developed successor IntelliText,10 and the online interface
of the VISL project.11 Similarly the OPUS parallel corpus project (Tiedemann 2009) presents
a web-based interface that exposes CWB indexes of various OPUS datasets,12 exploiting
CWB’s support for sentence- or chunk-level alignment across two or more corpora. Each of
these interfaces differs from the others in the structure of the graphical interface and in the
details of how the advanced features of CWB/CQP are made available and accessible to the
end user.

2.2. How does CWB work?

Three things are key to an understanding of how CWB works. The first is the overall
architecture of the system; the second is the data model used to index CWB corpora; and the
third is the syntax of the CQP query language and the very wide range of queries it allows.

2.2.1. Architecture of CWB

CWB’s architecture is based around a set of encoded and indexed corpora, and two sets of
methods by which they can be accessed. This architecture is shown in figure 1. In CWB, the
corpus is the fundamental unit of data (rather than the file or text). Of course, there need not
be a one-to-one match between a “corpus” in CWB terms and what researchers call a
“corpus”: an indexed dataset in CWB might be generated from a subcorpus or a group of
corpora. Within the CWB system, a corpus exists as a set of binary data files that represent
the indexed text as well as its linguistic annotations and structural markup and that are stored
in a given location on disk. Housekeeping information about the corpus (including the disk
directory and a complete data description) is collected in a single registry file. Registry files
for all the indexed corpora on a given system are normally held in single directory, called the
corpus registry, so users can access corpora simply by their CWB name. Low-level access to
the indexed corpus data is provided by a set of functions called the Corpus Library or CL,
based on the data description in the registry file. The CL is designed in such a way as to be
usable independently of the rest of CWB, so that other applications can use its API13 and do
not need to understand the binary format of CWB data files. However, the most typical way
of accessing the CL functions is via one of two systems: the CWB utilities and CQP. The

7 See also http://bncweb.info. Accounts for Lancaster University’s BNCweb server is available via
http://bncweb.lancs.ac.uk/bncwebSignup.
8 See http://www.natcorp.ox.ac.uk/.
9 See http://corpus.leeds.ac.uk/.
10 See http://corpus.leeds.ac.uk/itweb/ for the system and http://corpus.leeds.ac.uk/it/ for project information.
See also Wilson et al. (2010).
11 See http://beta.visl.sdu.dk/visl/corpus.html.
12 See http://opus.lingfil.uu.se/
13 Application programming interface: a formalism or set of formalisms by which a program can access
functionality contained within another software component.

 5

CWB utilities are a set of command-line programs for manipulating indexed corpora. These
include facilities for creating an indexed corpus, compressing it, decoding it to its original
textual form, viewing its lexicon (i.e. list of word-types, POS tags, etc.), and compiling and
printing basic frequency and co-occurrence statistics. CQP, the Corpus Query Processor, is a
concordancer which builds on the CL to perform queries against an indexed corpus, using a
query language that we will describe in section 2.2.3 below. While the CWB utilities are
invoked and controlled via command-line options, CQP is run interactively in a terminal
window (or as a slave process controlled programmatically by some other piece of software).

Figure 1. Overall architecture of CWB.

When CWB is used as a back-end system, either to the project’s own CWB/Perl or CQPweb
packages, or to some external system (such as BNCweb or IntelliText), the architecture is
fundamentally similar, except that it is the front-end software which interacts with the CWB
utilities and CQP, and the end-user interacts with the front-end. Many front-ends, including
CQPweb and BNCweb, use CWB in conjunction with other back-end systems that provide
additional functionality, such as a relational database management system (as used by
BNCweb/CQPweb to support collocation analysis and other query postprocessing, for
instance).

2.2.2. The CWB data model

The CWB data model – that is, the set of concepts and data categories that underlies all CWB
indexing and querying – is realised in the format that corpus files must have for the CWB
utilities to be able to index them. This is a columnar format similar to a database table, where
each (tab-delimited) column represents a particular word-level annotation (including the word
form itself), and each row represents a single token (word or punctuation mark) in the corpus.
Consider, for instance, the following input data:

 6

<sentence>
It PP it
was VBD be
<np head="elephant">
an DT a
elephant NN elephant
</np>
. SENT .
</sentence>

Every CWB corpus is stored internally as a stream of tokens. CWB cannot work with
untokenised text, so tokenisation can be considered the minimum amount of annotation
required for a corpus to be indexed into CWB; in practice, most users will find it easiest to
rely on the tokenisation provided by a part-of-speech tagger such as CLAWS or the
TreeTagger. In the input data format, each token is placed on a separate line; punctuation
marks are treated as separate tokens. When the data is indexed, each token is assigned a
corpus position number,14 beginning with 0; so in the example above the tokens It, was, an,
elephant and . will be assigned the corpus positions 0, 1, 2, 3, and 4 respectively. Note that
XML tags such as <sentence> are not considered as part of the token stream, so that the
tokens was and an are adjacent despite the intervening tag.

The centrality of the corpus position numbers to the internal workings of CWB is one of the
main features that distinguishes it from corpus query systems based on relational databases
(see Davies 2005, 2009, 2010). In a relational database table that stores a corpus, individual
records (tokens) are in principle unordered, although it is always possible to explicitly add a
numeric field that represents the sequence of the records. But in CWB, the sequencing is
automatic and implicit, since the system is designed from the lowest level up to address the
needs of describing and querying the stream of sequential token positions in a linguistic
dataset.

CWB models an indexed corpus as a group of attributes related to the corpus position
numbers. There are several different types of attribute. The most straightforward and most
central is the positional attribute or p-attribute. A p-attribute represents an annotation at
token level, i.e. any aspect of the corpus where each and every corpus position is linked to a
single value. The word tokens themselves form a p-attribute – each corpus position is linked
to the word form found at that particular position. Additional p-attributes can be created for
whatever other token-level annotation is available in a given corpus, such as phonemic or
phonetic transcription, morphological annotation, part-of-speech tagging, lemmatisation, or
semantic tagging.

