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ABSTRACT

The dependence of ENSO’s period on its amplitude is examined using a simple delayed oscillator model. This
dependence is first calculated in the strongly nonlinear regime by extracting and analyzing unstable periodic
orbits from the chaotic attractor of the model. In this regime, the period is found to decrease with increasing
amplitude. Next, the dependence of the period on the amplitude is also calculated analytically and numerically
in the weakly nonlinear regime by varying the ocean–atmosphere coupling coefficient. In this case, the period
increases with the amplitude. The weakly nonlinear result reflects the dependence of the period on the ocean–
atmosphere coupling strength rather than the dependence on the amplitude, while the strongly nonlinear result
is the robust take-home message here: the period reduces with increasing amplitude.

1. Introduction

Despite much progress in the understanding of El
Niño–Southern Oscillation (ENSO), the dynamics that
are responsible for its period, which seems to be quite
robust at 3–5 yr, are as yet poorly understood. Proxy
observations show a similar period even during the pre-
vious interglacial period, some 120 kyr ago (Hughen et
al. 1999), while other proxy evidence (Rodbell et al.
1999) indicates a possibly much longer period 7000–
15 000 years ago. The lack of understanding of what
leads to ENSO’s period is especially disconcerting given
the failure of many state-of-the-art general circulation
models (GCMs) to reproduce the correct period of
ENSO (e.g., Timmermann et al. 1999). Most likely the
beginning of such an understanding could come from a
relatively simple model that can be understood in some
detail.

The travel times of the first mode baroclinic equatorial
Kelvin and Rossby waves involved in the delayed os-
cillator ENSO mechanism (Battisti 1988; Suarez and
Schopf 1988) are in the range of 2–6 months, and time
scales of mixed-layer processes are of the order of 2
months. These time scales are significantly shorter than
the ENSO period itself, which therefore seems to be
affected more by the ocean–atmosphere coupling
strength than by the wave travel times.
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The issue of ENSO period has been discussed in nu-
merous recent papers using models from GCMs to toy
models. Codron et al. (2001) showed that ENSO period
in a coupled GCM depends quite sensitively on the de-
tails of some model parameterizations. Similarly, Syu
and Neelin (2000) used a hybrid coupled model to show
that stronger vertical mixing leads to a longer ENSO
period. Kirtman (1997) used an oceanic GCM (OGCM)
coupled to a statistical atmosphere and showed that off
equatorial Rossby waves are critical to getting the right
period in this model. Proceeding to simpler models, Fe-
dorov and Philander (2001) analyze the linear stability
of the tropical Pacific similarly to Jin and Neelin (1993)
and find different physical modes with different char-
acteristic periods. Finally, Kang and An (1998) study
the dependence of the period on the wave reflection
coefficients in a simple equatorial model.

While it is not difficult to reproduce the 4-yr ENSO
period in a simple linear delayed oscillator model by
adjusting the ocean–atmosphere coupling coefficient,
there are indications that nonlinear effects do play an
important role. Münnich et al. (1991) suggested that
nonlinear effects, more specifically a period-doubling
bifurcation, lead to the 4-yr ENSO period, based on their
simple delayed oscillator model. Nonlinear effects were
also discussed by van der Vaart et al. (2000; see also
Dijkstra 2000), who used numerical bifurcation methods
to study a nonlinear coupled ocean–atmosphere set of
equations, recognizing that one needs to deal simulta-
neously with the background state and the variability
about this background.



15 FEBRUARY 2004 475E C C L E S A N D T Z I P E R M A N

TABLE 1. Parameters in Eqs. (1) and (3).

