
Chapter 4 Character encoding in corpus construction

Anthony McEnery Zhonghua Xiao

Lancaster University

Corpus linguistics has developed, over the past three decades, into a rich paradigm
that addresses a great variety of linguistic issues ranging from monolingual research
of one language to contrastive and translation studies involving many different
languages. Today, while the construction and exploitation of English language
corpora still dominate the field of corpus linguistics, corpora of other languages,
either monolingual or multilingual, have also become available. These corpora have
added notably to the diversity of corpus-based language studies.

Character encoding is rarely an issue for alphabetical languages, like English,
which typically still use ASCII characters. For many other languages that use different
writing systems (e.g. Chinese), encoding is an important issue if one wants to display
the corpus properly or facilitate data interchange, especially when working with
multilingual corpora that contain a wide range of writing systems. Language specific
encoding systems make data interchange problematic, since it is virtually impossible
to display a multilingual document containing texts from different languages using
such encoding systems. Such documents constitute a new Tower of Babel which
disrupts communication.

In addition to the problem with displaying corpus text or search results in
general, an issue which is particular relevant to corpus building is that the character
encoding in a corpus must be consistent if the corpus is to be searched reliably. This is
because if the data in a corpus is encoded using different character sets, even though
the internal difference is indiscernible to human eyes, a computer will make a
distinction, thus leading to unreliable results. In many cases, however, multiple and
often competing encoding systems complicate corpus building, providing a real
problem. For example, the main difficulty in building a multilingual corpus such as
EMILLE is the need to standardize the language data into a single character set (see
Baker, Hardie & McEnery et al 2004).1 The encoding, together with other ancillary
data such as markup and annotation schemes, should also be documented clearly.
Such documentation must be made available to the users.

A legacy encoding is typically designed to support one writing system, or a
group of writing systems that use the same script (see discussion below). In contrast,
Unicode is truly multilingual in that it can display characters from a very large
number of writing systems. Unicode enables one to surmount this Tower of Babel by
overcoming the inherent deficiencies of various legacy encodings. 2 It has also
facilitated the task of corpus building (most notably for multilingual corpora and
corpora involving non-Western languages). Hence, a general trend in corpus building
is to encode corpora (especially multilingual corpora) using Unicode (e.g. EMILLE).
Corpora encoded in Unicode can also take advantage of the latest Unicode-compliant
corpus tools like Xaira (Burnard & Todd 2003) and WordSmith version 4.0 (Scott
2003). In this chapter, we will consider character encoding from the viewpoint of
corpus linguistics rather than programming, which means that the account presented

1 See the corpus website http://www.ling.lancs.ac.uk/corplang/emille for more details of the EMILLE
corpus.
2 ‘Legacy encoding’ is used here interchangeably with language specific, or native character code.

http://www.ling.lancs.ac.uk/corplang/emille

here is less technical and that some of the proposals we make may differ slightly from
those that would be ideal for programmers.

This chapter first briefly reviews the history of character encoding. Following
from this is a discussion of standard and non-standard native encoding systems, and
an evaluation of the efforts to unify these character codes. Then we move on to
discuss Unicode as well as various Unicode Transformation Formats (UTFs). As a
conclusion, we recommend that Unicode (UTF-8, to be precise) be used in corpus
construction.