In the input file format, each p-attribute is written in a single tab-delimited column, where
every row in the file that represents a token must contain a value in every column. The
example data above has three p-attributes: the compulsory word form tokens, a part-of-
speech tag, and a lemma. Each p-attribute is assigned a handle – a label used to refer to that
p-attribute when manipulating or querying the CWB index. These handles are not contained
within the input file itself. The handle for the compulsory word form tokens is always word.
Other handles are specified by the user when indexing the data, and are then listed in the
registry file; typical handles for the other attributes in the example above would be pos and
lemma. For example, at corpus position 1, attribute word has the value was, attribute pos has

14 The term corpus position is often abbreviated as cpos in the CWB documentation.

 7

the value VBD, and attribute lemma has the value be. CWB stores every annotation value as a
plain, unstructured string. However, thanks to CWB’s indexing and compression algorithms
as well as some special support in the query language (section 2.2.3), it is possible to work
efficiently with multi-valued annotation (e.g. ambiguous part-of-speech tags), integer
numbers, binary features (yes/no) and classification attributes (e.g. the 11 “simple” parts of
speech annotated in the British National Corpus).

The other types of attributes are structural attributes and alignment attributes. Structural
attributes (s-attributes) are associated not with single tokens, but rather with uninterrupted
token ranges (represented internally as pairs of corpus positions: a start point and an end
point). They are thus equivalent to XML elements and represent any kind of corpus
annotation which applies to a region of text greater than a single token. Typical examples are
sentences, paragraphs, and utterances; when text boundaries are included in a corpus index,
these are also specified as s-attributes. It is also possible, however, for constituency parsing to
be represented as sets of s-attributes, where each s-attribute represents a particular type of
phrase and holds the start and end points of all instances of this phrase type (e.g. the noun
phrase an elephant in the example above). Because of the close correspondence between s-
attributes and XML elements, XML-style start and end tags are used to represent s-attributes
in the input format, although CWB is not and does not aim to be a complete XML
parsing/indexing system. Each XML start or end tag is placed on a separate line in the input
data. These do not count as tokens, and do not have their own corpus position numbers. In the
example above, the <sentence> tag is linked to the following token (indicating the start of a
sentence at corpus position 0) and the </sentence> tag is linked to the preceding token
(indicating the end of a sentence at corpus position 4). The handle of an s-attribute is the
same as the XML tag that represents it – so the handle corresponding to the <sentence>
tags is sentence. XML-style attribute-value pairs (such as head="elephant" in the example
above) can also be indexed; in the CWB data model they are represented as subsidiary s-
attributes. For instance, from the XML tags in the example above, in addition to the s-
attribute np, another s-attribute np_head is created. Each instance of np_head has the same
start and end points as the corresponding instance of np, but it also has an associated value (in
this case elephant).

Given a corpus such as the British National Corpus, which is encoded as XML according to
the TEI standard,15 there is clearly a close correspondence between the XML mark-up of the
files as distributed and the columnar input format required for CWB. The main difference is
that in true XML, whitespace is nearly always irrelevant to the structure of the data, but in
columnar format whitespace characters are used to indicate tokenisation and to delimit word-
level attributes – which leads to (a) the requirement for each XML element to occur on a line
on its own and (b) the requirement for tabs to indicate attributes such as part-of-speech or
lemma. So for an XML-encoded token in the BNC such as this:

<w c5="VVN" hw="buy" pos="VERB">bought</w>

a line in columnar format such as the following must be generated:

bought VVN buy VERB

15 See http://www.tei-c.org/index.xml.

 8

A more subtle discrepancy between true XML and CWB’s input format is that CWB has no
notion of a corpus file header providing meta-information about a text document. An XML
file header may incorporate elements that themselves have textual content, such as the
following standard component of British National Corpus headers:

<editionStmt>
<edition>BNC XML Edition, December 2006</edition>

</editionStmt>

Such a header must be recoded into XML elements that enclose the entire text document,
making sure that meta-information occurs only as XML attribute-values and not as textual
content (since textual content could not be distinguished from the actual words of the corpus).
For technically-aware users this is not especially troublesome, as it easily accomplished using
XSLT or simple scripting techniques. Specialised import tools are provided for some widely-
used corpora such as the British National Corpus. Other corpora are directly available in the
CWB input format, e.g. the web corpora compiled by the WaCky initiative (Baroni et al.
2009).16

The final type of attribute is the alignment attribute or a-attribute, mainly intended for
sentence-level alignment of translated text. An a-attribute encodes a relationship between text
regions in two corpora that represent the same dataset in two different languages (i.e. they
make up a parallel corpus in the sense that term is used by Baker 1993: 24, McEnery and
Wilson 1996: 57, and Hunston 2002: 15). When an a-attribute is defined for a pair of corpora,
it is possible to perform a search in one language, and retrieve not only a set of results in that
language, but also the section of the corpus in the other language that translates each of the
results in that set. We will not discuss a-attributes further here, although they are a key
component of CWB-based interfaces to multilingual corpus data such as that of the OPUS
project (see section 2.1 above).

2.2.3. The syntax of the CQP Query Language

The third key aspect to how CWB works is the query language used within CQP, which we
call the CQP Query Language or CQP-syntax for short. This language is sometimes referred
to in the literature as Corpus Query Language or CQL (for example, in papers related to the
SketchEngine software). We do not use this term, however, and we strongly recommend
against its use by others, because “CQL” has been in use for a long time as the name of a
non-corpus query language standard promulgated by the US Library of Congress,17 as well as
a label for the underlying query language of the SARA/Xaira software.18 This latter “CQL” is
XML-based and therefore incompatible with CQP-syntax.

The main distinguishing feature of CQP-syntax is that it employs regular expression patterns
at two levels: at the level of character strings for word forms and annotation values, and also
at the level of token sequences. This makes CQP-syntax extremely flexible, and, as noted
above, it has over time come to approach the status of a de facto standard.

In a CQP-syntax query, a token is specified as a set of one or more conditions contained
within a single pair of [square brackets]. Multiple conditions may be linked by Boolean

16 See http://wacky.sslmit.unibo.it/doku.php?id=corpora.
17 See http://www.loc.gov/standards/sru/specs/cql.html.
18 See http://www.oucs.ox.ac.uk/rts/xaira/.