Parameter Description

h
T
«m

t K

t R

rW, rE

twind

r
A*
b0

m
w
«T

Tsub

h

Thermocline depth anomaly
Temperature anomaly
Oceanic damping coefficient
Kelvin wave basin crossing time
Rossby wave basin crossing time
Western/eastern reflection coefficients
Extent of travel time affected by wind stress
Mean density of ocean
Relating wind stress to SST
Annual mean coupling strength
Seasonal coupling coefficient
Mean upwelling
Thermal damping coefficient
Temperature anomaly at H1

Thermocline depth anomaly

We do not know at the moment whether ENSO is
self-sustained (hence nonlinear), possibly even chaotic
(Jin et al. 1994; Tziperman et al. 1994, 1995), or perhaps
it is a damped linear mode, excited by atmospheric forc-
ing and efficiently amplified by nonnormal dynamics
(Farrell 1989; Kleeman and Moore 1997; Penland and
Sardeshmukh 1995). In this study we concentrate on the
first possibility and examine nonlinear effects on
ENSO’s period. We use for this purpose the delayed
oscillator ENSO model of Galanti and Tziperman (2000,
hereafter GT) described in the next section.

More specifically the objective of this paper is to find
out whether there is a relation between the period of
ENSO and its amplitude, and what that relation is. That
is, can we say that a series of stronger events would be
characterized by a shorter period—or a longer period?
The fact that such a simple question still does not have
a simple answer clearly indicates that there is room for
more work on the subject.

Now, we approach this question in two different pa-
rameter regimes and by using two different methods.
First, we investigate the amplitude–period relation in a
strongly nonlinear (in fact, chaotic) regime, using some
subtle properties of a chaotic ENSO attractor. When the
model is chaotic, it has many different perfectly periodic
solutions that are, however, unstable and are known as
‘‘unstable periodic orbits’’ (UPOs). Each of these cor-
responds to an ENSO cycle with a different period and
a different amplitude. We therefore look for UPOs in
the chaotic attractor in order to deduce the desired am-
plitude–period relation. The motivation for this ap-
proach is as follows. In order to modify ENSO’s am-
plitude and find what the relation to its period is, one
could modify model parameters that affect the ampli-
tude. However, changing these parameters may also
have a direct effect on the ENSO period in the model,
so we would not be able to isolate the effects on the
period due to the amplitude change alone. In order to
separate out the effect of the nonlinearity, we ran the
model in a chaotic regime with one set of model pa-
rameters. By extracting and analyzing several UPOs, we
can study the effect of the nonlinearity on ENSO’s pe-
riod for a single set of model parameters. It is important
to note that the chaotic regime is merely a tool used
here. The results regarding the effect of the nonlinearity
on the period of ENSO may therefore also be valid if
ENSO is in a nonchaotic regime.

Next, we examine the same issue in a weakly non-
linear parameter regime using an analytic derivation of
a weakly nonlinear approximation. The results in the
two different regimes are then compared and contrasted.

In section 2 we first briefly describe the model used
here, and the method used to extract the model’s un-
stable periodic orbits. Section 3 presents the deduced
amplitude–period relationship in the delayed oscillator
model found using the UPOs and attempts to explain
these results in terms of the wave dynamics mechanism.
Finally, we use a weakly nonlinear approximation to

derive an analytic amplitude–frequency relation for the
same delayed oscillator model in section 4, and conclude
in section 5.

2. Model and methodology

a. The model

The model we use in this study is that of GT. This
is a delayed oscillator model derived from the recharge
oscillator model of Jin (1997a,b) which in turn is derived
from the model of Zebiak and Cane (1987, hereafter
CZ). The resulting delayed oscillator equation is, in fact,
more similar to that originally derived by Suarez and
Schopf (1988) than to the recharge oscillator. The equa-
tion for the thermocline depth anomaly in the eastern
Pacific is

2« (t 1t )m R Kh(t) 5 e r r h(t 2 t 2 t )W E R K

1 t R2« (t 1t /2)m K R2 e r A*t t m t 2 t 2W wind R K1 2br 2

t R3 b T t 2 t 20 K1 22

1 t tK K2« t /2m K1 t t m t 2 b e T t 2 ,wind K 01 2 1 2rC 2 20

(1)

