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A Comparative Review of Dimension
Reduction Methods in Approximate
Bayesian Computation
M. G. B. Blum, M. A. Nunes, D. Prangle and S. A. Sisson

Abstract. Approximate Bayesian computation (ABC) methods make use
of comparisons between simulated and observed summary statistics to over-
come the problem of computationally intractable likelihood functions. As
the practical implementation of ABC requires computations based on vec-
tors of summary statistics, rather than full data sets, a central question is
how to derive low-dimensional summary statistics from the observed data
with minimal loss of information. In this article we provide a comprehen-
sive review and comparison of the performance of the principal methods of
dimension reduction proposed in the ABC literature. The methods are split
into three nonmutually exclusive classes consisting of best subset selection
methods, projection techniques and regularization. In addition, we introduce
two new methods of dimension reduction. The first is a best subset selection
method based on Akaike and Bayesian information criteria, and the second
uses ridge regression as a regularization procedure. We illustrate the perfor-
mance of these dimension reduction techniques through the analysis of three
challenging models and data sets.

Key words and phrases: Approximate Bayesian computation, dimension
reduction, likelihood-free inference, regularization, variable selection.

1. INTRODUCTION

Bayesian inference is typically focused on the pos-
terior distribution p(θ |yobs) ∝ p(yobs|θ)p(θ) of a pa-
rameter vector θ ∈ � ⊆ R

q , q ≥ 1, representing the
updating of one’s prior beliefs, p(θ), through the like-
lihood (model) function, p(yobs|θ), having observed
data yobs ∈ Y . The term approximate Bayesian com-
putation (ABC) refers to a family of models and algo-
rithms that aim to draw samples from an approximate
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posterior distribution when the likelihood, p(yobs|θ), is
unavailable or computationally intractable, but where
it is feasible to quickly generate data from the model,
y ∼ p(·|θ). ABC is rapidly becoming a popular tool
for the analysis of complex statistical models in an in-
creasing number and breadth of research areas. See,
for example, Lopes and Beaumont (2010), Bertorelle,
Benazzo and Mona (2010), Beaumont (2010), Csilléry
et al. (2010) and Sisson and Fan (2011) for a partial
overview of the application of ABC methods.

ABC introduces two principal approximations to the
posterior distribution. First, the posterior distribution
of the full data set, p(θ |yobs), is approximated by
p(θ |sobs) ∝ p(sobs|θ)p(θ), where sobs = S(yobs) is a
vector of summary statistics of lower dimension than
the data yobs. In this manner, p(θ |sobs) ≈ p(θ |yobs)

is a good approximation if sobs is highly informative
for the model parameters, and p(θ |sobs) = p(θ |yobs) if
sobs is sufficient. As p(sobs|θ) is also likely to be com-
putationally intractable if p(yobs|θ) is computationally
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intractable, a second approximation is constructed as
pABC(θ |sobs) = ∫

p(θ, s|sobs) ds, with

p(θ, s|sobs) ∝ Kε

(‖s − sobs‖)
p(s|θ)p(θ),(1)

where Kε(‖u‖) = K(‖u‖/ε)/ε is a standard smooth-
ing kernel with scale parameter ε > 0. As a re-
sult of (1), approximating the target p(θ |sobs) by
pABC(θ |sobs) can be shown to be a good approximation
if the kernel scale parameter, ε, is small enough, fol-
lowing standard kernel density estimation arguments
(e.g., Blum, 2010a).

In combination, both approximations allow for prac-
tical methods of sampling from pABC(θ |sobs) that
avoid explicit evaluation of the intractable likelihood
function, p(yobs|θ). A simple rejection-sampling algo-
rithm to achieve this was proposed by Pritchard et al.
(1999) (see also Marjoram et al., 2003), which pro-
duces draws from p(θ, s|sobs). In general terms, an
importance-sampling version of this algorithm pro-
ceeds as follows:

(1) Draw a candidate parameter vector from the
prior, θ ′ ∼ p(θ);

(2) Draw summary statistics from the model s′ ∼
p(s|θ ′);

(3) Assign to (θ ′, s′) a weight, w′, that is propor-
tional to Kε(‖s′ − sobs‖).
Here, the sampling distribution for (θ ′, s′) is the prior
predictive distribution, p(s|θ)p(θ), and the target dis-
tribution is p(θ, s|sobs). Using equation (1), it is then
straightforward to compute the importance weight
for the pair (θ ′, s′). The weight is proportional to
p(θ ′, s′|sobs)/[p(s ′|θ ′)p(θ ′)] = Kε(‖s′−sobs‖), which
is free of intractable likelihood terms, p(s ′|θ ′). The
manner by which the intractable likelihoods cancel be-
tween sampling and target distributions forms the basis
for the majority of ABC algorithms.

Clearly, both ABC approximations to the posterior
distribution help to avoid the computational intractabil-
ity of the original problem. The first approximation
allows the kernel weighting of the second approxi-
mation, Kε(‖s − sobs‖), to be performed on a lower
dimension than that of the original data, yobs. Ker-
nel smoothing is known to suffer from the curse of
dimensionality (e.g., Blum, 2010a), and so keeping
dim(s) ≤ dim(y) as small as possible helps to improve
algorithmic efficiency. The second approximation (1)
allows the sampler weights (or acceptance probabili-
ties, if one considers rejection-based samplers, such as
Markov chain Monte Carlo) to be free of intractable
likelihood terms.

In practice, however, there is typically a trade-off
between the two approximations: if the dimension of
s is large so that the first approximation, p(θ |sobs) ≈
p(θ |yobs), is good, the second approximation may then
be poor due to the inefficiency of kernel smoothing in
large dimensions. Conversely, if the dimension of s is
small while the second approximation (1) will be good
(with a small kernel scale parameter, ε), any loss of
information in the mapping sobs = S(yobs) means that
the first approximation may be poor. Naturally, a low-
dimensional and near-sufficient statistic, s, would pro-
vide a near-optimal and balanced choice.

For a given set of summary statistics, much work
has been done on deriving more efficient sampling al-
gorithms to reduce the effect of the second approx-
imation by allowing a smaller value for the kernel
scale parameter, ε, which in turn improves the approx-
imation pABC(θ |sobs) ≈ p(θ |sobs). The greater the al-
gorithmic efficiency, the smaller the scale parameter
that can be achieved for a given computational bur-
den. These algorithms include Markov chain Monte
Carlo (Marjoram et al., 2003; Bortot, Coles and Sisson,
2007) and sequential Monte Carlo techniques (Sisson,
Fan and Tanaka, 2007; Toni et al., 2009; Beaumont
et al., 2009; Drovandi and Pettitt, 2011; Peters, Fan
and Sisson, 2012; Del Moral, Doucet and Jasra, 2012).
By contrast, the regression-based methods described
in Section 2.1 do not aim at reducing the scale pa-
rameter ε but rather explicitly account for the imper-
fect match between observed and simulated summary
statistics (Beaumont, Zhang and Balding, 2002; Blum
and François, 2010).

Achieving a good trade-off between the two approx-
imations revolves around the identification of a set of
summary statistics, s, which are both low-dimensional
and highly informative for θ . A number of meth-
ods, primarily based on dimension reduction ideas,
have been proposed to achieve this (Joyce and Mar-
joram, 2008; Wegmann, Leuenberger and Excoffier,
2009; Nunes and Balding, 2010; Blum and François,
2010; Blum, 2010b; Fearnhead and Prangle, 2012).
The choice of summary statistics is one of the most
important aspects of a statistical analysis using ABC
methods (along with the choice of algorithm). Poor
specification of s can have a large and detrimental im-
pact on both ABC model approximations.

In this article we provide the first detailed review and
comparison of the performance of the current methods
of dimension reduction for summary statistics within
the ABC framework. We characterize these methods
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into three nonmutually exclusive classes: (i) best sub-
set selection, (ii) projection techniques and (iii) regu-
larization approaches. As part of this analysis, we in-
troduce two additional novel techniques for dimension
reduction within ABC. The first adopts the ideas of
Akaike and Bayesian information criteria to the ABC
framework, whereas the second makes use of ridge re-
gression as a regularization procedure for ABC. The
dimension reduction methods are compared through
the analysis of three challenging models and data sets.
These involve the analysis of a coalescent model with
recombination (Joyce and Marjoram, 2008), an eval-
uation of the evolutionary fitness cost of mutation in
drug-resistant tuberculosis (Luciani et al., 2009) and an
assessment of the number and size-distribution of parti-
cle inclusions in the production of clean steels (Bortot,
Coles and Sisson, 2007).

The layout of this article is as follows: in Section 2
we classify and review the existing methods of sum-
mary statistic dimension reduction in ABC, and in Sec-
tion 3 we outline our two additional novel methods.
A comparative analysis of the performance of each of
these methods is provided in Section 4. We conclude
with a discussion.