Shift in: what is character encoding about?
The need for electronic character encoding first arose when people tried to send
messages via telegraph lines using, for example, the Morse code.3 The Morse code
encodes alphabets and other characters, like major punctuation marks, as dots and
dashes, which respectively represent short and long electrical signals. While
telegraphs already existed when the Morse code was invented, the earlier telegraph
relied on varying voltages sent via a telegraph line to represent various characters.
The earlier approach was basically different from the Morse code in that with this
former approach the line is always “on” whereas with the latter, the line is sometimes
“on” and sometimes “off”. The binary “on” and “off” signals are what, at the lowest
level, modern computers use (i.e. 0 and 1) to encode characters. As such, the Morse
code is considered here as the beginning of character encoding. Note, however, that
character encoding in the Morse code is also different from how modern computers
encode data. Whilst modern computers use a succession of “on” and “off” signals to
present a character, the Morse code uses a succession of “on” impulses (e.g. the
sequences of –·, –··· and –·–· stand respectively for capital letters A, B and C), which
are separated from other sequences by “off” impulses.
 A later advance in character encoding is the Baudot code, invented by
Frenchman Jean-Maurice-Émile Baudot (1845-1903) for teleprinters in 1874. The
Baudot code is a 5-bit character code that uses a succession of “on” and “off” codes as
modern computers do (e.g. 00011 without shifting represents capital letter A). As the
code can only encode 32 (i.e. 25) characters at one level (or “plane”), Baudot employs
a “lock shift scheme” (similar to the SHIFT and CAPS LOCK keys on your computer
keyboard) to double the encoding capacity by shifting between two 32-character
planes. This lock shift scheme not only enables the Baudot code to handle the upper
and lower cases of letters in the Latin alphabet, Arabic numerals and punctuation
marks, it also makes it possible to handle control characters, which are important
because they provide special characters required in data transmission (e.g. signals for
“start of text, “end of text” and “acknowledge”) and make it possible for the text to be
displayed or printed properly (e.g. special characters for “carriage return” and “line
feed”). Baudot made such a great contribution to modern communication technology
that the term Baud rate (i.e. the number of data signalling events occurring in a
second) is quite familiar to many of us.
 One drawback of 5-bit Teletype codes such as the Baudot code is that they do
not allow random access to a character in a character string because random access
requires each unit of data to be complete in itself, which prevents the use of code
extension by means of locking shifts. However, random is essential for modern
computing technology. In order to achieve this aim, an extra bit is needed. This led to
6-bit character encoding, which was used for a long time. One example of such codes
is the Hollerith code, which was invented by American Herman Hollerith (1860-1929)

3 The Morse code was invented by American Samuel Finley Breese Morse (1791-1872).

 2

for use with a punch card on a tabulating machine in the U.S. Census Bureau. The
Hollerith code could only handle 69 characters, including upper and lower cases of
Latin letters, Arabic numerals, punctuation marks and symbols. This is slightly more
than what the Baudot code could handle. The Hollerith code was widely used up to
the 1960s.
 However, the limited encoding capacity of 6-bit character codes was already
felt in the 1950s. This led to an effort on the part of telecommunication and
computing industries to create a new 7-bit character code. The result of this effort is
what we know today as the ASCII (the American Standard Code for Information
Interchange) code. The first version of ASCII (known as ASCII-1963), when it was
announced in 1963, did not include lower case letters, though there were many
unallocated positions. This problem, among others, was resolved in the second
version, which was announced in 1967. ASCII-1967, the version many people still
know and use today, defines 96 printing characters and 32 control characters.
Although ASCII was designed to avoid shifting as used in Baudot code, it does
include control characters such as shift in (SI) and shift out (SO). These control
characters were used later to extend the 7-bit ASCII code into the 8-bit code that
includes 190 printing characters (cf. Searle 1999).

The ASCII code was adopted by nearly all computer manufacturers and later
turned into an international standard (ISO 646) by the International Standard
Organization (ISO) in 1972. One exception was IBM, the dominant force in the
computing market in the 1960s and 1970s. 4 Either for the sake of backward
compatibility or as a marketing strategy, we do not know which for sure, IBM created
a 6-bit character code called BCDIC (Binary Coded Decimal Interchange Code) and
later extended this code to the 8-bit EBCDIC (Extended Binary Coded Decimal
Interchange Code). As EBCDIC is presently only used for data exchange between
IBM machines, we will not discuss this scheme further.

The 7-bit ASCII, which can handle 128 (i.e. 27) characters, is sufficient for the
encoding of English characters. With the increasing need to exchange data
internationally, which usually involves different languages, as well as using accented
Latin characters and non-Latin characters, this encoding capacity quickly turned out
to be inadequate. As noted above, the extension of the 7-bit ASCII code into the 8-bit
code significantly increased its encoding capacity. This increase was important, as it
allowed accented characters in European languages to be included in the ASCII code.
Following the standardization of the ASCII code and ISO 646, ISO formulated a new
standard (ISO 2022) to outline how 7/8-bit character codes should be structured and
extended so that native characters could be included. This standard was later applied
to derive the whole ISO 8859 family of extensions of the 8-bit ASCII/ISO 646 for
European languages. ISO 2022 is also the basis for deriving 16-bit (double-byte)
character codes used in East Asian countries such as China, Japan and Korea (the so
called CJK language community).

