Lancaster EPrints

Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada

Brockett, Beth and Prescott, Cindy and Grayston, Susan (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 44 (1). pp. 9-20. ISSN 0038-0717

Full text not available from this repository.

Abstract

Although soil microorganisms play a central role in the soil processes that determine nutrient availability and productivity of forest ecosystems, we are only beginning to understand how microbial communities are shaped by environmental factors and how the structure and function of soil microbial communities in turn influence rates of key soil processes. Here we compare the structure and function of soil microbial communities in seven mature, undisturbed forest types across a range of regional climates in British Columbia and Alberta, and examine the variation in community composition within forest types. We collected the forest floor fermentation (F) and humus (H) layers and upper 10 cm of mineral soil at 3 sites in each of seven forest types (corresponding to seven Biogeoclimatic zones) in both spring and summer. Phospholipid fatty acid analysis was used to investigate the structure of soil microbial communities and total soil microbial biomass; potential activities of extra-cellular enzymes indicated the functional potential of the soil microbial community in each layer at each site. Multivariate analysis indicated that both structure and enzyme activities of soil microbial communities differed among the forest types, and significantly separated along the regional climate gradient, despite high local variation. Soil moisture and organic matter contents were most closely related to microbial community characteristics. Forests in the Ponderosa Pine and Mountain Hemlock zones were distinct from other forests and from each other when comparing potential enzyme activities and had the most extreme moisture and temperature values. Forest floors from the hot and dry Ponderosa Pine forests were associated with enzymes characteristic of water-stress and high concentrations of phenols and other recalcitrant compounds. The wet and cold Mountain Hemlock forests were associated with low enzyme activity. An influence of tree species was apparent at the three sites within the Coastal Western Hemlock zone; high bacterial:fungal biomass ratios were found under western redcedar (Thuja plicata) which also had high pH and base-cation levels, and under Douglas-fir (Pseudotsuga menziesii), which had high N availability. Potential activities enzymes differed among soil layers: potential activities of phenol oxidase and peroxidase were highest in mineral soil, whereas phosphatase, betaglucosidase, NAGase, sulfatase, xylosidase and cellobiohydrolase were highest in the forest floors.

Item Type: Article
Journal or Publication Title: Soil Biology and Biochemistry
Uncontrolled Keywords: Forest ; Enzymes ; PLFA ; Soil moisture ; Soil microorganisms ; Climate
Subjects:
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 60333
Deposited By: ep_importer_pure
Deposited On: 30 Nov 2012 09:39
Refereed?: Yes
Published?: Published
Last Modified: 30 Nov 2012 09:39
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/60333

Actions (login required)

View Item