 9

operators such as & (and) and | (or). An individual condition usually consists of a regular
expression that will be matched against a specified p-attribute, e.g. [word = ".*phant"]
for a word ending in -phant; regular expressions may be matched normally, in case-
insensitive mode (%c), in accent-insensitive mode (%d), or with both these modes active. In
order to include plural forms such as elephants or oliphants in the search, and simultaneously
to avoid matching the adjective triumphant, the token specification above might be rephrased
as a double condition: [lemma = ".*phant" & pos = "N.*"].

Regular expression syntax can also be applied to a sequence of token specifications in order
to search for complex lexico-grammatical patterns. Just as, in a normal regular expression,
individual characters may be concatenated in literal sequences, combined with repetition
operators, or collected in sets of alternatives, so the same devices can be used at the level of
tokens in CQP-syntax. For example, appending + to a token specification will match a
sequence of one or more tokens that fit that specification. Token-sequence regular
expressions may also make reference to s-attributes in the form of XML tags, which will
match the start or end of an appropriate text region. For a comprehensive introduction to
CQP-syntax, its use of regular expressions and more sophisticated query options, see
Hoffmann et al. (2008: 217-245) and the CQP Query Language Tutorial.19

The following query exemplifies some of the features mentioned here – regular expressions
matching strings at token level, the use of Boolean operators to combine conditions on a
single token, and the construction of a regular expression across a sequence of tokens:

[word="queries" %c] [class="PREP"] [pos="AJ.*"]+
 [class="SUBST" & word=".*s"]

This query has the following matches in the British National Corpus:20

queries on old files
queries about albino Oscars
queries to multiple databases
queries on full-text contents
queries to multiple databases
queries from multiple sources
queries on full-text contents
queries on security-related topics
queries on individual services
queries on individual cases
queries about particular legal points
queries to Burning Questions

As the results make clear, the import of the original query string is “match all occurrences of
the word form queries, followed by any preposition, followed by one or more adjectives,
followed by any noun that ends in the letter -s”. In other words, this is a search for queries
postmodified by a preposition phrase whose complement noun phrase is determinerless, is

19 Available from http://cwb.sourceforge.net/documentation.php.
20 The p-attribute class contains the “simple” tags annotated in the XML edition of the British National Corpus,
which represent a generalisation across the underlying CLAWS5 part-of-speech tags. We refer to this system of
simplified word-classes as the Oxford Simplified Tagset in recognition of its origin at Oxford University
Computing Services; see http://www.natcorp.ox.ac.uk/docs/URG/codes.html#klettpos.

 10

premodified by adjectives, and has plural number.21 The query pattern says nothing about
postmodification of the complement noun, so this part of the noun phrase is not captured (but
is visible, where present, in the right-hand context of the matches when they are printed in
CQP). Of course, token-level regular expressions based on the features of individual words
can never be fully syntactically accurate. For instance, examination of the context of the final
match above shows that in this case, the to-phrase following queries is not a postmodifier of
queries but is rather a verbal argument: Send your queries to Burning Questions, Echoes, The
Northern Echo Nevertheless, despite these limitations a carefully designed CQP query can
often get an analyst most of the way to a clean and precise set of matches for exactly what
they wanted to find.22

A full understanding of these technical aspects of CWB – the architecture, the data model,
and CQP-syntax – is clearly not necessary for basic-level use of CQP. However, effective use
of the indexing tools and the more powerful features of CQP does require an extensive grasp
of these issues. It is for this reason that we earlier characterised CWB as expert-level
software. These features of how CWB works are responsible for its main strengths as an
analysis tool and do not require any serious improvement at present. In the remainder of this
paper, we will consider points where, by contrast, the original design of CWB has required
updating to meet the requirements of a contemporary corpus indexing and search system.

3. Twenty-first century requirements for CWB

As noted above, one of the strengths of CWB is its staying power: it has been in use, and
under development, since the early 1990s. Yet this strength is at the same time a weakness,
because many features of the system’s design reflect decisions that were reasonable in the
environment of 1994, but are no longer reasonable in the twenty-first century, given changes
in development best practices, hardware and operating system capabilities, and not least user
expectations. Most of the work that has been undertaken for versions 3.0 through 3.5 of CWB
is directed towards fulfilling these new requirements. This section outlines work in five key
areas that have brought CWB up-to-date with the needs of contemporary analysts. Version
3.5 of CWB will be a stable release with long-term support, incorporating all of the
improvements described below.

3.1. The development process

For a project of the scope of CWB to be run by, and the resulting software to be available
from, a single institution (IMS Stuttgart) was not unusual in the early 1990s. This model for a
development process had, in fact, been established since the 1970s as best practice for highly-
powerful corpus tools in what McEnery and Hardie (2012: 37) dub the first generation of
concordancing software. However, in the period since the original versions of CWB, a new
set of best practices for non-commercial software has emerged, under the influence of such
prominent projects as the Linux kernel and the Mozilla web browser: the model of public
development of a code base with an open-source (or free software) licence. When CWB
moved away from being solely an internal project of the IMS to being a wider community

21 Note the use of a regular expression to match the CLAWS5 part-of-speech tags AJ0, AJC and AJS for
adjectives (including various portmanteau tags), since the simple tag ADJ includes predeterminers such as any
and all in addition to regular adjectives.
22 CQP allows result-sets to be dumped (extracted from CWB), modified outside the system, and then undumped
(reinserted into CWB), so that an imprecise set of hits can be made more (or fully) precise by manual
adjustment. This functionality is also exposed by some web interfaces, most notably BNCweb and CQPweb.

 11

project with a much broader user-base, it simultaneously transitioned from its closed-source
origins to running on an open-source basis. The CWB code is thus now licensed under the
GNU General Public Licence.23 The formal name of the software – and the community
project that supports it – is therefore now The IMS Open Corpus Workbench, although the
established habit of referring to it as simply (the) Corpus Workbench or CWB is not expected
to change.