Legacy encoding: complementary/competing character codes
The first member of the ISO 8859 family, ISO 8859-1 (unofficially known as Latin-1),
was formulated in 1987 (and later revised in 1998) for Western European languages
such as French, German, Spanish, Italian and the Scandinavian languages, among
others. Since then, the 8859 family has extended to 15 members. However, as can be

4 IBM is an acronym for International Business Machines, which was established on the basis of a
company formed, in 1896, by Herman Hollerith after his success.

 3

seen in Table 1 (cf. Gillam 2003: 39-40), these character codes mainly aim at writing
systems of European languages.

It is also clear from the table that there is considerable overlap between these
standards, especially the many versions of the Latin characters. Each standard simply
includes a slightly different collection of characters to optimise the performance of a
particular language or group of languages. Apart from the 8859 standards, there also
exist ISO 2022-compliant character codes (national variants of ISO 646) for non-
European languages, including, for example, Thai (TIS 620), Indian languages (ISCII),
Vietnamese (VISCII) and Japanese (JIS X 0201). In addition, as noted in the previous
section, computer manufacturers such IBM, Microsoft and Apple have also published
their own character codes for languages already covered by the 8859 standards.
Whilst the members of the 8859 family can be considered as complementary, these
manufacturer tailored “code pages” are definitely competing character codes.

Table 1 ISO 8859 standards
ISO-8859-x Name Year Languages covered
1 Latin-1 1987 Western European languages
2 Latin-2 1987 East European languages
3 Latin-3 1988 Southern European languages
4 Latin-4 1988 Northern European languages
5 Latin/Cyrillic 1988 Russian, Bulgarian, Ukrainian, etc.
6 Latin/Arabic 1987 Arabic
7 Latin/Greek 1987 Greek
8 Latin/Hebrew 1988 Hebrew
9 Latin-5 1989 Turkish (Replaces Latin-3)
10 Latin-6 Northern European languages (Unifies Latin-

1 and Latin-4)
11 Latin/Thai Thai
12 Currently

unassigned
 May be used in future for Indian or

Vietnamese
13 Latin-7 Baltic languages (Replaces Latin-4 and

supplements Latin-6)
14 Latin-8 Celtic characters
15 Latin-9 1998 Western European languages (Replaces

Latin-1 and adds the euro symbol plus a few
missing French and Finnish characters)

16 Latin-10 Eastern European languages (Replaces Latin-
2 and adds the euro symbol plus a few
missing Romanian characters

The counterparts of the 8859 standards for CJK languages are also wrapped

around ISO 2022, including, for example, ISO 2022-JP, ISO-2022-CN and ISO-2022-
KR. These standards are basically 7-bit encoding schemes used for email message
encoding. Whilst the 7 or 8-bit character codes are generally adequate for English and
other European languages, CJK languages typically need 16-bit character codes, as all
of these languages use Chinese characters, which may well exceed tens of thousands.
The number of Chinese characters in 1994 was 85,000. Most of these characters,

 4

however, are only used infrequently. Studies show that 1,000 characters cover 90%,
2,400 characters cover 99%, 3,800 characters cover 99.9%, 5,200 characters cover
99.99%, and 6,600 characters cover 99.999% of written Chinese (cf. Gillam 2003:
359). Nevertheless, even the lower limit for literacy, 2,400 Chinese characters,
considerably exceeds the number of characters in European languages. Unsurprisingly,
double-byte (16-bit) encoding is mandatory for East Asian languages. The double
byte scheme is also combined with 7 or 8 bit encoding so that Western alphabets are
covered as well. Encoding schemes of this kind are called multi-byting schemes.