2. CLASSIFICATION OF ABC DIMENSION
REDUCTION METHODS

In a typical ABC analysis, an initial collection of
statistics s� = (s1, . . . , sp) is chosen by the modeler,
the elements of which have the potential to be infor-
mative for the model parameters, θ� = (θ1, . . . , θq).
Choice of these initial statistics is highly problem spe-
cific, and the number of candidate statistics, p, often
considerably outnumbers the number of model param-
eters, q , that is, p � q (e.g., Bortot, Coles and Sisson,
2007; Allingham, King and Mengersen, 2009; Luciani
et al., 2009). For example, Bortot, Coles and Sisson
(2007) and Allingham, King and Mengersen (2009)
use the ordered observations S(y) = (s(1), . . . , s(p)) so
that there is no loss of information at this stage. The
analysis then proceeds by either using all p statistics in
full or by attempting to reduce their dimension while
minimizing information loss. Note that the most suit-
able set of summary statistics for an analysis may be
data set dependent, as the information content of sum-
mary statistics may vary within the parameter space, �

(an exception is when sufficient statistics are known).
As such, any analysis should also consider establish-
ing potentially different summary statistics when re-
implementing any model with a different data set.

Methods of summary statistics dimension reduction
for ABC can be broadly classified into three nonmu-
tually exclusive classes. The first class of methods fol-
lows a best subset selection approach. Here, candidate
subsets are evaluated and ranked according to various
information-based criteria, such as measures of suffi-
ciency (Joyce and Marjoram, 2008) or the entropy of
the posterior distribution (Nunes and Balding, 2010).
In this article we contribute additional criteria for this
process derived from Akaike and Bayesian informa-
tion criteria arguments. From these criteria, the highest
ranking subset (or, alternatively, a subset consisting of
those summary statistics which demonstrate clear im-
portance) is then chosen for the final analysis.

The second class of methods can be considered as
projection techniques. Here, the dimension of (s1, . . . ,

sp) is reduced by considering linear or nonlinear com-
binations of the summary statistics. These methods
make use of a regression layer within the ABC frame-
work, whereby the response variable, θ , is regressed
by the (possibly transformed) predictor variables, s

(Beaumont, Zhang and Balding, 2002; Blum and
François, 2010). These projection methods include par-
tial least squares regression (Wegmann, Leuenberger
and Excoffier, 2009), feed-forward neural networks
(Blum and François, 2010) and regression guided
by minimum expected posterior loss considerations
(Fearnhead and Prangle, 2012).

In this article we introduce a third class of methods
for dimension reduction in ABC, based on regulariza-
tion techniques. Using ridge regression, we also make
use of the regression layer between the parameter θ and
the summary statistics, s. However, rather than explic-
itly considering a selection of summary statistics, we
propose to approach this implicitly, by shrinking the
regression coefficients toward zero so that uninforma-
tive summary statistics have the weakest contribution
in the regression equation.

In the remainder of this section we discuss each
of these methods in more detail. We first describe
the ideas behind ABC regression adjustment strate-
gies (Beaumont, Zhang and Balding, 2002; Blum and
François, 2010), as many of the dimension reduction
techniques build on this framework.

2.1 Regression Adjustment in ABC

Standard ABC methods suffer from the curse of di-
mensionality in that the rate of convergence of poste-
rior expectations with respect to pABC(θ |sobs) (such as
the Nadaraya–Watson estimator of the posterior mean)
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decreases dramatically as the dimension of the sum-
mary statistics, p, increases (Blum, 2010a). ABC re-
gression adjustment (Beaumont, Zhang and Balding,
2002) aims to avoid this by explicitly modeling the
discrepancy between s and sobs. When describing re-
gression adjustment methods, for notational simplicity
and clarity of exposition, we assume that the parame-
ter of interest, θ , is univariate (i.e., q = 1). Regression
adjustment methods may be readily applied to multi-
variate θ , by using a different regression equation for
each parameter, θ1, . . . , θq , separately.

The simplest model for this is a homoscedastic re-
gression in the region of sobs, so that

θi = m
(
si) + ei,

where (θ i, si) ∼ p(s|θ)p(θ) are i = 1, . . . , n draws
from the prior predictive distribution, m(si) = E[θ |s =
si] is the mean function, and the ei are zero-mean ran-
dom variates with common variance. To estimate the
conditional mean m(·), Beaumont, Zhang and Balding
(2002) assumed a linear model

m
(
si) = α + β�si(2)

in the neighborhood of sobs. An estimate of the mean
function, m̂(·), is obtained by minimizing the weighted
least squares criterion

∑n
i=1 wi‖m(si) − θi‖2, where

wi = Kε(‖si − sobs‖). A weighted sample from the
posterior distribution, pABC(θ |sobs), is then obtained
by the adjustment

θ∗i = m̂(sobs) + (
θi − m̂

(
si))(3)

for i = 1, . . . , n. In the above, the kernel scale param-
eter ε controls the bias-variance trade-off: increasing
ε reduces variance by increasing the effective sample
size—the number of accepted simulations when using
a uniform kernel K—but increases bias arising from
departures from a linear mean function m(·) and ho-
moscedastic error structure (Blum, 2010a).

Blum and François (2010) proposed the more flexi-
ble, heteroscedastic model

θi = m
(
si) + σ

(
si)ei,(4)

where σ 2(si) = V[θ |s = si] denotes the conditional
variance. This variance is estimated using a second re-
gression model for the log of the squared residuals,
that is, log(θ i − m̂(si))2 = logσ 2(si) + ηi , where the
ηi are independent, zero-mean variates with common
variance. The equivalent adjustment to (3) is then given
by

θ∗i = m̂(sobs) + [
θi − m̂

(
si)] σ̂ (sobs)

σ̂ (si)
,(5)

where σ̂ (s) denotes the estimate of σ(s). The kernel
scale parameter, ε, plays the same role as for the ho-
moscedastic model, except with more flexibility on
deviations from homoscedasticity. Nott et al. (2013)
have demonstrated that regression adjustment ABC
algorithms produce samples, {θ∗i}, for which first-
and second-order moment summaries approximate ad-
justed expectation and variance for a Bayes linear anal-
ysis. We do not describe here an alternative regression
adjustment method where the summary statistics are
rather considered as the dependent variables and the
parameters as the independent variables of the regres-
sion (Leuenberger and Wegmann, 2010).

2.2 Best Subset Selection Methods

Best subset selection methods are conceptually sim-
ple, but are cumbersome to manage for large numbers
of potential summary statistics, s = (s1, . . . , sp). Ex-
haustive enumeration of the 2p − 1 possible combina-
tions of summary statistics is practically infeasible be-
yond a moderate value of p. This is especially true of
Markov chain Monte Carlo or sequential Monte Carlo
based analyses, which require one sampler implemen-
tation per combination. As a result, stochastic or deter-
ministic (greedy) search procedures, such as forward or
backward selection, are required to implement them.

2.2.1 A sufficiency criterion. The first principled
approach to dimension reduction in ABC was the ε-
sufficiency concept proposed by Joyce and Marjo-
ram (2008), which was used to determine whether
to include an additional summary statistic, sk , to
a model already containing statistics s1, . . . , sk−1.
Here, noting that the difference between the log like-
lihoods of p(s1, . . . , sk|θ) and p(s1, . . . , sk−1|θ) is
logp(sk|s1, . . . , sk−1, θ), Joyce and Marjoram (2008)
defined the set of statistics s1, . . . , sk−1 to be ε-
sufficient relative to sk if

δk = sup
θ

logp(sk|s1, . . . , sk−1, θ)

− inf
θ

logp(sk|s1, . . . , sk−1, θ)(6)

≤ ε.

Accordingly, if an estimate of δk (i.e., the “score” of sk
relative to s1, . . . , sk−1) is greater than ε, then there is
enough additional information content in sk to justify
including it in the model. In practice, Joyce and Mar-
joram (2008) implement a conceptually equivalent as-
sessment, whereby sk is added to the model if the ratio
of posteriors

Rk(θ) = pABC(θ |s1, . . . , sk−1, sk)

pABC(θ |s1, . . . , sk−1)
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differs from one by more than some threshold value
T (θ) for any value of θ . As such, a statistic sk will be
added to the model if the resulting posterior changes
sufficiently at any point. The threshold, T (θ), is user-
specified, with one particular choice described in Sec-
tion 5 of Joyce and Marjoram (2008).

This procedure can be implemented within any step-
wise search algorithm, each of which have various pros
and cons. Following the definition (6), the resulting op-
timal subset of summary statistics is then ε-sufficient
relative to each one of the remaining summary statis-
tics. Here ε intuitively represents an acceptable error in
determining whether sk contains further useful infor-
mation in addition to s1, . . . , sk . This quantity is also
user-specified, and so the final optimal choice of sum-
mary statistics will depend on the chosen value.

Sensitivity to the choice of ε aside, this approach
may be criticized in that it assumes that every change
to the posterior obtained by adding a statistic, sk , is
beneficial. It is conceivable that attempting to include
a completely noninformative statistic, where the ob-
served statistic is unlikely to have been generated under
the model, will result in a sufficiently modified poste-
rior as measured by ε, but one which is more biased
away from the true posterior p(θ |yobs) than without in-
cluding sk . A toy example illustrating this was given by
Sisson and Fan (2011).

A further criticism is that the amount of computation
required to evaluate Rk(θ) for all θ , and on multiple oc-
casions, is considerable, especially for large q . In prac-
tice, Joyce and Marjoram (2008) considered θ to be
univariate, and approximated continuous θ over a dis-
crete grid in order to keep computational overheads to
acceptable levels. As such, this method appears largely
restricted to dimension reduction for univariate param-
eters (q = 1).