Moving to a licence such as the GPL has two distinct advantages for development. First,
widely-used open-source libraries can be leveraged to add functionality to the system with
minimal effort by the CWB developers. An example of this is the GNU Readline library,24 on
which CQP’s interactive command-line editing features are based. Second, it becomes
possible for other projects to fork the code base and take their version of CWB in other
directions depending on their needs, and for CWB to absorb and reintegrate useful
innovations in these forks, without any risk of intellectual property tangles. An example of
this happening in practice will be discussed below.

Since moving to an open-source model, the development of CWB is conducted in public.
This means much more than simply releasing the code or software builds under a particular
licence. It means that the project’s database of bugs and feature requests is open to all to read
and contribute,25 as are roadmap documents planning out current and future work.26
Moreover, the CWB team’s discussions regarding the development and direction of the
software are also public, being conducted via a mailing list which anyone can join and whose
archives are visible to all.27 This mode of operation takes us some way towards Anthony’s
(2009) vision of an open-sourced, interactive development process for corpus tools.

3.2. Operating system support

The original version of CWB was designed to run only on a commercial version of Unix, and
was distributed in binary form. This was a reasonable design decision in the 1990s, when
most systems with powerful enough hardware to support analysis of large corpora in CWB
were Unix servers rather than personal computers and when the open-source Unixes were
only beginning to acquire popularity. Indeed, Linux itself is only slightly older than CWB.
However, since around 2000 it has been much less acceptable for a corpus analysis system to
be restricted to any single operating system. Personal computers, whether Windows or Linux
PC or Apple Macintosh, are now more than adequately powerful for CWB installation on
such machines to be a commonplace requirement. Moreover, the ubiquity of highly
standardised Unix-like operating system environments – notably Linux, Mac OS X, the BSD
variants, and Cygwin on Microsoft Windows – means that CWB compatibility with all the
widely-used operating systems is much more feasible than it would have been in 1994. It has
been possible to build and install CWB on these different Unix-like systems in preview
versions since the early 2000s, and in the stable CWB version 3.0 since 2010. Indeed, Linux
and Mac OS X are now the project’s main development platforms.

23 See http://www.gnu.org/licenses/gpl.txt, or the file COPYING within the CWB code distribution.
24 See http://www.gnu.org/s/readline.
25 At http://sourceforge.net/tracker/?group_id=131809.
26 See, for instance, http://cwb.sourceforge.net/future.php;
http://cwb.svn.sourceforge.net/viewvc/cwb/cwb/trunk/doc/todo-3.5 .
27 To join the list or access the archives, see http://devel.sslmit.unibo.it/mailman/listinfo/cwb.

 12

Direct compatibility with Windows, without the use of the Cygwin environment, was a
longstanding (and very reasonable) demand made by the CWB user community. This was
implemented in version 3.1 by integrating compatibility changes made in the fork of the
CWB code base that forms part of the TXM platform (Heiden 2010).28 As noted above, it is a
benefit of the open model of development that advances made by others can be incorporated
into CWB without problems of intellectual property arising; both CWB and TXM are issued
under the GNU General Public Licence. The Windows version of CWB is built in a Linux
environment using the MinGW cross-compiler version of GCC;29 the resulting software can
then be deployed to Windows machines without the end user having to set up compilation
tools on Windows. The use of MinGW means that the changes required for Windows
compatibility are much less than they would otherwise be, because Windows as seen by
CWB through MinGW is, in effect, another Unix-like environment.

Since the Windows compatibility is a comparatively new development, some bugs do remain;
working these out is a primary aim for the forthcoming version 3.4 of CWB. It is also worth
noting that the CWB/Perl and CQPweb software packages (see sections 2.1 and 3.5) are not
yet completely Windows-compatible; bringing their compatibility up-to-date with that of the
CWB core is likewise a key short-term goal of the CWB project.

3.3. 32-bit versus 64-bit environments

When running under a 32-bit operating system, CWB is limited to a maximum corpus size of
around 200 to 500 million words, or less if there is a very large amount of annotation. By
1990s standards, this was a very reasonable limitation, given the amounts of disk space and
computer memory available on most machines at that time. The British National Corpus, at
that time the epitome of a large corpus of contemporary English, is only 100 million words in
extent; the larger but less widely-used Bank of English consists of around 500 million words.
So a 32-bit version of CWB is more than capable of dealing with the very large corpora that
were in use at the time it was designed, and for most of the following decade.

In the period between 2000 and 2010, however, 64-bit operating systems have entered fairly
wide use. At the same time, much larger corpora have become available. For example, the
English Gigaword corpus30 (not much used by corpus linguists, but of great interest for
computational linguists and NLP specialists) is 1.8 billion words in size, an order of
magnitude larger than the British National Corpus. Likewise, corpora derived from the web
are often of this kind of size. The ukWaC corpus (Baroni et al. 2009), for example, contains 2
billion words, and the WaCky initiative has compiled corpora of comparable size in several
other languages as well.31 Thus, for CWB to continue to work under the restrictions of a 32-
bit application would make it incapable of dealing with the kinds of datasets that analysts
want to work with today. Therefore, as a part of making CWB fully compatible with
additional operating systems (see section 3.2), work has been undertaken to ensure that CWB
can be compiled and run under 64-bit operating systems.32 These 64-bit versions of the

28 TXM was created by the Textométrie project at the Ecole normale supérieure de Lyon; see
http://textometrie.ens-lyon.fr/?lang=en.
29 See http://www.mingw.org.
30 Distributed by the Linguistic Data Consortium, see
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T05
31 See http://wacky.sslmit.unibo.it/doku.php?id=corpora.
32 Note that support for 64-bit features in Windows is uncertain in versions prior to the forthcoming CWB
version 3.5.

 13

software are capable of dealing with richly annotated corpora of up to 2.1 billion words. This
increase, by a factor of just over 4, is much less than what is theoretically permitted by a 64-
bit data type; however, the internal format of the indexed and compressed corpora imposes
the 2.1 billion token limit.