where the model parameters are described in Table 1;
tR and tK are the basin crossing times for the Rossby
and Kelvin waves, respectively; and rW, rE are the re-
flection coefficients at the western and eastern bound-
aries; and b 5 df /dy is the gradient of the Coriolis force.
The first term on the rhs of (1) corresponds to a ‘‘free’’
wave that left the eastern basin (after a reflection by the
eastern boundary) at a time t 2 tR 2 tK and traveled
as a Rossby wave to the western boundary, was reflected
and traveled back to the eastern boundary as a Kelvin
wave, arriving to the eastern boundary at time t. The
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FIG. 1. (top) Time series of model temperature. (middle) The re-
constructed delayed coordinate phase space T(t) vs T(t 2 t) where
t is 1 yr, and where T (t) is also subsampled every year (Tziperman
et al. 1995). (bottom) The corresponding frequency spectrum. Pa-
rameters for this plot are b0 5 7.5 3 1010 kg month22 m21 8C21 and
d 5 0.18.

FIG. 2. Number of returns for each value of p, « 5 0.02.

second term represents a Rossby wave excited at a time
t 2 tK 2 tR/2 in the central Pacific, which traveled
westward, was reflected, and traveled back as a Kelvin
wave arriving again to the eastern Pacific at time t. The
final term is a Kelvin wave, excited at a time t 2 tK/2
in the center of the basin and then traveled to the eastern
basin. The ocean–atmosphere seasonal coupling is

m 5 1 1 d cos(w t 2 w);a (2)

wa 5 2p/12 is the annual frequency, and w 5 5p/6 is
the phase; the coupling peaks in May due to factors
such as the seasonal north–south movement of the inter-
tropical convergence zone (ITCZ; Tziperman et al.
1997b).

The equation for the evolution of eastern Pacific SST
is a simplification of the one from the CZ model and
includes vertical advection and damping:

w
] T 5 2« T 2 g [T 2 T (h)], (3)t T subH1

where Tsub is the temperature anomaly at depth H1 (the
mean thermocline depth) and is approximated as a tanh
function (Münnich et al. 1991).

Note that the main nonlinearity in the model is due
to Tsub, consistent with the analysis of fuller models
(Battisti 1988), and note also that this model is in what
Jin and Neelin (1993) term the ‘‘mixed mode,’’ includ-
ing both the delay times due to the wave travel times
and the time required for the SST to adjust to changes
in h.

As explained above, we need to run the model in a
chaotic regime in order to separate the role of nonlin-
earity from that of the parameters in setting the period
of El Niño. This will become clearer as we proceed

below. The GT model undergoes the quasi-periodic
route to chaos, just like the fuller CZ model (Tziperman
et al. 1994, 1995). The model solution in the chaotic
regime is shown in Fig. 1.

b. Finding unstable periodic orbits

We would like to examine and compare several pe-
riodic solutions of our model equations that have dif-
ferent periods and amplitudes. When the model is in the
chaotic regime, different periodic solutions exist as un-
stable periodic orbits embedded within the chaotic at-
tractor seen in the middle panel of Fig. 1. Extracting
and analyzing these solutions provides us with the de-
sired different periodic solutions (i.e., ENSO cycles) for
the same values of the model parameters.

To extract the UPOs, we ran the model in the chaotic
regime for 100 000 yr, with output every day to obtain
a time series of the SST, T(t), and then determined the
UPOs in a three-dimensional delay-coordinate phase
space reconstruction from the T(t) time series following
Tziperman et al. (1997a). The delay coordinates are de-
fined as X(t) 5 {X1, X2, X3} 5 {T(t 2 2t), T(t 2 t),
T(t)} where t is 1 yr. For a given period p, we search
for phase space points X(t) that retuned to the same
neighborhood after a period p, so that \X(t) 2 X(t 2
p)\ , « for some small «. The phase space points that
satisfy this condition are referred to as near-return
points. When plotting the number of phase space points
that satisfy this criterion against p, the UPOs show up
as peaks (Fig. 2). The points X(t) that satisfy the above
criterion for p 5 3, 4, 5 and 6 yr are shown in Fig. 3.