2.2.2 An entropy criterion. Nunes and Balding
(2010) propose the entropy of a distribution as a heuris-
tic to measure the informativeness of candidate com-
binations of summary statistics. Since entropy mea-
sures information and a lack of randomness (Shannon,
1948), the authors propose minimizing the entropy of
the approximate posterior, pABC(θ |sobs), over subsets
of the summary statistics, s, as a proxy for determin-
ing maximal information about a parameter of interest.
High entropy results from a diffuse posterior sample,
whereas low entropy is obtained from a posterior which
is more precise in nature.

Nunes and Balding (2010) estimate entropy us-
ing the unbiased kth nearest neighbor estimator of

Singh et al. (2003). For a weighted posterior sample,
(w1, θ1), . . . , (wn, θn), where

∑
i w

i = 1, this estima-
tor can be written as

Ê = log
[

πq/2

�(q/2+1)

]
− ψ(k) + logn

(7)

+ q

n∑
i=1

wi log Ĉ−1
i

(
k/(n − 1)

)
,

where q = dim(θ), ψ(x) = �′(x)/�(x) denotes the
digamma function, and where Ĉi(·) denotes the em-
pirical distribution function of the Euclidean distance
from θi to the remainder of the weighted posterior
sample, that is, of the weighted samples {(w̃j ,‖θi −
θj‖)}j �=i , where w̃j = wj/

∑
j �=i w

j . Following Singh
et al. (2003), the original work of Nunes and Bald-
ing (2010) used k = 4 and was based on an equally
weighted posterior sample (i.e., with wi = 1/n, i =
1, . . . , n), so that Ĉ−1

i (k/(n − 1)) denotes the Eu-
clidean distance from θ i to its kth closest neighbor in
the posterior sample {θ1, . . . , θ i−1, θ i+1, . . . , θn}.

While minimum entropy could in itself be used to
evaluate the informativeness of a vector of summary
statistics for θ (although see the criticism of entropy
below), Nunes and Balding (2010) propose a second
stage to their analysis, which aims to assess the perfor-
mance of a candidate set of summary statistics using a
measure of posterior error. For example, when the true
parameter vector, θtrue, is known, the authors suggest
the root sum of squared errors (RSSE), given by

RSSE =
(

n∑
i=1

wi
∥∥θi − θtrue

∥∥2
)1/2

,(8)

where the measure ‖θi − θtrue‖ compares the compo-
nents of θ on a suitable scale (and so some component-
wise standardization may be required). Naturally, the
true parameter value, θtrue, is unknown in practice.
However, if the simulated summary statistics from the
samples (θ i, si) are treated as observed data, it is clear
that θtrue = θi for the posterior pABC(θ |si). As such,
the RSSE can be easily computed with a leave-one-out
technique.

As the subset of summary statistics that minimizes
(8) will likely vary over observed data sets, si , Nunes
and Balding (2010) propose minimizing the average
RSSE over some number of simulated data sets which
are close to the observed, sobs. To avoid circularity,
Nunes and Balding (2010) define these “close” data
sets to be the j = 1, . . . , n∗ simulated data sets, {sj },
that minimize ‖sj

ME −sME‖, where s
j
ME and sME are the
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vectors of minimum entropy summary statistics com-
puted via (7) from sj and the observed summary statis-
tics, sobs, respectively. That is, the quantity

RSSE = 1

n∗
n∗∑

j=1

RSSEj(9)

is minimized (over subsets of summary statistics),
where RSSEj corresponds to (8) using the simulated
data set sj .

This approach is intuitive and is attractive because
the second stage directly measures error in the pos-
terior with respect to a known truth, θtrue, which is
not typically considered in other ABC dimension re-
duction approaches, albeit at the extra computational
expense of a two-stage procedure. A weakness of the
first stage, however, is the assumption that addition of
an informative statistic will reduce the entropy of the
resulting posterior distribution. An example of when
this does not occur is when the posterior distribution
is diffuse with respect to the prior—for instance, if an
overly precise prior is located in the distributional tails
of the posterior (e.g., Jeremiah et al., 2011). In this
case, attempting to include an informative additional
statistic, sk , can result in a distribution that is more dif-
fuse than with sk excluded. As such, the entropic ap-
proach is therefore mostly suited to models with rela-
tively diffuse prior distributions. Another potential crit-
icism of the first stage is that minimizing the entropy
does not necessarily provide the minimal subset of suf-
ficient statistics. This provides an argument for consid-
ering the mutual information between θ and s, rather
than the entropy (Barnes et al., 2012; see also Filippi,
Barnes and Stumpf, 2012). However, it is clear that the
overall approach of Nunes and Balding (2010) could
easily be implemented with alternative first-stage se-
lection criteria.

2.2.3 AIC and BIC criteria. Information criteria
based on Akaike and Bayesian information are natural
best subset selection techniques for summary statistic
dimension reduction in ABC analyses. We introduce
and develop these criteria in Section 3.1.

2.3 Projection Techniques

Selecting a best subset of summary statistics from
s = (s1, . . . , sp) suffers from the problem that it may
require several statistics to provide the same informa-
tion content as a single, highly informative statistic that
was not specified in the initial set, s. To avoid this, pro-
jection techniques aim to combine the elements of s

through linear or nonlinear transformations, in order to

construct a potentially much lower-dimensional set of
highly informative statistics.

One of the main advantages of projection techniques
is that, unlike best subset selection methods, they scale
well with increasing numbers of summary statistics.
They can handle large numbers of possibly uninforma-
tive summary statistics, in addition to accounting for
high levels of interdependence and multicollinearity.
A minor disadvantage of projection techniques is that
the final sets of projected summary statistics typically
(but not universally) lack interpretability. In addition,
most projection methods require the specification of a
hyperparameter that governs the number of projections
to perform.

2.3.1 Partial least squares regression. Partial least
squares regression seeks the orthogonal linear combi-
nations of the explanatory variables which have high
variance and high correlation with the response vari-
able (e.g., Boulesteix and Strimmer, 2007; Vinzi et al.,
2010; Abdi and Williams, 2010). Wegmann, Leuen-
berger and Excoffier (2009) proposed the use of par-
tial least squares regression for dimension reduction in
ABC, where the explanatory variables are the suitably
(e.g., Box–Cox) transformed summary statistics, s, and
the response variables is the parameter vector, θ .

The output of a partial least squares analysis is the set
of k orthogonal components of the regression design
matrix

X =
⎛
⎜⎝

1 s1
1 · · · s1

p

...
...

. . .
...

1 sn
1 · · · sn

p

⎞
⎟⎠(10)

that are optimally correlated (in a specific sense)
with θ . Here, si

j denotes the j th component of the ith

simulated summary statistic, si . To choose the appro-
priate number of orthogonal components, Wegmann,
Leuenberger and Excoffier (2009) examine the root
mean square error of θ for each value of k, as esti-
mated by a leave-one-out cross-validation strategy. For
a fixed number of components, k, this corresponds to

RMSEk =
(

1

n

n∑
i=1

∥∥m̂−i
k

(
si) − θi

∥∥2
)1/2

,(11)

where m̂−i
k (s) denotes the mean response of the par-

tial least squares regression, estimated without the ith
simulated summary statistic, si (e.g., Mevik and Ced-
erkvist, 2004). The optimal number of components is
then chosen by inspection of the RMSEk values, based
on minimum gradient change arguments (e.g., Mevik
and Wehrens, 2007).



DIMENSION REDUCTION METHODS IN ABC 195

A potential disadvantage of partial least squares re-
gression, as performed by Wegmann, Leuenberger and
Excoffier (2009), is that it aims to infer a global linear
relationship between θ and s based on draws from the
prior predictive distribution, p(s|θ)p(θ). This may dif-
fer from the relationship observed in the region around
s = sobs, and as such may produce unsuitable orthog-
onal components as a result. A workaround for this
would be to follow Fearnhead and Prangle (2012) (see
Section 2.3.3) and elicit the relationship between θ and
s based on samples from a truncated prior (θ i, si) ∼
p(s|θ)p(θ)I (θ ∈ �R), where �R ⊂ � restricts the
samples, θi , to regions of significant posterior density.
One simple way to identify such a region is through a
pilot ABC analysis (Fearnhead and Prangle, 2012).

2.3.2 Neural networks. In the regression setting,
feed-forward neural networks can be considered as
a nonlinear generalization of the partial least squares
regression technique described above. Blum and
François (2010) proposed the neural network as a ma-
chine learning approach to dimension reduction by es-
timating the conditional mean and variance functions,
m(·) and σ 2(·) in the nonlinear, heteroscedastic regres-
sion adjustment model (4)—see Section 2.1.