Character encoding of East Asian languages started in Japan when the
Japanese Industrial Standard Committee (JISC) published JIS C 6220 in 1976 (which
was later renamed in 1987 as JIS X 0201-1976). JIS C 6220 is an 8-bit character code
which does not include any Chinese characters (or kanji as the Japanese call them).
Shortly after that, in 1978, JISC published the first character code that includes kanji
(divided into different levels), JIS C 6226-1978, which shifts between the national
variant of ISO 646 and the 8-bit character set of level 1 kanji. JIS C 6226 was
redefined in 1981 (then JIS C 6226-1983) and renamed in 1987 as JIS X 0208-1983.
When level 2 kanji was added to level 1 in 1990, the standard became JIS X 0208-
1990, including 6,355 kanji of two levels. Another 5,801 kanji were added when a
supplementary standard, JIS X 0212-1990, was published in the same year. The
publication of JIS X 0213 (7-bit and 8-bit double byte coded extended Kanji sets for
information interchange) in 2000 added 5,000 more Chinese characters.

Whilst JIS X 0208/0213 shift between the 7-bit Japanese variant of ISO 646
and the 16-bit character set, the Shift-JIS encoding invented by Microsoft includes
both JIS X 0201 (single byte) and JIS X 0208 (double byte), with the single byte
character set considered as “half-width” while the double byte character set as “full-
width”.

The character codes in other East Asian countries/regions that use Chinese
characters are all based on the JIS model. China published its standard GB 2312 (GB
means guojia biaozhun “national standard”) in 1981; (South) Korea published KS C
5601 in 1987; Taiwan published CNS 11643 in 1992.

It is also important to mention the EUC (Extended Unix Code) character
encoding scheme, which was standardized in 1991 for use on Unix systems. EUC is
also based on ISO 2022 and includes the following local variants: EUC-JP for Japan,
EUC-CN for China, EUC-TW for Taiwan, and EUC-KR for Korea. In addition, two
other character codes have been created to encode Chinese characters. One is the Big5
standard (formulated by five big computer manufacturers), which actually predated
and was eventually included in CNS 11643. Big5 is used to encode traditional
Chinese (mainly used in Taiwan and Hong Kong). The other is HZ (i.e. Hanzi
“Chinese character”) used for simplified Chinese. Both Big5 and HZ are 7-bit
encoding systems.

It is clear from the discussion above that these European or East Asian
character encodings are designed to support one writing system, or a group of writing
systems that use the same script. These language specific character codes are efficient
in handling the writing system(s) for which they are designed. However, with
accelerating globalisation and the increasing need for electronic data interchange
internationally, these legacy character codes have increasingly become the source of
confusion and data corruption, as widely observed (e.g. Gillam 2003: 52) and
experienced by many of us. Have you ever opened a text file that you cannot read, as
shown in Figures 1-2? How about the partly unreadable texts as in Figure 3-4?

 5

Figure 1 Chinese characters displayed as question marks

Figure 2 Chinese characters displayed incorrectly

Figure 3 A partly corrupted Chinese paragraph

Figure 4 A partly corrupted Hindi text

 6

With legacy encodings, each language has its own character set, sometimes
even in more than one variant (e.g. GB2312 and HZ). Unsurprisingly, characters in a
document encoded using one native character code cannot be displayed correctly with
another encoding system, thus causing problems for data exchange between languages.
Different operating systems may also encode the same characters in their own ways
(e.g. Microsoft Windows vs. Apple Macintosh). Even machines using the same
operating system may have different regional settings, thus using different character
codes. A further problem with legacy encodings is their idiosyncratic fonts. 5
Sometimes even when the regional settings are correct, a text still cannot be displayed
correctly without an appropriate font. In a word, legacy encodings, while they handle
particular language(s) efficiently, constitute a Tower of Babel that disrupts
international communication. As such, Herculean efforts have been made to unify
these mutually incompatible character codes with the aim of creating a unified, global
standard of character code.

