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Abstract

In this paper we determine all possible cohomological invariants of Aut(J )-torsors in
Galois cohomology with mod 2 coefficients (characteristic of the base field not 2), for J a
split central simple Jordan algebra of odd degree n � 3. This has already been done for J of
orthogonal and exceptional type, and we extend these results to unitary and symplectic type.
We will use our results to compute the essential dimensions of some groups, for example we
show that ed(PSp2n) = n + 1 for n odd.

1. Introduction

The Stiefel–Whitney classes of quadratic forms over k define invariants in Galois co-
homology H ∗(k, Z/2Z) up to isometry [3], [14]. It is shown in [5, chapter VI] that the
even Stiefel–Whitney classes form a basis of all cohomological invariants of SOn-torsors
for n � 3 odd. This is done by identifying the SOn-torsors with isomorphism classes of
determinant 1 quadratic forms of dimension n. These torsors may be further identified with
isomorphism classes of algebras with orthogonal involution of degree n, by sending q to its
adjoint involution adq (see [11, theorem 4·2, p. 42]). These classes may further be identified
with isomorphism classes of central simple Jordan algebras of degree n whose associated
composition algebra C is one dimensional (see [9, p. 210]). We wish to extend these results
to dim(C) = 2 or 4, which is to say, odd degree algebras with unitary and symplectic invol-
utions. In fact, in the octonion case dim(C) = 8, we only have a Jordan algebra when the
degree is 3, and then it is called an Albert algebra. The mod 2 cohomological invariants of
Albert algebras have been determined in [5, chapter VI]. Nevertheless, we include this case
here for completeness.

For any n � 3 we will define J r
n := (Mn(C), −)+ over k, as the split Jordan algebra of

hermitian elements, where C is the split composition algebra of dim(C) = 2r . If r = 3 then
we insist that n = 3. Here − denotes the conjugate transpose involution. The following table
summarizes, for n = 2m + 1, the (split) automorphism groups Aut(J r

n ), together with their
mod 2 cohomological invariants (see Theorem 4·7). We list the degrees of invariants which
form an H ∗(k0)-basis of all invariants.
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r Aut(J r
2m+1) Degrees of H ∗-basis of Inv(Aut(J r

n ))

0 SO2m+1 0, 2, 4, . . . , 2m
1 Z/2Z � PGL2m+1 0, 1, 3, . . . , 2m + 1
2 PSp2(2m+1) 0, 2, 4, . . . , 2m + 2
3 F4 0, 3, 5

Here m � 1, and F4 denotes the split simple group of type F4. To specify the semi-direct
product in r = 1, we just need to describe how the non-trivial element of Z/2Z acts on
PGL2m+1. This action is defined by sending any [a] ∈ PGL2m+1 to its inverse transpose
[(at)−1] (see [11, 29·20]).

We will show (Theorem 4·7) that for r = 1, 2 and 3 and n � 3 odd, the normalized
invariants of Aut(J r

n ) in degree greater than zero are in one-to-one correspondence with
the even Stiefel-Whitney classes of n-dimensional quadratic forms (which are the invariants
of Aut(J 0

n )). Under this bijection the degree zero Stiefel–Whitney class corresponds to the
degree r invariant which classifies the associated composition algebra.

The Aut(J 1
3 )-invariants are discussed in detail in [11, Section 19·B, §30·C] or [8], in-

cluding a mod 3 invariant of degree 2. These invariants determine an Aut(J 1
3 )-torsor up to

isomorphism (considered there as a degree 3 algebra with unitary involution).
Recently in [6] Garibaldi, Parimala and Tignol have classified mod 2 invariants of degree

� 3 for Aut(J 2
n )-torsors for n even.

In the final section we determine the essential dimension at 2 for our groups Aut(J r
n ) for

n � 3 odd. In each case it is equal to the lower bound given by [2, theorem 1]. In particular,
we find that ed(PSp2n) = n + 1 for n � 3 odd, where previously the best upper bound was
given by 2n2 − 3n − 1 in [12].

2. Preliminaries

Throughout we will let k be a field extension of a fixed base field k0 of characteristic not
2, and ks will be a separable closure of k.