The neural network reduces the dimension of the
summary statistics to H < p, using H hidden units in
the network, z1, . . . , zH , defined as

zj = h

( p∑
k=1

ω
(1)
jk sk + ω

(1)
j0

)
(12)

for j = 1, . . . ,H . The ω
(1)
jk terms are the weights of the

first layer of the neural network, and h(·) is a nonlinear
function, typically the logistic function. The reduced
and nonlinearly transformed summary statistics of the
hidden units, zj , are then combined through the regres-
sion function of the neural network

m(s) = g

(
H∑

j=1

ω
(2)
j zj + ω

(2)
0

)
,(13)

where ω
(2)
j denotes the weights of the second layer of

the neural network and g(·) is a link function. A simi-
lar neural network is used to model logσ 2(s) (e.g., Nix
and Weigend, 1995), with the possibility of allowing
for a different number of hidden units to estimate het-
eroscedasticity in the regression adjustment compared
to that in the mean function m(s).

Rather than dynamically determining the number of
hidden units H , Blum and François (2010) propose to
specify a fixed value, such as H = q where q = dim(θ)

is the number of parameters to infer. The weights of
the neural network are then obtained by minimizing the
regularized least-squares criterion

n∑
i=1

wi
∥∥m(

si) − θi
∥∥2 + λ‖ω‖2,

where ω is the vector of all weights in the neural
network model for m(s), wi = Kε(‖si − sobs‖) is
the weight of the sample (θ i, si) ∼ p(s|θ)p(θ), and
λ > 0 denotes the regularization parameter (termed the
weight-decay parameter for neural networks). The idea
of regularization is to shrink the weights toward zero
so that only informative summary statistics contribute
in the models (12) and (13) for m(s). Following the
estimation of m(s), a similar regularization criterion
is used to estimate logσ 2(s). Both mean and variance
functions can then be used in the regression adjustment
of equation (5).

2.3.3 Minimum expected posterior loss. Fearnhead
and Prangle (2012) proposed a decision-theoretic di-
mension reduction method with a slightly different
aim to previous dimension reduction approaches. Here,
rather than constructing appropriate summary statistics
to ensure that pABC(θ |sobs) ≈ p(θ |yobs) is a good ap-
proximation, pABC(θ |sobs) is alternatively required to
be a good approximation in terms of the accuracy of
specified functions of the model parameters. In partic-
ular, assuming that interest is in point estimates of the
model parameters, if θtrue denotes the true parameter
value and θ̂ an estimate, then Fearnhead and Prangle
(2012) propose to choose those summary statistics that
minimize the quadratic loss

L(θtrue, θ̂ ) = (θtrue − θ̂ )�A(θtrue − θ̂ )

for some p × p positive-definite matrix A. This loss
is minimized for sobs = Ep(θ |yobs)(θ), the true posterior
mean.

To estimate Ep(θ |y)(θ), Fearnhead and Prangle
(2012) propose least squares regression models for the
k = 1, . . . , q model parameters, (θ1, . . . , θq), given by

θi
k = Ep(θ |y)(θk) + ηi

k = αk + β�
k f

(
si) + ηi

k,(14)

where (θ i, si) ∼ p(s|θ)p(θ) are draws from the prior
predictive distribution, αk and βk are unknown regres-
sion parameters to be estimated, and ηi

k denotes a zero-
mean noise process. Here f (s) is a vector of poten-
tially nonlinear transformations of the data (i.e., of the
original summary statistics). For example, in one ap-
plication, Fearnhead and Prangle (2012) use the poly-
nomial basis functions f (s) = (s, s2, s3, s4), that is,
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a vector of length 4p, where p = dim(s) is the num-
ber of elements in s, consisting of the first four pow-
ers of each element of s. The choice of f (s) can be
based on standard diagnostics of regression fit, such
as BIC. If the prior π(θ) is diffuse with respect to
the posterior, then one may estimate the regression
model (14) based on samples from a truncated prior
(θ i, si) ∼ p(s|θ)p(θ)I (θ ∈ �R), where �R ⊂ � re-
stricts the samples, θ i , to regions of significant poste-
rior density (e.g., via a pilot ABC analysis). Clearly,
more sophisticated alternatives to least squares regres-
sion may be used.

After fitting equation (14), the new, single summary
statistic for the parameter θk is β̂�

k f (s), where β̂k de-
notes the least squares estimate of βk . The resulting q-
dimensional vector of new summary statistics is then
used in a standard ABC analysis. Fearnhead and Pran-
gle (2012) show that these new statistics can lead to
posterior inferences that considerably outperform in-
ferences based on the original statistics, s. Nott, Fan
and Sisson (2012) demonstrate that these summary
statistics can be viewed as Bayes linear estimates of
the posterior mean.

2.4 Regularization Approaches

Regularization approaches aim to reduce overfitting
in a model by penalizing model complexity. A sim-
ple example where overfitting can occur in ABC is
the standard regression adjustment (Beaumont, Zhang
and Balding, 2002; Section 2.1), where there is a risk
of over adjusting the parameters, θi , in the direction
of uninformative summary statistics via (3). Regular-
ization is used as part of the estimation of the neural
network weights in the projection technique proposed
by Blum and François (2010) (see Section 2.3.2). As
such, the regression adjustment of Beaumont, Zhang
and Balding (2002) is a procedure that could greatly
benefit from the inclusion of regularization techniques.
We introduce the ridge regression adjustment to ABC
in Section 3.2.

2.5 Other Methods

There are a number of alternative approaches to di-
mension reduction for ABC, including methods that
aim to circumvent the dimensionality issue, that we do
not include in our comparative analysis (Section 4).
Drovandi, Pettitt and Faddy (2011) proposed to adopt
ideas from indirect inference (e.g., Heggland and
Frigessi, 2004) as a means to identify summary statis-
tics for an ABC analysis. This involves specification of
a model p̃(·|θ̃ ) which is similar to p(·|θ), but which

is computationally tractable. The idea is that estimates
of θ̃ under p̃(·|θ̃ ), such as maximum likelihood esti-
mates or posterior means, are likely to be informative
about θ if p(·|θ) and p̃(·|θ̃ ) are sufficiently similar.
This approach can be considered similar in spirit to
that of Fearnhead and Prangle (2012) which uses esti-
mated posterior means under a pilot ABC analysis (see
Section 2.3.3). Blum (2010b) proposed a Bayesian cri-
terion related to the BIC (see Section 3.1) as a best
subset selection procedure. The idea is to implement
a Bayesian analysis of the standard regression adjust-
ment model (3). The criterion, called the evidence ap-
proximation, seeks the best subset of summary statis-
tics to regress the parameter θ . In comparison to the
BIC, the evidence criterion is attractive because it con-
tains no approximation in its derivation. However, the
downside is that its computation requires the tuning of
the Bayesian linear regression hyperparameters. Addi-
tionally, Aeschbacher, Beaumont and Futschik (2012)
proposed to use boosting for choosing summary statis-
tics and Jung and Marjoram (2011) developed a genetic
algorithm that weights the summary statistics so that
individual statistics do not contribute equally to the
comparisons between observations and simulations.
The aim is that the uninformative summary statistics
should ideally have negligible weights.

Finally, a number of recent ABC modeling ap-
proaches have attempted to find ways of accurately
handling the full vector of initial statistics, s [or the
full data set, s = S(y) = y], thereby avoiding the
need to perform dimension reduction. Bonassi, You
and West (2011) propose fitting a (p + q)-dimen-
sional mixture of Gaussian distributions to the sam-
ple (θ i, si) ∼ p(s|θ)p(θ), i = 1, . . . , n, and then find-
ing the distribution of θ |sobs by conditioning on ob-
serving s = sobs. This approach potentially requires
a large number of mixture components to accurately
model the joint density when (p + q) is large. Fan,
Nott and Sisson (2012) suggest using an approxima-
tion to p(s|θ) by approximating each marginal like-
lihood function, p(si |θ), using a mixture of experts
model, where the weights, mean and variance of each
mixture component is allowed to depend on θ , and
then inducing dependence between these marginals us-
ing a mixture of multivariate Gaussian distributions.
This approach requires continuous summary statis-
tics for the mixture regression and is practically use-
ful for moderate p (i.e., hundreds of summary statis-
tics). Writing y = (y1, . . . , yp), Barthelmé and Chopin
(2011) propose to factorize the likelihood as p(y|θ) =
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∏
i p(yi |y1:i−1, θ) and construct an ABC approxima-

tion of each component in turn [i.e., pABC(yi |y1:i−1) =∫
Kε(‖yi − yobs,i‖)p(yi |y1:i−1, θ) dyi] with computa-

tion performed using an expectation-propagation algo-
rithm (Minka, 2001). This approach, while potentially
fast and accurate, assumes that conditional simulation
of yi ∼ p(yi |y1:i−1, θ) is available for i = 1, . . . , n,
and so is not suitable for all models and analyses.
Last, Jasra et al. (2012) exploit the structure of hid-
den Markov models to perform an iterative sequence
of ABC analyses, each using only a single data point
in each analysis, and Nakagome, Fukumizu and Mano
(2012) propose a novel approach to post-processing
ABC importance sampling output whose convergence
rate is claimed to avoid the curse of dimensionality.