Globalisation: efforts to unify character codes
Efforts to unify character codes started in the first half of the 1980s, which
unsurprisingly coincides with the beginning of the Internet. Due to a number of
technical, commercial and political factors, however, these efforts were pursued by
three independent groups from the US, Europe and Japan. In 1984, a working group
(known as WG2 today) was set up under the auspices of ISO and International
Electrotechnical Commission (IEC) to work on an international standard which has
come to be known as ISO/IEC 10646. In the same year, a research project named
TRON was launched in Japan, which proposed a multilingual character set and
processing scheme. A similar group was established by American computer
manufacturers in 1988, which is known today as the Unicode Consortium.
 The TRON multilingual character set, which uses escape sequences to switch
between 8 and 16 bit character sets, is designed to be “limitlessly extensible” with the
aim of including all scripts used in the world (Searle 1999). 6 However, as this
multilingual character set appears to favour CJK languages more than Western
languages, and because US software producers, who are expected to dominate the
operating system market in the unforeseeable future, do not support it, it is hard to
imagine that the TRON multilingual character set will win widespread popularity
except in East Asian countries.
 ISO aimed at creating a 32-bit universal character set (UCS) that could hold
space for as many as 4,294,967,296 characters, which is large enough to include all
characters in modern writing systems in the world. The new standard, ISO/IEC 10646,
is clearly related to the earlier ISO 646 standard discussed above. The original version
of the standard (ISO/IEC DIS 10646 Version 1), nevertheless, has some drawbacks
(see Gillam 2003: 53 for details). It was thus revised and renamed as ISO/IEC 10646
Version 2, which is now known as ISO/IEC 10646-1: 1993. The new version supports
both 32-bit (4 octets, thus called UCS-4) and 16-bit forms (2 octets, thus called UCS-
2).

5 A font is an ordered collection of character glyphs that provides a graphical representation of
characters in a character set.
6 In character encoding, an escape sequence is a sequence of more than one code point representing a
control function. Escape sequences are used to switch different areas in the encoding space between the
various sets of printing characters. They are so called because the ASCII ESC character was
traditionally used as the first character of an escape sequence.

 7

 The term Unicode (Unification Code) was first used in a paper by Joe Becker
from Xerox. The Unicode Standard has also built on Xerox’s XCCS universal
character set. Unicode was originally designed as a fixed length code, using 16 bits (2
bytes) for each character. It allows space for up to 65,536 characters. In Unicode,
characters with the same “absolute shape” – where differences are attributable to
typeface design – are “unified” so that more characters can be covered in this space
(see Gillam 2003: 365). In addition to this native 16-bit transformation format (UTF-
16), two other transformation formats have been devised to permit transmission of
Unicode over byte-oriented 8-bit (UTF-8) and 7-bit (UTF-7) channels (see the next
section for a discussion of various UTFs).7 In addition, Unicode has also devised a
counterpart to UCS-4, namely UTF-32.
 From 1991 onwards, the efforts of ISO 10646 and Unicode were merged,
enabling the two to synchronize their character repertoires and the code points these
characters are assigned to.8 Whilst the two standards are still kept separate, great
efforts have also been made to keep the two in synchronization. As such, despite some
superficial differences (see Gillam 2003: 56 for details), there is a direct mapping,
starting from The Unicode Standard version 1.1 onwards, between Unicode and ISO
10646-1. Although UTF-32 and UCS-4 did not refer to the same thing in the past,
they are practically identical today. While Unicode UTF-16 is slightly different from
UCS-2, UTF-16 is actually UCS-2 plus the surrogate mechanism (see the next section
for a discussion of the surrogate mechanism).
 Unicode aims to be usable on all platforms, regardless of manufacturer,
vendor, software or locale. In addition to facilitating electronic data interchange
between different computer systems in different countries, Unicode has also enabled a
single document to contain texts from different writing systems, which was nearly
impossible with native character codes.9 Unicode make a truly multilingual document
possible.10

Today, Unicode has published the 4th version of its standard. Backed up by the
monopolistic position of Microsoft in the operating system market, Unicode appears
to be “the strongest link”. The current state of affairs suggests that Unicode has
effectively “swallowed” ISO 10646. As long as Microsoft dominates the operating
system market, it can be predicted that where there is Windows (Windows NT/2000
or later version), there will be Unicode. Consequently, we would recommend that all
researchers engaged in electronic text collection development use Unicode.

Unicode: Unicode Transformation Formats (UTFs)
Having decided that one should use Unicode in corpus construction, we need to
address yet another important question – what transformation format should be used?
Unicode not only defines the identity of each character and its numeric value (code
point), it also formulates how this value is represented in bits when the character is
stored in a computer file or transmitted over a network connection. Formulations of

7 A communication is said to be “byte-oriented” when the transmitted information is grouped into full
bytes rather than single bits (i.e. “bit-oriented”), as in data exchange between disks or over the Internet.
8 “Code point”, or called “encoded value”, is the numeric representation of a character in a character set.
For example, the code point of capital letter A is 0x41.
9 Whilst it is true that English and Chinese texts, for example, can be merged in a single document with
a Chinese encoding system, some English characters may not be displayed correctly. For example, the
pound symbol, together with the first numeral following it, is displayed as a question mark.
10 See Norman Goundry’s article posted at the Hastings Research website and Ken Whistler’s
comments posted to Slashdot for arguments for and against Unicode (see the References section for the
URLs).