A close examination of Fig. 3 shows that there are
two separate 3-yr UPOs (the two loops seen in Fig. 3
are independent and do not cross). There are also two
6-yr UPOs. Each of them is composed of a double loop
that is very similar to the 3-yr UPO. Thus the 6-yr UPO
is nothing but a result of a period doubling bifurcation
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FIG. 3. Reconstructed phase space points that lie on UPOs for
period of (a) p 5 3, (b) p 5 4, (c) p 5 5, and (d) p 5 6 yr. FIG. 4. Time series for segments of X(t) that lie near the UPOs for

(a) 3, (b) 4, (c) 5, and (d) 8 yr.

FIG. 5. Time series of SST for the same solutions seen in Fig. 4
for the UPOs of (a) 3, (b) 4, (c) 5, and (d) 8 yr.

of the 3-yr UPO. Given the near-return points compos-
ing each of the different UPOs, we can extract a con-
tinuous portion of the time series X(t) that is composed
of near returns, and that therefore lies very near a given
UPO. This allows us to also examine the corresponding
time series for the temperature and thermocline depth,
as well as examine the different terms in the model
equations along the UPOs, as will be seen below. Sub-
sequently, these continuous time series segments will
allow us to also study the wave dynamics for each of
the UPOs. The chosen time series segments for X(t) are
shown in Fig. 4, with the corresponding temperature
time series in Fig. 5.

Our objective requires that we examine the period
versus amplitude of the different UPOs. Now some of
the UPOs extracted from the chaotic model attracter
represent more than a single ENSO cycle and are the
results of the merging of two or more UPOs. For ex-
ample, Figs. 4 and 5 make it clear that the 5-yr orbit is
composed of a 2-yr orbit and a 3-yr orbit joined together.
Thus, the 5-yr periodic solution reflects two ENSO cy-
cles, one with a 2-yr period, and one with a 3-yr cycle.
These 2- and 3-yr cycles are not exactly periodic, of
course, as they are joined to form a periodic 5-yr cycle.
Similarly, each of the 6-yr UPOs is made of two 3-yr
UPOs, and the 8-yr UPO is also composed of shorter
period cycles. In order to construct the amplitude–period
relation for the different UPOs, it would clearly not be
useful to treat the merged 5-yr period, for example, as
if it were an independent 5-yr period UPO. We can only
use those UPOs that correspond to a single ENSO cycle,
which leaves the 3- and 4-yr UPOs on which we con-
centrate next.

The chaotic motion of the model corresponds to ir-
regular jumps between the different UPOs [not just those
extracted here; see Tziperman et al. (1994)]. With no
seasonal cycle present, the model is periodic rather than

chaotic, and the ENSO period is about 4 yr. It is no
surprise therefore that once seasonal forcing is added
and the system is chaotic, it tends to spend most of its
time in the attractor near the 3-, 4-, and 5-yr UPOs,
which are therefore also the least unstable ones.

3. An amplitude–period relation in the strongly
nonlinear regime

Figure 6 directly compares the 3- and 4-yr UPOs and
clearly suggests that the larger the ENSO amplitude, the
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FIG. 6. SST and h for the 3-yr (dashed) and 4-yr (solid) UPOs.

FIG. 7. Terms in Eq. (1) for the thermocline depth anomaly, for
the (top) 3-yr UPO and (bottom) 4-yr UPO: RK(–) ER(2· ), EK(– –).
The sine wave time series shows the coupling coefficient from Eq.
(2) during the UPO.

shorter is its period. This seems to be the case also for
the 2-yr cycle (not UPO) that is part of the 5-yr UPO
and is seen in Fig. 5c. This 2-yr cycle has a yet larger
amplitude than either the 3- or 4-yr UPOs. These results
indicate that the larger is ENSO’s amplitude (in this
model), the shorter is its period. We next try to ratio-
nalize this in terms of a wave dynamics mechanism.

Figure 6 shows that the 4-yr cycle spends time be-
tween 1 and 2 yr at an approximately constant temper-
ature, and the warming phase of the 4-yr UPO, which
begins around 2 yr, is longer and more gradual. To at-
tempt to explain this behavior in terms of wave dynam-
ics we examined the various terms in (1), and they are
plotted for each UPO in Fig. 7. We use the following
notation for the terms from (1) for the thermocline depth
anomaly. The free Rossby–Kelvin wave is denoted by
RK, ER is the excited Rossby wave, and EK is the
excited Kelvin wave [see discussion after (1)].