3. NEW DIMENSION REDUCTION METHODS

In this section we introduce two new dimension re-
duction criteria for ABC methods. The first is a best
subset selection procedure deriving from AIC and BIC
criteria, constructed under implementation of the lo-
cal linear model of equation (2) (Beaumont, Zhang and
Balding, 2002). A similar idea was proposed and tested
for a Gaussian model by Sedki and Pudlo (2012). The
second is a modification to the fitting of (2) by consid-
ering ridge regression instead of least squares regres-
sion. Both of these methods are now implemented in
the freely available R package abc (Csilléry, François
and Blum, 2012).

3.1 AIC and BIC Criteria

Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC) provide a measure of the
relative goodness of fit of a statistical model. Each
can be expressed as the sum of the maximized log-
likelihood that measures the fit of the model to the data,
and a penalty for model complexity (Akaike, 1974;
Schwarz, 1978). While evaluation of logp(yobs|θ̂mle)

or logp(sobs|θ̂mle) is unavailable in the ABC frame-
work and determination of the maximum likelihood
estimator, θ̂mle, is challenging, a simple and tractable
likelihood function is available though the local-linear
regression model of equation (2) (Section 2.1).

Specifically, we consider the local linear regression
model equation (2) of Beaumont, Zhang and Bald-
ing (2002) for each parameter θ1, . . . , θq and assume
independent Gaussian errors, ej ∼ N(0, σ 2

j ), for j =
1, . . . , q . Then the AIC becomes

AIC = ñ log
q∏

j=1

σ̂ 2
j + 2d,(15)

where d = q(p + 1) is the number of estimated regres-
sion parameters and ñ is the effective number of simu-
lations used in the local-linear regression model, which
we define as ñ = ∑n

i=1 I (wi > 0) when the kernel Kε

has compact support. Alternative definitions of the ef-
fective number of simulations, such as c

∑n
i=1 wi for

some c > 0, can be on an arbitrary scale, since the least
squares regression solution is insensitive to the scale
of the weights. For any fixed value of c, the value of
c

∑n
i=1 wi will decrease as p = dim(s) increases so

that it will artificially favor larger numbers of (even
uninformative) summary statistics. Our definition of ñ

guarantees that the AIC scores are comparable for dif-
ferent subsets of summary statistics. A downside is that
this definition of ñ is only suitable for kernels, Kε , with
a compact support.

In equation (15), σ̂ 2
j is defined as the weighted mean

of squared residuals for the regression of θj and is
given by

σ̂ 2
j =

∑n
i=1 wi[θi

j − m̂j (s
i)]2∑n

i=1 wi
,

where θi
j is the j th component of θ i and m̂j (s) denotes

the estimate of the mean function mj(s) = E[θj |s]. For
small sample sizes, the corrected AIC, the so-called
AICc, is given by replacing d in (15) by d(d +1)/(ñ−
d − 1) (Hurvich and Tsai, 1989). In the same manner
the BIC can be defined as

BIC = ñ log
q∏

j=1

σ̂ 2
j + d log ñ.(16)

Alternative penalty terms involving the hat matrix of
the regression could also be used in the above (e.g.,
Hurvich, Simonoff and Tsai, 1998; Irizarry, 2001;
Konishi, Ando and Imoto, 2004).

It is instructive to note that in using the linear regres-
sion adjustment (3), the above information criteria may
be expressed as

xIC = ñ log
q∏

j=1

Var
(
θ∗
j

) + penalty term,

where θ∗
j is the j th element of the regression adjusted

vector θ∗ = (θ∗
1 , . . . , θ∗

q ). As such, up to the penalty
terms, both AIC and BIC seek the combination of
summary statistics that minimizes the product of the
marginal variances of the adjusted posterior sample.
Similarly to the entropy criterion of Nunes and Balding
(2010) (see Section 2.2.2), these information criterion
will select those summary statistics that maximize the
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precision of the posterior distribution, pABC(θ |sobs).
However, unlike Nunes and Balding (2010), this pre-
cision is traded off by a penalty for model complexity.

A rationale for the construction of AIC and BIC in
this manner is that the summary statistics that should
be included within an ABC analysis are those which
are good predictors of θ . However, an obvious require-
ment for AIC or BIC to identify an informative statistic
is that the statistic varies (with θ ) within the local range
of the regression model. If a statistic is informative out-
side of this range, but uninformative within it, it will
not be identified as informative under these criteria.

3.2 Regularization via Ridge Regression

As described in Section 2.1, the local-linear re-
gression adjustment of Beaumont, Zhang and Balding
(2002) fits the linear model

θi = α + β�si + ei

based on the prior predictive samples (θ i, si) ∼ p(s|
θ)p(θ) and with regression weights given by wi =
Kε(‖si − sobs‖). (As before, we describe the case
where θ is univariate for notational simplicity and clar-
ity of exposition, but the approach outlined below can
be readily implemented for each component of a mul-
tivariate θ .) However, in fitting the model by minimiz-
ing the weighted least squares criteria,

∑n
i=1 wi‖α −

β�si − θi‖2, there is a risk of over-adjustment by ad-
justing the parameter values via (3) in the direction of
uninformative summary statistics.

To avoid this, implicit dimension reduction within
the regression framework can be performed by alter-
natively minimizing the regularized weighted sum of
squares (Hoerl and Kennard, 1970)

n∑
i=1

wi
∥∥θi − (

α + β�si)∥∥2 + λ‖β‖2(17)

with regularization parameter λ > 0. As with the regu-
larization component within the neural network model
of Blum and François (2010) (Section 2.3.2), with
ridge regression the risk of over-adjustment is reduced
because the regression coefficients, β , are shrunk to-
ward zero by imposing a penalty on their magnitudes.
Note that while we consider ridge regression here,
a number of alternative regularization procedures could
be implemented, such as the Lasso method.

An additional advantage of ridge regression is that
standard least squares estimates, (α̂LS, β̂LS)� = (X� ·
WX)−1X�W�, are not guaranteed to have a unique
solution. Here X is a n × (p + 1) design matrix given

in equation (10), � = (θ1, . . . , θn) is the n × 1 col-
umn vector of sampled θi , and W = diag(w1, . . . ,wn)

is an n × n diagonal matrix of weights. The lack of
a unique solution can arise through multicolinearity
of the summary statistics, which can result in singu-
larity of the matrix X�WX. In contrast, minimiza-
tion of the regularized weighted sum of squares (17)
always has a unique solution, provided that λ > 0.
This solution is given by (α̂ridge, β̂ridge)

� = (X�WX+
λIp)−1X�W�, where Ip denotes the p × p iden-
tity matrix. There are several approaches for dealing
with the regularization parameter λ, including cross-
validation and generalized cross-validation to iden-
tify an optimal value of λ (Golub, Heath and Wahba,
1979), as well as averaging the regularized estimates
(α̂ridge, β̂ridge)

� obtained for different values of λ

(Taniguchi and Tresp, 1997).

4. A COMPARATIVE ANALYSIS

We now provide a comparative analysis of the pre-
viously described methods of dimension reduction
within the context of three previously studied analy-
ses in the ABC literature. Specifically, this includes
the analysis of a coalescent model with recombination
(Joyce and Marjoram, 2008), an evaluation of the evo-
lutionary fitness cost of mutation in drug-resistant tu-
berculosis (Luciani et al., 2009) and an assessment of
the number and size-distribution of particle inclusions
in the production of clean steels (Bortot, Coles and Sis-
son, 2007).

Each analysis is based on n = 1,000,000 simula-
tions where the parameter θ is drawn from the prior
distribution p(θ). The performance of each method
is measured through the RSSE criterion (9) follow-
ing Nunes and Balding (2010), based on the same ran-
domly selected subset of n∗ = 100 samples (θ i, si) =
(θtrue, sobs) as “observed” data sets. When evaluating
the RSSE error measure of equation (8), we give a
weight wi = 1 for the accepted simulations and a
weight of 0 otherwise. As the value of the RSSE (8)
depends on the scale of each parameter, we standard-
ize the parameters in each example by dividing the pa-
rameter values by the standard deviation obtained from
the n = 1,000,000 simulations (with the exception of
the first example, where the parameters are on similar
scales). For comparative ease, and to provide a perfor-
mance baseline for each example, all RSSE results are
presented as relative to the RSSE obtained when us-
ing the maximal vector of summary statistics and no
regression adjustment. In this manner, a relative RSSE
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of x/−x denotes an x% worsening/improvement over
the baseline score.

Within each ABC analysis, we use Euclidean dis-
tance within an Epanechnikov kernel Kε(‖s − sobs‖).
The Euclidean distances are computed after standardiz-
ing the summary statistics with a robust estimate of the
standard deviation (the mean absolute deviation). The
kernel scale parameter, ε, is determined as the value
at which exactly 1% of the simulations, (θ i, si), have
nonzero weight. This yields exactly ñ = 10,000 sim-
ulations that form the final sample from each poste-
rior. To perform the method of Fearnhead and Prangle
(2012), a randomly chosen 10% of the n simulations
were used to fit the regression model that determines
the choice of summary statistics, with the remaining
90% used for the ABC analysis. The final ABC sample
size ñ = 10,000 was kept equal to the other methods
by slightly adjusting the scale parameter, ε. In addi-
tion, for the method of Fearnhead and Prangle (2012),
following exploratory analyses, the regression model
(14) was fitted using f (s) = (s, s2, s3, s4) for exam-
ples 1 and 2 (as described in Section 2.3.3) and us-
ing f (s) = (log s, [log s]2, [log s]3, [log s]4) for exam-
ple 3, always resulting in 4 × p independent variables
in the regression model of equation (14).