 8

this kind are referred to as Unicode Transformation Formats, abbreviated as UTFs.
For example, with UTF-16, every Unicode character is represented by the 16-bit value
of its Unicode number while with UTF-8, Unicode characters are represented by a
stream of bytes. The Unicode Standard provides, in chronological order, three UTFs –
UTF-16, UTF-8 and UTF32.11 They encode the same common character repertoire
and can be efficiently transformed into one another without loss of data. The Unicode
Standard suggests that these different encoding forms are useful in different
environments and recommends a “common strategy” to use UTF-16 or UTF-8 for
internal string storage, but to use UTF-32 for individual character data types. As far as
corpus construction is concerned, however, UTF-8 is superior to the other two, as we
will see shortly.
 As noted previously, Unicode was originally designed as a 16-bit fixed length
standard. UTF-16 is the native transformation format of Unicode. As such, in
Microsoft applications, UTF-16 is known simply as “Unicode”, while UTF-8 is
known as “Unicode (UTF-8)”. The 16-bit encoding form uses 2 bytes for each code
point on the BMP (Basic Multilingual Plane),12 regardless of position. Shortly after
the Unicode Standard came into being, it became apparent that the encoding space
allowed by the 16-bit form (65,536 positions) was inadequate. In the Unicode
Standard Version 2, therefore, the ‘surrogate mechanism’ was invented, which
reserved 2,048 positions in the encoding space and divided these positions into two
levels: high and low surrogates, with each allocated 1,024 positions. A high surrogate
is always paired with a low surrogate. Whilst unpaired surrogates are meaningless,
different combinations (pairings) of high and low surrogates enable considerably
more characters to be represented (usually infrequently used characters are encoded
using pairs of 16-bit code points whereas frequently used characters are encoded with
a single unit point). As a high surrogate is unmistakably the first byte, and similarly, a
low surrogate can only be the second byte of a double-byte character, UTF-16 is able
to overcome the deficiencies of variable length encoding schemes. A missing high or
low surrogate can only corrupt a single character unlike, for example, the legacy
encoding systems for Chinese characters, where such errors typically turn large
segments of text into rubbish (see Figure 3).
 UTF-32 is something of a novelty designed as a counterpart to UCS-4 to keep
the two standards in synchronization. Unlike UTF-16, which encodes infrequently
used characters via pairs of unit points, UTF-32 uses a single code point for each
character, thus making data more compact. Nevertheless, this advantage is
immediately traded off, as UTF-32 devours memory and disk space.
 An important concept specifically related to Unicode-16/32 is byte order.
Computers handle data on the basis of 8-bit units, known as octets. Each memory
location occupies an octet, or 8 bits. A 16-bit Unicode character takes up 2 memory
locations while a 32-bit character occupies 4 memory locations. The distribution of a
16/32-bit character across the 2 or 4 memory locations may vary from one computer
to another. Some machines may write the most significant byte into the lowest
numbered memory location (called big-endian, or UTF-16/32BE) whereas others may

11 You might have come across the term UTF-7. This encoding form is specifically designed for use in
7-bit ACSII environments (notably for encoding email messages) that cannot handle 8-bit characters.
UTF-7 has never become part of the Unicode Standard.
12 The Unicode encoding space is composed of different layers technically referred to as “plains”. The
Basic Multilingual Plane (BMP) is the official name of Plane 0, ‘the heart and soul of Unicode’ (Gillam
2003), which contains the majority of the encoded characters from most of the modern writing systems
(with the exception of the Han ideographs used in Chinese, Japanese and Korea).