Given that tR is 8.5 months and tK is 2.1 months
(GT), the effect on h at any point in time is determined
by the SST 1 month previously (via term EK) and by
the SST about 6 months previously (via term ER). In
Fig. 7 it can be seen that the Rossby wave term always
lags the Kelvin wave term by about 6 months (and its
amplitude is smaller and with an opposite sign). Ad-
ditionally, the free wave term RK depends on h 10.6
months previously. To complement the picture, Fig. 8
shows the terms in the temperature equation (3) for the
3- and 4-yr UPOs. In these figures, the different plotted
terms correspond to

term 1 5 2« T,T

w
term 2 5 2g T,

H1

w
term 3 5 g T (h).subH1

The 3-yr cycle and the 4-yr cycle seem to develop
quite similarly for the first 2 yr (Fig. 6). At that point,
however, the temperature and thermocline depth anom-
aly in the 3-yr cycle proceed to increase rapidly, while
those in the 4-yr cycle increase more gradually and take
one more year to complete the cycle. The behavior of
the different terms in the thermocline depth equation
depends on the temperature and depth at earlier times
via the various delay terms. The key to the different
behaviors past the first 2 yr is therefore what happens
during the second year in both cycles.

Note that the 4-yr cycle reaches its La Niña maximum
at about year 1, earlier than the 3-yr cycle, which for
which La Niña peaks just before year 2. Right after the
La Niña peak, the temperature and thermocline depth
of the 4-yr cycle start increasing, but then stall. Because
the 4-yr cycle stalls toward the end of the second year,
it has a smaller negative amplitude than the 3-yr cycle
at that point. This weakens the feedback loop for the 4-
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FIG. 8. Terms in Eq. (1) for the SST anomaly, for the (top) 3-yr
UPO and (bottom) 4-yr UPO.

yr cycle during the coming months, as can be seen by
the fact that the Kelvin wave term is larger and grows
more rapidly during the third year in the 3-yr cycle than
in the 4-yr cycle (Fig. 7). The 4-yr cycle therefore gets
slower into the El Niño phase and takes one more year
to complete.

The key to the slower development of the 4-yr cycle
is therefore the halt of the cooling of the Kelvin wave
at the end of the first year. The 4-yr event being weaker
is clearly consistent with the fact that the Kelvin and
Rossby waves are weaker. This weakness makes the
event develop more slowly, and in particular shift from
phase to phase more slowly, as described above. The
stronger 3-yr event sustains stronger Kelvin and Rossby
terms, which are able to shift the system from El Niño
to La Niña and back to El Niño faster. This wave dy-
namics perspective gives us some intuition regarding
the physical processes responsible for the deduced am-
plitude–period relation for the delayed oscillator model
used here.

4. An amplitude–period relation in the weakly
nonlinear limit

The previous section presented the amplitude–period
relation obtained in the strongly nonlinear case. We wish
to complement this with a different parameter regime in
which the nonlinearity is weak and the dynamics nearly
linear. Of course, in the purely linear case, one expects
the period not to depend on the amplitude. But assuming
that nonlinearity is small, allows us to make some pro-
gress analytically. A similar analysis using a different
approach from ours was carried out in the appendix of
Jin (1997a), where a multiple-scale analysis was used to
deduce an amplitude–period relation in a weakly nonlin-
ear regime. We shall return to Jin’s results shortly.