3.4. Character encoding

For several years now, the Unicode Standard (Unicode Consortium 2006)33 has been
established as the preferred approach to character encoding, supporting as it does text in all
the world’s languages. In particular, the UTF-8 version of Unicode has long been the
recommended encoding for corpus data (McEnery and Xiao 2005) – and since any valid
ASCII text is also valid UTF-8, this means that older corpora that use ASCII can be
processed as UTF-8 without any adjustment. So UTF-8 support is a high priority for any
modern corpus tool that aspires to be truly multilingual in scope.

When CWB was first designed, Unicode did exist; its origins go back to the 1980s. However,
hardly any widely-used software implemented Unicode in the early 1990s, and as such most
textual data was not encoded as Unicode. Nor, however, was plain ASCII text commonly
used. Instead, most textual data was stored using forms of the ISO 8859 standard. In keeping
with this environment, CWB was originally designed to work only with ISO-8859-1, the
Western European character set, also known as Latin1, which supplements ASCII with the
accented characters required by German, French, Spanish, Italian, and a few neighbouring
languages. All CWB’s internal string handling functions – such as the code tables for case-
insensitivity and accent-insensitivity – were designed around the ISO-8859-1 standard.

This design decision has persisted up to the first stable open-source version 3.0 and into the
earliest Windows builds in version 3.1. However, while it was an entirely reasonable strategy
in 1994, in the twenty-first century full support for Unicode is a critical requirement in any
corpus analysis tool. Indeed, many CWB-based applications (such as early versions of
CQPweb) achieved multilingual support by indexing UTF-8 data as if it were ISO-8859-1
data. This solution was, however, wholly unsatisfactory, since (a) ISO-8859-1 case and
accent folding will not work with UTF-8 data and is in fact liable to scramble such data
badly, and (b) the POSIX regular expressions used by the query engine cannot recognise
UTF-8 multi-byte sequences as single characters (so a single character in the Greek or Arabic
sections of Unicode would match, for instance, two dot characters in a regular expression,
instead of one). All in all, proper UTF-8 support was a clear priority.

The development of CWB’s Unicode support was contributed by the Textométrie project,
which as noted above also contributed Windows compatibility patches. As a result, versions
3.2 and above have full compatibility with UTF-8. CWB takes account of Unicode in two
main ways. Firstly, all the case-folding, accent-folding and other low-level string
manipulation functions are UTF-8-aware. This has been accomplished by using Unicode
support functions from the open-source GLib library34 within CWB’s low-level CL.
Secondly, the string-level regular expression engine has been changed from POSIX regular
expressions to the PCRE (Perl-Compatible Regular Expressions) library,35 which like GLib
is a widely-used open-source project. Among other advantages, such as the access it provides
to a very popular and powerful variant of the regular expression syntax (that found in the Perl

33 See http://unicode.org/.
34 See http://developer.gnome.org/glib/.
35 See http://www.pcre.org/.

 14

scripting language), PCRE offers support for UTF-8 regular expressions. Thirdly, the
indexing utilities have been amended so that each indexed corpus is associated with a
particular character set (declared at indexing time), and – critically – so that all data imported
into CWB is checked for validity in the character set it has been encoded as. This means that
all data inside a CWB index is known-valid as ASCII or ISO-8859-1 or UTF-8, as the case
may be, since indexing fails if bytes or byte sequences are detected in the input data that are
not valid for the declared character encoding.

Unicode brings with it significant advantages – not least among them the availability of open-
source libraries that can be leveraged, as noted above. However, it does have some
countervailing disadvantages. It is, in general, a bulkier format than ISO-8859; for example,
UTF-8 text in Greek or Arabic requires twice as much disk space as the same text in ISO-
8859-7 or ISO-8859-6 respectively (pre-Unicode Greek and Arabic character sets
respectively). Given the historically low and falling price per megabyte of hard disk space,
and even of computer memory, this is unlikely to be a major problem for most corpora – but
for a very large corpus the size differential might be an important factor.36 This constitutes,
then, a reason why even in the age of widespread Unicode support, a user might prefer to
work with ISO-8859 data. This is not the only reason – quite simply, some users may be
reluctant to undertake the potentially rather large task of updating the character encoding of
all their existing indexed data. Since CWB corpora by and large cannot be modified (only
deleted and then re-indexed from input text), this is not a trivial proposition. To address these
concerns, we implemented support for the ISO-8859 legacy encodings alongside UTF-8. The
Corpus Library in the CWB core now contains data tables for validity-checking, case-folding
and accent-folding each of these character sets. Furthermore, since the PCRE library’s
Unicode mode can be turned on and off, it is simple to use this regular expression engine with
both UTF-8 and ISO-8859 strings.

3.5. The user interface

It has been noted above that CWB is not intended as a tool for beginners in corpus analysis.
Corpora are managed via the command-line utilities, requiring a knowledge of the Unix
option/argument conventions, and interactive-mode CQP also requires knowledge not only of
the (complex) query language but also of the control syntax for its own configuration. CQP is
fairly unforgiving of mistakes, and there is in addition little in the way of online help. The
lack of a user-friendly interface was a reasonable design decision in the early 1990s. It is not
reasonable any longer, and represents CWB/CQP’s greatest limitation.

Several efforts have been made to address this limitation. One early effort, the Xkwic GUI,
proved inflexible and has been abandoned. In CWB version 3.0, a more adaptable approach
has been taken by the provision of the CWB/Perl component, which offers a programming
interface by which bespoke web-based or command-line interfaces can be created with
relative ease for different purposes and at different levels of complexity/user-friendliness.
CWB/Perl is used by most CWB-based web front-ends. An important feature of CWB/Perl is
the Common Elementary Query Language or CEQL. CEQL is a query formalism which gives
access to the most commonly-used features of CQP-syntax in a simpler form. For example,
regular expression syntax is replaced by a simpler set of wildcards, and rather than requiring
an explicit specification of what p-attribute a regular expression is to be matched against,

36 It should be noted that we are here discussing the size of the data in its original corpus format and in the CWB
input format. The CWB index itself is condensed and compressed.