When using neural networks or ridge regression to
estimate the conditional mean and variance, m(s) and
σ 2(s), we take the pointwise median of the estimated
functions obtained with the regularization parameters
λ = 10−3,10−2 and 10−1. These values of λ assume
that the summary statistics and the parameters have
been standardized before fitting the regression func-
tion (Ripley, 1994). However, because the optimization
procedure for neural networks (the R function nnet)
only finds local optima, in this case we take the point-
wise median of ten estimated functions, with each op-
timization initialized from a different random starting
point, and randomly choosing the regularization pa-
rameter with equal probability from the above values
(see Taniguchi and Tresp, 1997).

4.1 Example 1: A Coalescent Analysis

This model was previously considered by Joyce and
Marjoram (2008) and Nunes and Balding (2010), each
while proposing their respective ABC dimension re-
duction strategies (see Sections 2.2.1 and 2.2.2). The
analysis focuses on joint estimation of the scaled mu-
tation rate, θ̃ , and the scaled recombination rate, ρ,
in a coalescent model with recombination (Nordborg,

2007). Under this model, 5001 base pair DNA se-
quences for 50 individuals are generated from the coa-
lescent model, with recombination, under the infinite-
sites mutation model, using the software ms (Hudson,
2002). The initial summary statistics, s = (s1, . . . , s6),
are the number of segregating sites (s1), the pairwise
mean number of nucleotidic differences (s2), the mean
R2 across pairs separated by <10% of the simulated
genomic regions (s3), the number of distinct haplo-
types (s4), the frequency of the most common haplo-
type (s5) and the number of singleton haplotypes (s6).

We first examine the performance of ABC without
using dimension reduction techniques. For different
parameter combinations, θ̃ , ρ and (θ̃ , ρ), we compute
the relative RSSE obtained with a single optimal sum-
mary statistic and the relative RSSE obtained when
using all six population genetic statistics (s1–s6) (Ta-
ble 1). When estimating θ̃ only, we find that using only
the number of segregating sites (s1) provides lower rel-
ative RSSE than when including all 6 summary statis-
tics even when performing regression adjustment. For
all other parameter combinations, using a single statis-
tic produces substantially worse than the rejection al-
gorithm with all summary statistics. For all inferences
[i.e., of θ̃ , ρ and (θ̃ , ρ) jointly], regression adjustments
generally improve the inference when using all six
summary statistics, which is consistent with previous
results (Nunes and Balding, 2010). The only exception
is when jointly estimating (θ̃ , ρ), where homoscedastic
linear adjustment neither decreases nor increases the
error obtained with the pure rejection algorithm.

Next, we investigate the performance of each dimen-
sion reduction technique. Table 2 and Figure 1 show
the relative RSSE obtained under each dimension re-
duction method for each parameter combination and
under heteroscedastic regression adjustment. For all
three examples, more complete tables that contain the
results obtained with no regression adjustment and ho-
moscedastic adjustment can be found in the supple-
mentary information to this article (Blum et al., 2013).

The performance achieved with AIC, AICc or BIC
is comparable to (i.e., the same or slightly better than)
the result obtained when including all six population
genetic statistics. When using the ε-sufficiency crite-
rion, we find that the performance is improved for the
inference on θ̃ only. The only best subset selection
method for dimension reduction that substantially and
uniformly improves the performance of ABC posterior
estimates is the entropy-based approach. For the pro-
jection techniques, all methods (partial least squares,



200 BLUM, NUNES, PRANGLE AND SISSON

TABLE 1
Relative RSSE for examples 1 and 2. The leftmost column shows the minimal RSSE when considering
only one summary statistic (with no regression adjustment). Rightmost columns show relative RSSE
using all summary statistics under no, homoscedastic and heteroscedastic regression adjustment. All

RSSE are relative to the RSSE obtained when using no regression adjustment with all summary
statistics. The score of the best method in each analysis (row) is emphasised in boldface

One optimal
statistic (no adj.)

All summary statistics

No adj. Homo adj. Hetero adj.

Example 1 θ̃ −7 (s1) 0 −3 −3
ρ 9 (s5) 0 −5 −4

(θ̃ , ρ) 7 (s1) 0 0 −7

Example 2 α 6 0 −3 −3
c −7 0 −5 −5
ρ −9 0 −8 −8
μ −14 0 −5 −6

(α, c, ρ,μ) 5 0 −4 −4

neural nets and minimum expected posterior loss) out-
perform the adjustment method based on all six popu-
lation genetics statistics, with a large performance ad-
vantage for partial least squares when estimating (θ̃ , ρ)

jointly. By contrast, ridge regression provides no im-
provement over the standard regression adjustment (the
“All” column).

Based on these results, a loose performance ranking
of the dimension reduction methods can be obtained by
computing, for each method, the mean (relative) RSSE
over all parameter combinations θ̃ , ρ and (θ̃ , ρ) us-
ing the heteroscedastic adjustment. The worst perform-
ers were ridge regression and the ε-sufficiency crite-
rion (with a mean relative RSSE of −3%). These are

TABLE 2
Relative RSSE for examples 1–3 for different parameter combinations using each method of dimension reduction, and under heteroscedastic

regression adjustment. Columns denote no dimension reduction (All), BIC, AIC, AICc, the ε-sufficiency criterion (ε-suff), the two-stage
entropy procedure (Ent), partial least squares (PLS), neural networks (NNet), minimum expected posterior loss (Loss) and ridge regression
(Ridge). All RSSE are relative to the RSSE obtained when using no regression adjustment with all summary statistics. The score of the best

method in each analysis (row) is emphasized in boldface

Best subset selection Projection techniques Regularization

All BIC AIC AICc ε-suff Ent PLS NNet1 Loss Ridge1

θ̃ −3 −5 −5 −5 −6 −11 −6 −4 −7 1
ρ −4 −6 −6 −6 0 −12 −7 −8 −7 −3
(θ̃ , ρ) −7 −7 −7 −7 – −24 −16 −7 −6 −6

α −3 −15 −15 −15 0 −17 −13 −15 −17 −15
c −5 −15 −15 −15 −8 −15 −8 −12 −9 −9
ρ −8 −16 −16 −16 −8 −16 1 −12 −9 −10
μ −6 −18 −18 −18 −8 −13 −10 −13 −12 −12
(α, c, ρ,μ) −4 −19 −19 −19 – −13 −10 −9 −12 −11

τ −49 −47 −47 −48 −19 −52 −22 −20/−42 −75 −48/−48
σ −45 −46 −47 −46 −15 −50 −15 −21/−37 −56 −43/−43
ξ −27 −29 −29 −28 −13 −32 −28 −7/−41 −41 −26/−44
(τ, σ, ξ ) −39 −39 −40 −39 – −42 −11 −4/−38 −60 −39/−32

1For the third example, the first value is found by integrating out the regularization parameter, whereas the second one is found by choosing
an optimal regularization parameter with cross-validation. In examples 1 and 2, integration over the regularization parameter is performed.



DIMENSION REDUCTION METHODS IN ABC 201

FIG. 1. Relative RSSE for the different methods of dimension reduction in the three examples. All RSSE are relative to the RSSE obtained
when using no regression adjustment with all summary statistics. Methods of dimension reduction include no dimension reduction (All),
AIC/BIC, the ε-sufficiency criterion (ε-suff), the two-stage entropy procedure (Ent), partial least squares (PLS), neural networks (NNet),
minimum expected posterior loss (Loss) and ridge regression (Ridge). The crosses correspond to situations for which there is no result
available.

followed by the standard regression adjustment with
all summary statistics (−5%) and the AIC/BIC, neu-
ral nets and the posterior loss method (−6%). The best
performing methods are partial least squares (−10%)
and the two-stage entropy-based procedure (−16%).

4.2 Example 2: The Fitness Cost of Drug Resistant
Tuberculosis

We now consider an example of Markov processes
for epidemiological modeling. If a pathogen, such as
Mycobacterium tuberculosis, mutates to gain an evo-
lutionary advantage, such as antibiotic resistance, it
is biologically plausible that this mutation will come
at a cost to the pathogen’s relative fitness. Based on
a stochastic model to describe the transmission and
evolutionary dynamics of Mycobacterium tuberculo-
sis, and based on incidence and genotypic data of the
IS6110 marker, Luciani et al. (2009) estimated the pos-
terior distribution of the pathogen’s transmission cost
and relative fitness. The model contained q = 4 free
parameters: the transmission rate, α, the transmission
cost of drug resistant strains, c, the rate of evolution
of resistance, ρ, and the mutation rate of the IS6110
marker, μ.

Luciani et al. (2009) summarized information gen-
erated from the stochastic model through p = 11 sum-
mary statistics. These statistics were expertly elicited

as quantities that were expected to be informative for
one or more model parameters, and included the num-
ber of distinct genotypes in the sample, gene diversity
for sensitive and resistant cases, the proportion of resis-
tant cases and measures of the degree of clustering of
genotypes, etc. It is considered likely that there is de-
pendence and potentially replicate information within
these statistics.