 9

write the most significant byte into the highest numbered memory location (little-
endian, or UTF-16/32LE). This is hardly an issue for data stored in computer memory,
as the same processor always handles the distribution of a character consistently.
When the data is shared between computers with different machine architectures via
storage devices or a network, however, this may cause confusion. Unicode does
provide mechanisms to indicate the endian-ness of a data file, either by explicating it
as UTF-16/32BE/UTF-16/32LE, or using a byte order marker (BOM). The default
value is big-endian. Even with a BOM, however, confusion may sometimes arise as
earlier versions of the Unicode Standard define a BOM differently from version 3.2
and later. As noted earlier in this section, UTF-16 also involves surrogates. As such
UTF-16 and UTF-32 are more complex architecturally than UTF-8.
 While UTF-32 is wasteful of memory and disk space for all languages, UTF-
16 also doubles the size of a file containing single-byte characters (such as English),
though for CJK languages that have already used 2-byte encodings traditionally, the
file size remains more or less the same.
 In addition to the architectural complexity and the waste of storage capacity, a
more important point to note regarding UTF-16/32 is that they are not backward
compatible, i.e. data encoded with UTF-16/32 cannot be easily used with existing
software without extensive rewriting (just imagine the extra workload involved in
rewriting Sara into Xaira and updating WordSmith version 3 to version 4, such
rewrites are not trivial). As noted previously, backward compatibility was powerful
enough to force IBM to create EBCDIC in parallel to ASCII. Even in its early life,
Unicode realised that it was important to have an encoding system which is backward
compatible with ASCII. That is why UTF-8 came into being.
 UTF-8 is 100% backward compatible with ASCII. It transforms all Unicode
characters into a variable length encoding of bytes. UTF-8 encodes the single-byte
ASCII characters using the same byte values as ASCII. Other characters on the Basic
Multilingual Plane (BMP) are encoded with 1-3 bytes while all non-BMP characters
take up 4 bytes. Like UTF-16, UTF-8 is also able to overcome the defects of legacy
multi-byting encoding systems by stipulating the specific positions a range of values
can take in a character (cf. Gillam 2003: 198). As such, a Unicode text using UTF-8
can be handled efficiently as any other 8-bit text. UTF-8 is the universal format for
data exchange in Unicode, removing all of the inconveniences of Unicode in the sense
that it is backward compatible with existing software while at the same time it enables
existing programs to take advantage of a universal character set. UTF-8 is also a
recommended way of representing ISO/IEC 10646 characters for UCS-2/4 because it
is easy to convert from and into UCS. As such, UTF-8 will always be with us and is
likely to remain the most popular way of exchanging Unicode data between entities in
a heterogeneous environment (cf. ibid: 204).
 Returning to the issue of efficiency and storage space, it is clear from the
above that UTF-8 handles ASCII text as efficiently as ASCII, and because of its
feature of backward compatibility, the extra workload required to rewrite software can
be saved. Note, however, that UTF-8 is not necessarily a way to save storage space
for some writing systems. For example, accented characters take only 1 byte in the
ISO 8859 standards whereas they occupy 2 bytes in UTF-8. Legacy encoding systems
encode a Chinese character with 2 bytes while UTF-8 uses 3 bytes. However, it can be
sensibly argued that a compromise has to be made if one is to have a truly
multilingual character code like Unicode. UTF-8 is, we believe, just such a sensible
compromise.

 10

Shift out: conclusions and recommendations
This chapter is concerned with character encoding in corpus construction. It was noted
that appropriate and consistent character encoding is important not only for displaying
corpus text and search results, it is also for corpus exploration. We first reviewed
character encoding in a historical context, from the Morse code to ASCII. Following
from this we introduced various legacy encodings, focusing on the ISO 2022-
compliant ISO 8859 standards for European languages and the native character codes
for CJK languages. These encoding systems are either complementary to or
competing with each other. It was found that while native character codes are efficient
in handling the language(s) they are designed for, they are actually inadequate for the
purpose of electronic data interchange in a steadily globalising environment. This led
to an evaluation of the efforts to create a unified multilingual character code, which
concluded that Unicode is the best solution. Following from this we reviewed three
UTFs, on the basis of which we recommended UTF-8 as a universal format for data
exchange in Unicode, and for corpus construction so as to avoid the textual Tower of
Babel.