 15

shortcut characters and an assumed default attribute are employed. So the following CQP-
syntax query:

[lemma = "present" & pos = "V.*"] [word = "an"%c]

(i.e. any form of present tagged as a verb, followed by an) would in CEQL be expressed as

{present}_V* an

Note the lack of square brackets, the use of {curly braces} to match against lemma instead of
word form, and the underscore separating lemma and POS tag. Offering a choice between
CEQL and CQP-syntax in front-end software thus partially addresses CWB’s limited user-
friendliness. CEQL was designed in particular for use with corpora annotated after the style
of the British National Corpus (and thus provides privileged access to part-of-speech tags,
lemmata, and simple tags), and sees most extensive use within BNCweb. See Hoffmann et al.
(2008, 93-117) for a complete description of CEQL syntax.

More recently CWB has acquired a new standard GUI in the form of CQPweb, which clones
the BNCweb interface format and additional functions (collocations, frequency lists,
keywords, subcorpus management, and so on; all implemented via the MySQL relational
database) in such a way as to make it usable with any corpus, not just the British National
Corpus (see figure 2). Like the most recent versions of the CWB core, CQPweb supports
UTF-8 corpora throughout and is thus largely language-independent. It also allows CEQL to
be configured to key into any form of annotation – that is, the “simple query” syntax is not
restricted to corpora with part-of-speech, lemma and simple tag annotation.

Figure 2. The welcome-page and main query interface of a corpus indexed in CQPweb

 16

CQPweb is discussed extensively by Hardie (forthcoming) and we will not go into further
detail here. The key point for current purposes is to note what CQPweb adds to CWB: a
standard, corpus-independent graphical user interface suitable for use either locally on a
single computer or over the web. The user-friendliness provided by CQPweb addresses one
of the key requirements of a twenty-first century corpus analysis system.

4. The future of CWB

Some avenues of development for the CWB project in versions 4.0 and higher have already
been mentioned in foregoing sections. Other obvious improvements constitute direct
extensions of the developments made to date and discussed above. An example of this is the
maximum corpus size. As outlined in section 3.3, we have raised this to approximately 2.1
billion tokens by allowing CWB to run under 64-bit operating systems. But this new limit
merely “buys time”. The size of datasets that analysts wish to work with will only continue to
grow. The ukWaC corpus, at just under 2 billion words, is already pushing the boundaries of
the higher limit and cannot be indexed in its entirety as a single CWB corpus. So one clear
need is to raise the maximum corpus size by further orders of magnitude, allowing datasets of
not only arithmetically but geometrically greater extent to be analysed.

Yet other planned improvements reflect further shifts in requirements from the 1990s to the
twenty-first century that have not yet been addressed. For example, in the 1990s there was a
strong requirement for CQP concordances to be displayed and exported in a variety of
different formats, including LaTeX, SGML, HTML and plain text. CQP does indeed support
each of these, in a partly configurable manner. However, given the very wide availability
nowadays of powerful tools for working with XML, a much more practical system will be for
CQP to provide two formats only – plain text for interactive usage, and XML for other uses
including, most particularly, data interchange – and to allow users to generate other
concordance formats from the XML output using the tools of their preference. Rather than
force users who want HTML concordances to work within the limits of CQP’s HTML output
format, for instance, it would make more sense for users to generate HTML according to their
requirements using XSLT and the XML output format. The CWB package could, in this case,
provide a “default” example HTML-generating stylesheet suitable for novice users.

The same factors arising from the rapid growth in popularity and ubiquity of XML suggest
that CWB clearly needs to support more extensive indexing and querying of XML elements
beyond what the current implementation of s-attributes permits. For example, a more rigorous
and efficient representation of XML attribute-value pairs than the current subsidiary s-
attributes would be a clear improvement, as would support for recursive nesting of a given
XML element within itself (currently only possible via further automatically generated
subsidiary s-attributes, each representing a different level of embedding).

Beyond such issues, it is the CQP query engine itself that is the most obvious target for
improvement, since any gain in power here has a direct pay-off for all users of CWB. A first
step will necessarily be to rework some of the internals of CQP to make it more modular than
is currently the case. However, once this is accomplished, adding new features to the engine
will be vastly easier. For instance, one much-requested improvement is the capability for
multiple target positions to be generated within query results. A target position is a specially
marked token-slot within a CQP query for which statistics can be calculated, such as a
frequency list of word types or annotations appearing in the marked slot. For instance, if a
query is written to capture a particular type of noun phrase, and the token-slot representing

 17

the head noun is designated as the target position, then a frequency list of the nouns that
occur as the head of that particular sort of noun phrase can be extracted. The capacity to
specify multiple target positions will make this functionality much more powerful – making it
possible, for instance, to extract the joint frequencies of all combinations of types found in
two or more different target positions.

Similarly, there is scope for improvement in the speed of execution of complex queries. A
known weakness of CQP is that multi-token query strings which begin with a token
specification with very many matches are slow to execute. For instance, consider the
following query (a fairly primitive approach to “find all instances of happy premodifying a
definite noun”):37

[word="the"%c] [pos="R.*"]{0,2} [word="happy"%c] [pos="N.*"]

CQP’s internal query evaluation procedure is to convert the token-sequence regular
expression into a finite state automaton. In consequence, the very first step in evaluating the
query is to retrieve all corpus positions where the p-attribute word has the value the. This is a
very large number of results (slightly above 6 million hits in the 100 million word BNC),
most of which will been thrown out at later stages as the finite state automaton processes the
rest of the query expression – because the overwhelming majority of those millions of
instance will prove, on further examination, not to be followed by an instance of the word
happy (after optional adverbs). The most efficient way of carrying out this query would be to
start by retrieving all instances of the third token specification (i.e. [word="happy"%c]),
which has the fewest hits. But the current implementation of CQP’s query engine does not
permit this.