Start from the delayed oscillator equations of GT,
neglect seasonality in the coupling coefficient and ex-
pand the main nonlinearity [due to the hyperbolic tan-
gent structure of Tsub(h)] keeping only the first nonlinear
correction:

h(t) 5 ah(t 2 t ) 1 mbT(t 2 t ) 1 mcT(t 2 t ), (4)a b c

]T w
5 2« T 2 g[T 2 T (h)]T sub]t H1

3ø 2pT 1 rh 2 sh , (5)

where m is an order-1 coupling coefficient.
Substitute a solution that is of the most general form

for the linear part of the problem,

T A cos(vt)
lt5 e , (6)1 2 [ ]h B cos(vt 1 f)

and assume that the model is neutrally stable (l 5 0),
which implies some special relation between the model
coefficients a, b, c, m, p, r, s, ta, tb, tc. Next, substitute
(6) in (4) and (5), multiply each of the resulting equa-
tions first by sin (vt) and then by cos (vt), and integrate
over a full period dt. Furthermore, use2p/v#0

3 1
3cos (u) 5 cos(u) 1 cos(3u) (7)

4 4

and neglect the cos(3vt) term, equivalent to projecting
our solution on the first Fourier term, and consistent with
the fact that we did not include a cos(3vt) term in (6).
The above procedure results in the four equations:

3
30 5 2pA 1 rB cosf 2 sB cosf, (8)

4

3
3vA 5 rB sinf 2 sB sinf, (9)

4

B cosf 5 aB cos(f 2 vt ) 1 mbA cos(vt )a b

1 mcA cos(vt ), (10)c

B sinf 5 aB sin(f 2 vt ) 2 mbA sin(vt )a b

2 mcA sin(vt ). (11)c
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FIG. 9. Solution of the weakly nonlinear approximation [Eqs. (8)–
(11)] as a function of the SST anomaly amplitude A. (top) Amplitude
of thermocline depth anomaly B for the linear (s 5 0, dashed) and
nonlinear (s ± 0, solid) cases. (middle) The coupling coefficient m
for the linear and nonlinear cases. (bottom) The period as function
of amplitude A for the linear (curve a) and nonlinear (curve b) cases.
Also shown are results of numerical solution of the model equations
(4) and (5) in the linear (3) and nonlinear (C) cases.

We would like to use these equations to find out what
is the correction to the frequency due to the small non-
linear, cubic in B, term in the SST equation (5). This is
essentially a weakly nonlinear correction to the linear
analysis of Suarez and Schopf (1988), who used a some-
what simpler delayed oscillator model. For this purpose,
fix the overall amplitude A and solve this system for
the unknown B, v0, f0, and m. The solution is obtained
numerically using an optimization routine in MATLAB.

The upper panel of Fig. 9 shows the amplitude of the
thermocline depth B as a function of the amplitude of
the SST anomaly A for both the case where the nonlin-
earity is ignored (s 5 0) and when it is included. In the
linear case (dashed line), B varies linearly with A, as
expected. In the nonlinear case (solid line), the nonlinear
effects start to play a significant role only for A . 18C
or so. The lower panel shows the period as function of
the amplitude A, again for both the linear (curve a) and
nonlinear (curve b) cases. For a model amplitude above
0.68C, for which nonlinear effects are starting to be more
significant, both the linear and nonlinear equations show
a smooth dependence of the period on the amplitude.
One can see that the period does not vary with the
amplitude for the linearized model (Fig. 9, curve a), but
increases with the amplitude when the nonlinear term
is included in the weakly nonlinear analysis (curve b).

We now compare these results of the weakly nonlinear
approximation to a numerical solution of (4) and (5).
For this purpose, we first set the nonlinear term zero, s
5 0, and also set the model coupling parameter m such
that the model is oscillating at a constant amplitude, in
a neutrally stable regime. When the nonlinear terms in
the delayed oscillator equation is set to zero, the am-
plitude of the oscillation depends on the initial pertur-
bation used to initialize the model. This dependence is
used to vary the amplitude of the oscillations in this
linearized case, so the coupling coefficient remains con-
stant in the linear case as the amplitude varies. As seen
by the 3 marks in the lower panel of Fig. 9, the period
is found not to depend on the amplitude in this linear
case, just as in the weakly nonlinear approximation used
above.

Next, we set s ± 0 run the model for a few different
values of the coupling coefficient m, and calculate the
period and amplitude from the numerical solution. The
results are shown by the circles in Fig. 9. The numerical
results agree with the weakly nonlinear approximation:
the model period increases with the amplitude when the
nonlinearity is included.