As before, we examine the relative performance of
the statistics without using dimension reduction tech-
niques. Table 1 shows that for the univariate analysis
of c, ρ or μ, performing rejection sampling ABC with
a single, well-chosen summary statistic can provide an
improved performance over a similar analysis using all
11 summary statistics, under any form of regression ad-
justment. In particular, the proportion of isolates that
are drug resistant is the individual statistic which is
most informative to estimate c (with a relative RSSE of
−7%) and ρ (−9%). For the marker mutation rate, μ,
the most informative statistic is the number of distinct
genotypes, with a relative RSSE of −14%. Conversely,
an analysis using all summary statistics with a regres-
sion adjustment offers the best inferential performance
for α alone, or for (α, c, ρ,μ). These results provide
support for recent arguments in favor of “marginal re-
gression adjustments” (Nott et al., 2013), whereby the
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univariate marginal distributions of a full multivari-
ate ABC analysis are replaced by separately estimated
marginal distributions using only statistics relevant for
each parameter. Here, more precisely estimated mar-
gins can improve the accuracy of the multivariate pos-
terior sample, beyond the initial analysis.

The performance results of each dimension reduc-
tion method are shown in Table 2 and Figure 1. In
contrast with the previous example, here the use of
the AIC/BIC criteria can substantially decrease pos-
terior errors. For example, compared to the linear ad-
justment of all 11 parameters, which produces a mean
relative RSSE between −3% and −8% depending
on the parameter (Table 2), using the AIC/BIC cri-
teria results in a relative RSSE of between −15%
and −19%. The ε-sufficiency criterion produces more
equivocal results, however, as the error is sometimes
increased with respect to baseline performance (e.g.,
+6% when estimating α with homoscedastic adjust-
ment) and sometimes reduced (e.g., −8% for c, ρ and
θ with heteroscedastic adjustment). As with the previ-
ous example, the entropy criterion provides a clear im-
provement to the ABC posterior, and this improvement
is almost comparable to that produced by AIC/BIC. Fi-
nally, the projection and regularization methods mostly
all provide comparable and substantive improvements
compared to the baseline error, with only partial least
squares producing more equivocal results (e.g., +1%
when estimating ρ).

Based on these results, the loose performance rank-
ing of the dimension reduction methods determines the
worst performers to be the standard least squares re-
gression adjustment (with a mean relative RSSE of
−5%), the ε-sufficiency approach (−6%) and partial
least squares (−8%). These are followed by ridge re-
gression (−11%), neural networks and the posterior
loss method (−12%). The best performing methods for
this analysis are the two-stage entropy-based procedure
(−15%) and the AIC/BIC criteria (−17%).

In this example, it is interesting to compare the
performance of the standard linear regression adjust-
ment of all 11 summary statistics (mean relative RSSE
of −5%) with that of the ridge regression equivalent
(mean relative RSSE of −11%). The increase in per-
formance with ridge regression may be attributed to its
more robust handling of multicolinearity of the sum-
mary statistics than under the standard regression ad-
justment. To see this, Figure 2 illustrates the relation-
ship between the relative RSSE (again, relative to using
all summary statistics and no regression adjustment)
and the condition number of the matrix X�WX, for

both the standard regression (top panel) and ridge re-
gression (bottom panel) adjustments based on infer-
ence for (α, c, ρ,μ). The condition number of X�WX

is given by κ = √
λmax/λmin, where λmax and λmin are

the largest and smallest eigenvalues of X�WX. Ex-
tremely large condition numbers are evidence for mul-
ticolinearity.

Figure 2 demonstrates that for large values of the
condition number (e.g., for κ > 108), the least-squares-
based regression adjustment clearly performs very
poorly. The region of κ > 108 corresponds to almost
5% of all simulations, and for these cases the relative
error is hugely increased (w.r.t. rejection) to anywhere
between 5% and 200%. In contrast, for ridge regres-
sion, the relative errors corresponding to κ > 108 are
not larger than the errors obtained for nonextreme con-
dition numbers. This analysis clearly illustrates that,
unlike ridge regression, the standard least squares re-
gression adjustment can perform particularly poorly
when there is multicolinearity between the summary
statistics.

In terms of the original analysis of Luciani et al.
(2009) which used all eleven summary statistics with
no regression adjustment (although with a very low
value for ε), the above results indicate that a more effi-
cient analysis may have been achieved by using a suit-
able dimension reduction technique.

4.3 Example 3: Quality Control in the Production
of Clean Steels

Our final example concerns the statistical modeling
of extreme values. In the production of clean steels, the
occurrence of microscopic imperfections (termed in-
clusions) is unavoidable. The strength of a clean steel
block is largely dependent on the size of the largest
inclusion. Bortot, Coles and Sisson (2007) considered
an extreme value twist on the standard stereological
problem (e.g., Baddeley and Jensen, 2004), whereby
inference is required on the size and number of 3-
dimensional inclusions, based on data obtained from
those inclusions that intersect with a 2-dimensional
slice. The model assumes a Poisson point process of in-
clusion locations with rate parameter τ > 0 and that the
distribution of inclusion size exceedances above a mea-
surement threshold of 5μm are drawn from a general-
ized Pareto distribution with scale and shape param-
eters σ > 0 and ξ , following standard extreme value
theory arguments (e.g., Coles, 2001).

The observed data consist of 112 cross-sectional in-
clusion diameters measured above 5μm. The summary
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FIG. 2. Scatterplots of relative RSSE versus the condition number of the matrix X�WX for linear least squares (top) and ridge (bottom)
regression adjustments. Points are based on joint inference for (α, c, ρ,μ) in example 2 using 1000 randomly selected vectors of summary
statistics, si , as “observed” data. When the minimum eigenvalue, λmin, is zero, the (infinite) condition number is arbitrarily set to be 1025

for visual clarity (open circles on the scatterplot).

statistics thereby comprise 112 equally spaced quan-
tiles of the cross-sectional diameters, in addition to the
number of inclusions observed, yielding p = 113 sum-
mary statistics in total. The ordering of the summary
statistics creates strong dependences between them,
a fact which can be exploited by dimension reduction
techniques. Bortot, Coles and Sisson (2007) considered
two models based on spherical or ellipsoidal shaped in-
clusions. Our analysis here focuses on the ellipsoidal
model.

By construction, the large number (2113) of possible
combinations of summary statistics means that the best
subset selection methods are strictly not practicable for
this analysis, unless the number of summary statistics
is reduced further a priori. In order to facilitate at least
some comparison with the other dimension reduction
approaches, for the best subset selection methods only,
we consider six candidate subsets. Each subset con-
sists of the number of observed inclusions in addition
to 5, 10, 20, 50, 75 or 112 empirical quantiles of the in-
clusion size exceedances (the latter corresponds to the
complete set of summary statistics). Due to the extreme
value nature of this analysis, the parameter estimates
are likely to be more sensitive to the precise values of

the larger quantiles. As such, rather than using equally
spaced quantiles, we use a scheme which favors quan-
tiles closer to the maximum inclusion and we always
include the maximum inclusion.

The relative RSSE obtained under each dimension
reduction method is shown in Table 2 and Figure 1.
In comparison to an analysis using all 113 summary
statistics and regression adjustment (the “All” column),
the best subset selection approaches do not in gen-
eral offer any improvement. While the entropy-based
method provides a slight improvement, the relative
RSSE under the ε-sufficiency criterion is substantially
worse (along with partial least squares). Of course,
these results are limited to the few subsets of statis-
tics considered and it is possible that alternative sub-
sets could perform substantially better. However, it is
computationally untenable to evaluate this possibility
based on exhaustive enumeration of all subsets.

When using neural networks to perform the regres-
sion adjustment based on computing the pointwise me-
dian of the m(s) and σ 2(s) estimates, obtained using
varying regularization parameter values (see the intro-
duction to Section 4), the relative performance is quite
poor (left-hand side RSSE values in Table 2). The mean
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relative RSSE is −13% for neural networks, compared
to −40% for heteroscedastic least squares regression.
As an alternative approach, rather than averaging over
the regularization parameter λ, we rather choose the
value of λ ∈ {10−3,10−2,10−1} that minimizes the
leave-one-out error of θ [equation (11)]. This approach
considerably improves the performance of the network
(right-hand side RSSE values in Table 2) with the mean
relative RSSE improving to the same level as for het-
eroscedastic regression. Adopting the same procedure
to determine the regularization parameter within ridge
regression, there is also a mean gain in performance
from −39% to −42%, although the joint parameter in-
ference on (τ, σ, ξ) actually performs worse under this
alternative approach. The variability in these results
highlights the importance of making an optimal choice
of the regularization parameter for an ABC analysis.

The minimum expected posterior loss approach per-
forms particularly well here. This approach has also
been shown to perform well in a similar analysis: that
of performing inference using quantiles of a large num-
ber of independent draws from the (intractable) g-and-
k distribution (Fearnhead and Prangle, 2012).