This weakness in CQP is quite widely known; for instance, Davies (n.d.; see also Davies
2005) argues for the inferiority of CWB/CQP to a corpus search system that uses a relational
database engine on the basis of evaluation times for three different multi-token queries, all
three of which begin with a token specification that has a very high match rate in English: the
article the (~6% of tokens), any pronoun (~8% of tokens), and any conjunction (~5% of
tokens).38 What is perhaps less widely appreciated is that this weakness in CQP is
fundamentally a trade-off for the power of token-sequence regular expressions, which is
rather harder to implement in a relational database query language such as SQL39 – all
Davies’ example queries are fixed-length token sequences, without any optional tokens,
optional repetitions, alternative sequences of different lengths, or any of the other regular
expression features available in CQP-syntax. This trade-off produces, in our view, a more
powerful and flexible system than one which performs faster but offers less scope for
complex queries – especially since speed in query evaluation is at least as dependant on the
available hardware as on the software. All that said, however, these kinds of query are clearly
a point where significant scope exists for improvement in CQP, by amending the query
evaluation procedure to start from a token specification with a small number of hits (which

37 This query pattern assumes an English corpus with a CLAWS7-style part-of-speech tagset, where noun tags
all begin with N, adjective tags with J, and adverb tags with R.
38 Percentage figures estimated from the British National Corpus; the precise percentage depends, naturally, on
the precise definition of the linguistically fuzzy categories of pronoun and conjunction embodied in the
particular tagset in use.
39 Davies (2005: 309) appears to assert that CQP searches are performed by generating SQL queries behind the
scenes. This is not the case. CWB attribute indexes can be regarded as a form of relational database, but access
to the indexes is not SQL-based; see also section 2.2.2 above.

 18

can easily be retrieved from the CWB index files) and then to match the full query expression
to the left and right of each hit (see Meurer 2010). In the example above, this strategy would
first find all occurrences of the word happy and then check for each instance whether (i) it is
preceded by optional adverbs and a definite article and (ii) it is followed by a noun.

Another promising avenue for future development is to offer different types of query within
CQP-syntax. For instance, support for fuzzy queries of different sorts would be a useful
extension to what CQP is currently capable of, especially when searching noisy texts such as
web-corpora. It would also be desirable to support Boolean queries, as typically encountered
in information retrieval and web search engines, not least because they are easier to optimise
than standard CQP queries based on regular-expressions. An initial version of this capability
already exists in the form of the undocumented MU query (meet-union), but this functionality
needs to be extended and improved. With the rapid adoption of dependency parsers for large-
scale corpus annotation,40 there is increasing need to support queries based on relationships
between words – as expressed in the graph of a dependency parsing analysis. It is already
possible to index a constituency parse as a set of s-attributes, so a dependency parse
represents the major form of corpus annotation not currently supported by CWB. Addressing
this is likely to require the establishment of a new kind of attribute, the dependency attribute
or d-attribute where each corpus position is associated with another corpus position (its
parent in the dependency parse tree) and where each such relationship between corpus
positions is classified into a type such as subject-of, object-of, complement-of and so on. It
would of course also be possible for dependencies other than syntactic relations to be
encoded as a d-attribute, such as the anaphoric or cataphoric links between a pronoun and a
full noun phrase. A special type of query would have to be implemented in order to make
efficient use of such annotation, by following dependency links from child node to parent
node and vice versa.

For all these query features, both new search types and optimisation, however, the obvious
benefit of enhancing the capabilities of CQP must be balanced against a certain risk inherent
in making any changes to the CQP-syntax. As noted above, the CQP-syntax has acquired a de
facto standard status, and is implemented by other software such as Manatee. Drastic changes
to the query language within CQP could jeopardise this status. It would clearly be detrimental
to the community of corpus linguists as a whole if CQP-syntax queries recorded in the
published literature cannot be counted on to continue to be compatible with CWB/CQP – this
is an issue which speaks to the replicability of results in the field, replicability being one key
element of the scientific method. Equally undesirable would be a situation where several
different tools all implement CQP-syntax, but where each implements a slightly different and
marginally incompatible form of CQP-syntax. Therefore, substantial extensions should
always be implemented as separate, clearly marked query types. The currently implemented
(but undocumented) meet-union query system exemplifies how this works. One variant of
meet-union query has the following form:

MU(meet word1 word2 s-attribute)

This query finds all instances of the specified s-attribute that contain both word1 and word2.
The special syntax, starting with a reserved keyword MU, ensures that such meet-union
queries do not conflict with the more usual token-sequence type of query.

40 For instance, the WaCky initiative offers dependency-parsed versions of their web-corpus ukWaC
(“pukWaC”) and of the English Wikipedia (“Wackypedia”).

 19

The roadmap for future development that has been sketched out in this section is based on the
major needs of CWB as we currently perceive them to be. Ultimately, however, CWB is too
extensive and widely-used a system for its direction to be determined solely by the ideas of
two or three developers. Already-planned features that are particularly desired by the user
community will be prioritised, and other requests for enhancements and new features will be
adopted wherever possible. Current and future users are urged to contribute their feature
requests to the project, as all input of this kind is extremely helpful in planning and
prioritising our work on the system.41

5. Summary

In this paper, we have given an introduction to the main features of the IMS Open Corpus
Workbench, explaining how it works and the main advantages it possesses (a) as an
architecture particularly aimed at indexing and querying large corpora with relatively
extensive token-level annotation and (b) as a back-end for user-friendly, especially web-
based, concordancers. Subsequently, in sections 3 and 4, we have outlined recent
developments to bring CWB versions 3.0 and above up-to-date with the requirements of a
twenty-first century corpus analysis tool, and the further enhancements that we anticipate will
be required in the medium-to-long term.

Readers who are interested in CWB – either the software itself or the community project
supporting it – are referred to its website, hosted at SourceForge.net,42 and to the email list
hosted at the Università di Bologna.43 We welcome queries, bug reports, feature requests and
code contributions from both novice and experienced users.

References

Anthony, L. 2005. “AntConc: a learner and classroom friendly, multi-platform corpus

analysis toolkit”, in Proceedings of IWLeL 2004: An Interactive Workshop on
Language e-Learning, pp. 7–13. Tokyo: Waseda University.

Anthony, L. 2009. “Issues in the design and development of software tools for corpus studies:

the case for collaboration”, in P. Baker (ed.) Contemporary Corpus Linguistics, pp.
87–104. London: Continuum.

Aston, G. and Burnard, L. 1998. The BNC Handbook: Exploring the British National Corpus

with SARA. Edinburgh: Edinburgh University Press.