Note that the weakly nonlinear approximation slightly
underestimates the effects of the nonlinearity on the
period, as the distance between curves a and b (of the
approximation results) seems to grow less rapidly with
the amplitude than the distance between the crosses and
the circles (plotted from the numerical results). Overall,
apart from a relatively small constant shift in the period,
the weakly nonlinear approximation does quite well. For
larger yet coupling coefficient and amplitude, where the
weakly nonlinear approximation is no longer valid, the
numerical solution indicates that the equations undergo
another bifurcation and the period increases signifi-
cantly.

Comparison to strongly nonlinear results

Clearly the results found in this section for the weakly
nonlinear regime, both approximate and numerical, are
opposite to those found earlier, in section 3, for the
strongly nonlinear regime. In the latter regime, based
on the analysis of the UPOs, we found that the period
decreased with the amplitude, while in the weakly non-
linear case, the period is increasing with the amplitude.
In order to explain this difference, we refer the reader
to the appendix of Jin (1997a), in which a different
method of analysis is applied to the weakly nonlinear
regime. Jin finds there that the period indeed increases
with increasing coupling coefficient (and amplitude), as
we do here. By performing this analysis for both the
linear and nonlinear cases (his Fig. A1), he also shows
that the nonlinearity itself tends to shorten the period,
as we find in our strongly nonlinear case here. We may
therefore conclude that the response of the period to
increasing amplitude, which we see here in the weakly
nonlinear regime is, in fact, a response to the changing
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coupling coefficient, which has to be modified as part
of the weakly nonlinear analysis. This leaves us with
the results of the strongly nonlinear case as the more
reliable and robust take-home message of this paper:
the period tends to decrease with increasing amplitude.

5. Conclusions

The mechanisms leading to ENSO’s robust 4-yr pe-
riod (indicated by the observed broad spectral maximum
at this period) are not yet fully understood, and GCMs
tend to fail simulating the correct ENSO period. It is
therefore important to explore issues related to ENSO’s
period, what determines it, and how it might vary with
various climate parameters, using a full hierarchy of
models. We have examined the relation between the
period of ENSO and its amplitude in a simple delayed
oscillator model. This was done first in a strongly non-
linear, chaotic regime, and then in a weakly nonlinear
regime. In the strongly nonlinear regime, we found that
the larger the amplitude of the ENSO cycle, the shorter
its period. In contrast, we found that for the weakly
nonlinear regime, the period increases with the ampli-
tude.

The strongly nonlinear regime explored here would
be relevant to the actual ENSO dynamics should it turn
out that ENSO is self-sustained, and it would certainly
be even more relevant if it turns out that ENSO’s ir-
regularity is due to low-order chaos. The weakly non-
linear regime explored here would be relevant if ENSO
is largely linear and if nonnormal amplification of sto-
chastic forcing is indeed the source of ENSO’s existence
and irregularity. In this later case the nonlinearity enters
mostly when the events are near their peak and the
dynamics are linear at other times.

Now, we obtained different results for the weakly and
strongly nonlinear regimes in terms of the response of
the period to the amplitude. We also explain in section
4 that the weakly nonlinear results are due to the var-
iation of the ocean–atmosphere coupling coefficient,
which is part of this analysis. Thanks to the use of UPOs
in the chaotic attractor of the model, the strongly non-
linear analysis presented here does not require changing
any model parameters as part of the examination of the
amplitude–period relation. We therefore conclude that
the results of the strongly nonlinear case are the take-
home message of this paper: the period tends to decrease
with increasing amplitude. It is important to emphasize
that it is not the larger amplitude that causes the shorter
period, nor vice versa. The dynamics have to adjust both
the period and the amplitude to be consistent with each
other according to the amplitude–period relation found
here.

The short instrumental record makes it difficult to
decide how important the nonlinear effects are to
ENSO’s dynamics. It would therefore be interesting to
examine the amplitude–period relation in models of

higher complexity, such as intermediate models or full
GCMs, and perhaps eventually with the data as well.
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