References:
“A tutorial on character code issues”. http://www.cs.tut.fi/~jkorpela/chars.html.
Apple. “Character encodings concepts”. http://developer.apple.com/documentation/

macos8/TextIntlSvcs/TextEncodingConversionManager/TEC1.5/TEC.9e.html
Baker, P., A. Hardie, A. McEnery, R. Xiao, K. Bontcheva, H. Cunningham, R.

Gaizauskas, O. Hamza, D. Maynard, V. Tablan, C. Ursu, B. Jayaram & M.
Leisher. 2004. “Corpus linguistics and South Asian languages: Corpus creation
and tool development”. Literary and Linguistic Computing 19(4): 509-524.

Diffuse. “Character set standards”. http://www.diffuse.org/chars.html.
Diffuse. “Guide to character sets”. http://www.diffuse.org/charguide.html.
Gil, P. “Character Encoding…A few words on the subject”. http://www.geocities.

com/pmpg98_pt/CharacterEncoding.html.
Gillam, R. 2003. Unicode Demystified. Boston: Addison-Wesley.
Goundry, N. 2001. “Why Unicode won’t work on the Internet”. http://www.

hastingsresearch.com/net/04-unicode-limitations.shtml.
Järnefors, O. 1996. “A short overview of ISO/IEC 10646 and Unicode”. http://www.

nada.kth.se/i18n/ucs/unicode-iso10646-oview.html.
Kuchta, J. “Survey of code page history”. http://www.fee.vutbr.cz/~kuchta/cp/

esej.html.iso-8859-1.
Robelle. “Clearing up character sets”. http://www.robelle.com/smugbook/char.html.
Searle, S. 1999. “A brief history of character code”. http://tronweb.super-

nova.co.jp/characcodehist.html.
Searle, S. “Unicode revisited”. http://tronweb.super-nova.co.jp/unicoderevisited.html.
The Unicode Consortium. 2000. The Unicode Standard (Version 3.0). London:

Addison-Wesley.
The Unicode Consortium. The Unicode Standard (Version 4.0). http://www.unicode.

org/versions/Unicode4.0.0/.
Toal, R. “Character Encoding”. http://technocage.com/~ray/notespage.jsp?pageName

=charenc&pageTitle=Character+Encoding
Whistler, K. “Why Unicode will work on the Internet”. http://slashdot.org/features/

01/06/06/0132203.shtml.

 11

http://www.cs.tut.fi/%7Ejkorpela/chars.html
http://developer.apple.com/documentation/%20macos8/TextIntlSvcs/TextEncodingConversionManager/TEC1.5/TEC.9e.html
http://developer.apple.com/documentation/%20macos8/TextIntlSvcs/TextEncodingConversionManager/TEC1.5/TEC.9e.html
http://www.diffuse.org/chars.html
http://www.diffuse.org/charguide.html
http://www.geocities.%20com/pmpg98_pt/CharacterEncoding.html
http://www.geocities.%20com/pmpg98_pt/CharacterEncoding.html
http://www.%20hastingsresearch.com/net/04-unicode-limitations.shtml
http://www.%20hastingsresearch.com/net/04-unicode-limitations.shtml
http://www.%20nada.kth.se/i18n/ucs/unicode-iso10646-oview.html
http://www.%20nada.kth.se/i18n/ucs/unicode-iso10646-oview.html
http://www.fee.vutbr.cz/%7Ekuchta/cp/%20esej.html.iso-8859-1
http://www.fee.vutbr.cz/%7Ekuchta/cp/%20esej.html.iso-8859-1
http://www.robelle.com/smugbook/char.html
http://www.tronweb.super-nova.co.jp/charactercodehist.html
http://www.tronweb.super-nova.co.jp/charactercodehist.html
http://tronweb.super-nova.co.jp/unicoderevisited.html
http://www.unicode.%20org/versions/Unicode4.0.0/
http://www.unicode.%20org/versions/Unicode4.0.0/
http://technocage.com/%7Eray/notespage.jsp?pageName%20=charenc&pageTitle=Character+Encoding
http://technocage.com/%7Eray/notespage.jsp?pageName%20=charenc&pageTitle=Character+Encoding
http://slashdot.org/features/%2001/06/06/0132203.shtml
http://slashdot.org/features/%2001/06/06/0132203.shtml