Baker, M. 1993. “Corpus linguistics and translation studies: implications and applications”,

in M. Baker, G. Francis and E. Tognini-Bonelli (eds) Text and Technology: in Honour
of John Sinclair, pp. 233–352. Amsterdam: John Benjamins.

41 This applies to the CWB/Perl and CQPweb systems as well as the CWB core. CQPweb, in particular, does not
yet have a finalised feature set and there is an extensive “wish-list” for future enhancements of its capabilities,
quite separate to the developments of the core suggested here. See
http://cwb.sourceforge.net/future.php#cqpweb.
42 http://cwb.sourceforge.net or the shorter alternative http://cwb.sf.net .
43 http://devel.sslmit.unibo.it/mailman/listinfo/cwb.

 20

Baroni, M., Bernardini, S., Ferraresi, A. and Zanchetta, E. 2009. “The WaCky Wide Web: A
collection of very large linguistically processed Web-crawled corpora”, Language
Resources and Evaluation 43 (3): 209–226.

Christ, O. 1994. “A modular and flexible architecture for an integrated corpus query system”,

in Proceedings of COMPLEX '94, pp. 23–32. Budapest. Available online at
http://cwb.sourceforge.net/files/Christ1994.pdf

Davies, M. 2005. “The advantage of using relational databases for large corpora: speed,

advanced queries and unlimited annotation”, International Journal of Corpus
Linguistics 10 (3): 307–34.

Davies, M. 2009. “Word frequency in context: alternative architectures for examining related

words, register variation and historical change”, in D. Archer (ed.) What’s in a Word-
list? Investigating Word Frequency and Keyword Extraction, pp. 53–68. Farnham:
Ashgate.

Davies, M. 2010. “More than a peephole: Using large and diverse online corpora”,

International Journal of Corpus Linguistics 15 (3): 412–8.

Davies, M. (n.d.) Corpus.byu.edu site, “Architecture” page. Available on the internet at

http://corpus.byu.edu/architecture.asp, accessed 6th August 2011.

Evert, S. 2006. “How random is a corpus? The library metaphor”, Zeitschrift für Anglistik

und Amerikanistik 54(2): 177-190.

Evert, S. 2008. “Inside the IMS Corpus Workbench”. Presentation at the IULA, Universitat

Pompeu Fabra, Barcelona, Spain. Available online at
http://cwb.sourceforge.net/files/Evert2008_InsideCWB.pdf

Hardie, A. Forthcoming. “CQPweb – combining power, flexibility and usability in a corpus

analysis tool”. Draft available online at http://www.lancs.ac.uk/staff/hardiea/cqpweb-
paper.pdf

Heiden, S. 2010. “The TXM Platform: Building Open-Source Textual Analysis Software

Compatible with the TEI Encoding Scheme”, in K. I. Ryo Otoguro (ed.), 24th Pacific
Asia Conference on Language, Information and Computation, pp. 389–398. Institute
for Digital Enhancement of Cognitive Development, Waseda University, Sendai,
Japan. Available online at http://halshs.archives-ouvertes.fr/halshs-00549764/en .

Hoffmann, S. and Evert, S. 2006. “BNCweb (CQP-Edition) – The Marriage of Two Corpus

Tools”, in S. Braun, K. Kohn and J. Mukherjee (eds.) Corpus Technology and
Language Pedagogy: New Resources, New Tools, New Methods, pp. 177-195.
Frankfurt am Main: Peter Lang.

Hoffmann, S., Evert, S., Smith, N., Lee, D. and Berglund Prytz, Y. 2008. Corpus Linguistics

with BNCweb – a Practical Guide. Frankfurt am Main: Peter Lang.

Hunston, S. 2002. Corpora in Applied Linguistics. Cambridge: Cambridge University Press.

 21

Kilgarriff, A., Rychly, P., Smrz, P. and Tugwell, D. 2004. “The Sketch Engine”, in G.
Williams and S. Vessier (eds) Proceedings of EURALEX 2004, pp. 105–116.
Bretagne, France: Université de Bretagne-Sud.

Lee, D. Y. W. 2000. Modelling variation in spoken and written language: the multi-

dimensional approach revisited. Unpublished PhD thesis, Lancaster University.

Meurer, P. 2010. Corpuscle – a new search engine for large annotated corpora. Technical

report, Uni Digital, Uni Research AS, Bergen, Norway.

McEnery, T. and Hardie, A. 2012, in press. Corpus Linguistics: Method, Theory and

Practice. Cambridge: Cambridge University Press.

McEnery, T. and Wilson, A. 1996 (second edition 2001). Corpus Linguistics. Edinburgh:

Edinburgh University Press.

McEnery, T. and Xiao, R. 2005. “Character encoding in corpus construction” , in M. Wynne

(ed.) Developing Linguistic Corpora: A Guide to Good Practice, pp. 47–58. Oxford:
Oxbow Books.

Mohamed, G. 2011. Text classification in the BNC using corpus and statistical methods.

Unpublished PhD thesis, Lancaster University.

Rychlý, P. 2007. “Manatee/Bonito – A Modular Corpus Manager”, in P. Sojka and A. Horák

(eds.) First Workshop on Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 65-70. Brno: Masaryk University Available online at
http://nlp.fi.muni.cz/raslan/2007/papers/12.pdf.

Scott, M. 1996. WordSmith Tools. Oxford: Oxford University Press.

Tiedemann, J. 2009. “News from OPUS – A Collection of Multilingual Parallel Corpora with

Tools and Interfaces”, in N. Nicolov, K. Bontcheva, G. Angelova and R. Mitkov
(eds.) Recent Advances in Natural Language Processing (vol V), pp. 237-248.
Amsterdam: John Benjamins.

Unicode Consortium. 2006. The Unicode Standard, Version 5.0. London: Addison-Wesley.

Wilson, J., Hartley, A., Sharoff, S. and Stephenson, P. 2010. “Advanced corpus solutions for

humanities researchers”, in Proceedings of PACLIC 24, Sendai, Japan. Available
online at http://corpus.leeds.ac.uk/serge/publications/2010-PACLIC.pdf.