The loose performance ranking of each of the dimen-
sion reduction methods finds that the worst perform-
ers are the ε-sufficiency criterion (with a mean rela-
tive RSSE of −16%) and partial least squares (−19%).
Neural networks and AIC/BIC perform just as well as
standard least squares regression (−40%), ridge regres-
sion slightly outperforms standard regression (−42%)
and the entropy-based approach is a further slight im-
provement at −44%. The clear winner in this exam-
ple is the posterior loss approach with a mean relative
RSSE of −58%.

5. DISCUSSION

The process of dimension reduction is a critical and
influential part of any ABC analysis. In this article

we have provided a comparative review of the ma-
jor dimension reduction approaches (and introduced
two new ones) in order to provide some guidance to
the practitioner in choosing the most appropriate tech-
nique for their own analysis. A summary of the quali-
tative features of each dimension reduction method is
shown in Table 3, and a comparison of the relative per-
formances of each method for each example is illus-
trated in Figure 3. As with each individual example,
we may compute an overall performance ranking of the
dimension reduction methods by averaging the mean
relative RSSE values over the examples. Performing
worse, on average, than a standard least squares re-
gression adjustment with no dimension reduction (with
an overall mean relative RSSE of −17%) is the ε-
sufficiency technique (−8%) and partial least squares
(−12%). Performing better, on average, than standard
least squares regression is ridge regression and neural
networks (−19%) and AIC/BIC (−21%). In this study,
the top performers, on average, were the entropy-based
procedure and the minimum expected posterior loss ap-
proach, with an overall mean relative RSSE of −25%.
It is worth emphasizing that the potential gains in per-
forming a regression adjustment alone (with all sum-
mary statistics and no dimension reduction) can be
quite substantial. This suggests that regression adjust-
ment should be an integral part of the majority of ABC
analyses. Further gains in performance can then be ob-
tained by combining regression adjustment with di-
mension reduction procedures, although in some cases
(such as with the ε-sufficiency technique and partial
least squares) performance can sometimes worsen.

While being ranked in the top three, a clear disadvan-
tage of the entropy-based procedure and the AIC/BIC
criteria is the quantity of computation required. This
primarily occurs as the best subset selection procedures
require evaluation of all 2p potential models. For ex-
amples 1 and 2, a greedy algorithm was able to find

TABLE 3
Summary of the main features of the different methods of dimension reduction for ABC

Class Method Hyper-parameter Choice of hyper-parameter Computational burden

Best subset selection AIC/BIC None – Substantial/greedy alg.
ε-suff T (θ) User choice Substantial/greedy alg.
Ent None – Substantial/greedy alg.

Projection techniques PLS Number of PLS components, k Cross-validation Weak
NNet Regularization parameter, λ Integration or cross-validation Moderate (optimization algorithm)
Loss Choice of basis functions BIC Weak (closed-form solution)

Regularization Ridge Regularization parameter, λ Integration or cross-validation Weak (closed-form solution)
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FIG. 3. Mean relative RSSE values using each method of dimension reduction and for each example. Methods of dimension reduction
include no dimension reduction (All), AIC/BIC, the ε-sufficiency criterion (ε-suff), the two-stage entropy procedure (Ent), partial least
squares (PLS), neural networks (NNet), minimum expected posterior loss (Loss) and ridge regression (Ridge). For examples 1 and 2, the
results for ridge regression and neural networks estimate m(s) and σ 2(s) have been obtained by taking the pointwise median curve over
varying values of the regularization parameter; λ = 10−3,10−2 and 10−1 (see introduction to Section 4). For example 3, an optimal value
of λ was chosen based on a cross-validation procedure (see Section 4.3).

the optimum solution in a reasonable time. This was
not possible for example 3. Additionally, in this latter
case, for the subsets of summary statistics considered,
the performance obtained by implementing compu-
tationally expensive methods of dimension reduction
was barely an improvement over the computationally
cheap, least squares regression adjustment. This raises
the important point that the benefits of performing po-
tentially expensive forms of dimension reduction over,
say, the simple linear regression adjustment, should be
evaluated prior to their full implementation. We also
note that the second stage of the entropy-based method
(Section 2.2.2) targets minimization of (9), the same er-
ror measure used in our comparative analysis. As such,
this approach is likely to be numerically favored in our
results.

The top ranked (ex aequo) minimum expected pos-
terior loss approach particularly outperforms other di-
mension reduction methods in the final example (the
production of clean steels). In such analyses, with large
numbers of summary statistics (here p = 113), non-
linear methods such as neural networks may become
overparametrized, and simpler alternatives, such as

least squares or ridge regression adjustment, can work
more effectively. This is naturally explained through
the usual bias-variance trade-off: more complex regres-
sion models such as neural networks reduce the bias of
the estimate of m(s) [and optionally σ 2(s)], but in do-
ing so the variance of the estimate is increased. This
effect can be especially acute for high-dimensional re-
gression (Geman, Bienenstock and Doursat, 1992).

Our analyses indicate that the original least squares,
linear regression adjustment (Beaumont, Zhang and
Balding, 2002) can sometimes perform quite well, de-
spite its simplicity. However, the presence of multi-
colinearity between the summary statistics can cause
severe performance degradation, compared to not per-
forming the regression adjustment (see Figure 2). In
such situations, regularization procedures, such as
ridge regression (e.g., example 2 and Figure 2) and
projection techniques, can be beneficial.

However, an important issue with regularization pro-
cedures, such as neural networks and ridge regression,
is the handling of the regularization parameter, λ. The
“averaging” procedure that was used in the first two
examples proved quite suboptimal in the third, where
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a cross-validation procedure to select a single best pa-
rameter value produced much improved results. This
problem can be particularly critical for neural networks
with large numbers of summary statistics, p, as the
number of network weights is much larger than p, and,
accordingly, massive shrinkage of the weights (i.e.,
large values of λ) is required to avoid overfitting.

The posterior loss approach produced the superior
performance in the third example. In general, a strong
performance of this method can be primarily attributed
to two factors. First, in the presence of large numbers
of highly dependent summary statistics, the extra anal-
ysis stage in determining the most appropriate regres-
sion model (14) by choosing f (s) through, for exam-
ple, BIC diagnostics, affords the opportunity to reduce
the complexity of the regression in a simple and rela-
tively low-parameterized manner. This was not a pri-
mary contributor in example 3, however, as the regres-
sion [equation (14)] was directly performed on the full
set of 113 statistics. Given the benefits of using reg-
ularization methods in this setting, it is possible that
a ridge regression model would allow a more robust
estimate of the posterior mean (as a summary statis-
tic) as part of this process. Second, the posterior loss
approach determines the number of summary statis-
tics to be equal to the number of posterior quantities
of interest—in this case, q = 3 posterior parameter
means. This small number of derived summary statis-
tics naturally allows more precise posterior statements
to be made, compared to dimension reduction methods
that produce a much larger number of equally infor-
mative statistics. Of course, the dimension advantage
here is strongly related to the number of parameters
(q = 3) and summary statistics (p = 113) in this ex-
ample. However, it is not fully clear how any current
methods of dimension reduction for ABC would per-
form for substantially more challenging analyses with
considerably higher numbers of parameters and sum-
mary statistics. This is because the curse of dimension-
ality in ABC (Blum, 2010a) has tended to restrict exist-
ing applications of ABC methods to problems of mod-
erate parameter dimension, although this may change
in the future.

What is very apparent from this study is that there
is no single “best” method of dimension reduction
for ABC. For example, while the posterior loss and
entropy-based methods were the best performers for
example 3, AIC and BIC were ranked first in the analy-
sis of example 2, and partial least squares outperformed
the posterior loss approach in example 1. A number
of factors can affect the most suitable choice for any

given analysis. As discussed above, these can include
the number of initial summary statistics, the amount of
dependence and multicolinearity within the statistics,
the computational overheads of the dimension reduc-
tion method, the requirement to suitably determine hy-
perparameters and sensitivity to potentially large num-
bers of uninformative statistics.

One important point to understand is that all of the
ABC analyses of this review were performed using the
rejection algorithm optionally followed by some form
of regression adjustment. While alternative, potentially
more efficient and accurate methods of ABC posterior
simulation exist, such as Markov chain Monte Carlo
or sequential Monte Carlo based samplers, the com-
putational cost of separately implementing such an al-
gorithm 2p times (in the case of best subset selection
methods) means that such dimension reduction meth-
ods can become rapidly untenable, even for small p.
The price of the benefit of using the more computa-
tionally practical, fixed large number of samples is that
decisions on the dimension reduction of the summary
statistics will be made on potentially worse estimates
of the posterior than those available under superior
sampling algorithms. As such, the final derived sum-
mary statistics may in fact not be those which are most
appropriate for subsequent use in, for example, Markov
chain Monte Carlo or sequential Monte Carlo based al-
gorithms.

However, this price is arguably a necessity. It is prac-
tically important to evaluate the performance of any di-
mension reduction procedure in a given analysis. Here
we used a criterion [the RSSE of equation (9)] that
is based on a leave-one-out procedure. When using a
fixed, large number of samples, evaluation of such a
performance diagnostic is entirely practicable, as no
further model simulations are required. This idea is
also relevant to methods of dimension reduction for
model selection (Barnes et al., 2012; Estoup et al.,
2012) where a misclassification rate based on a leave-
one-out procedure can serve as a comparative criterion.
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