For any k-algebra A (by which we will mean finite dimensional, not necessarily associat-
ive, with identity), we will use the usual notions from Galois cohomology [11, section 29]
to identify Autalg(A)-torsors over k with k-isomorphism classes of k-algebras B such that
Aks �Bks . Similarly for algebras with involution.

In the Introduction we defined the split Jordan algebras J r
n := (Mn(C), −)+ for r = 0, 1, 2

when n � 3, and also for r = 3 when n = 3. Here, and throughout this paper we will write
dim(C) = 2r . These Jordan algebras are pairwise non-isomorphic, and over ks they represent
nearly all simple Jordan algebras by a theorem of Albert (see [9, Ch. V.6, p. 204]). We will
say that a simple Jordan algebra is of degree n (for some n � 3), if it becomes isomorphic to
J r

n over ks . These are the only kind of Jordan algebras that we will consider.
Furthermore, for r = 0, 1, 2 we have that (Mn(C), −) is a central simple algebra with

orthogonal (resp. unitary, symplectic) involution, where C is again the split composition
algebra of dimension 2r . They are pairwise non-isomorphic, and over ks they form all ks-
isomorphism classes of central simple algebras with involution. We say that a central simple
algebra with involution has degree n if it becomes isomorphic to (Mn(C), −) over ks .

One must be careful with the potentially confusing terminology here. A central simple
algebra with involution over k is defined to be central and simple as an algebra-with-
involution, and might not be central or simple as an algebra over k (see [9, p. 208] or [11,
section 2] for precise definitions).
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For r = 0, 1, 2 we have a 1-to-1 correspondence between isomorphism classes of these
two types of objects given by (A, σ ) ↔ (A, σ )+. So we can view Aut(J r

n )-torsors as either
isomorphism classes of algebras with involution or as isomorphism classes of Jordan algeb-
ras (see [9, chapter V·7, p. 210]). An advantage of the Jordan algebra point of view is that it
includes the exceptional r = 3 case.

2·1. Invariants of quadratic forms

We will follow the notation of [5] and write H ∗(k) or even H ∗ for the Galois co-
homology ring H ∗(Gal(ks/k), Z/2Z). For a ∈ k∗/(k∗)2, we will denote the correspond-
ing element (a) ∈ H 1(k) so that we have (a · b) = (a) + (b). We let Quadn,1(k) be the
pointed set of k-isometry classes of n-dimensional quadratic forms of determinant 1. And
we let Pfr(k) be the pointed set of k-isometry classes of r -Pfister forms. We will write
Inv(G) = Invk0(H 1(−, G)) for the group of cohomological invariants in H ∗ of G-torsors.

To define the Stiefel–Whitney classes of a quadratic form q over k, take a diagonalization
q � 〈a1, . . . , an〉. Then define wi (q) to be the i th degree part of the product

w(q) =
n∏

j=1

(1 + (a j )) ∈ H ∗(k).

This product is called the total Stiefel–Whitney class. It is independent of the diagonalization,
which can be shown by a chain equivalence argument (see [14]).

For an r -Pfister form,

q = 〈〈a1, . . . , ar 〉〉 := 〈1, −a1〉 ⊗ · · · ⊗ 〈1, −ar 〉,
define an invariant by er (q) = (a1) · · · (ar ) ∈ Hr (k). It is shown in [5, VI] that the H ∗-
module of invariants of r -Pfister forms, Inv(Pfr ), has an H ∗(k0)-basis consisting of {1, er }.

3. An upper bound for the invariants

In this section we show that Inv(Aut(J r
n )) injectively embeds into the tensor product of

two groups of invariants that we understand well (see Corollary 3·6).
For any associative composition algebra C over k, and hermitian form h on a free n-

dimensional C-module V , the trace form, qh is the quadratic form over k on V such that
qh(x) = h(x, x). If φ is the norm of C , and V �C ⊗ V0 as k-vector spaces, then qh�φ ⊗ q0

for some n-dimensional quadratic form q0 on V0.

LEMMA 3·1. Let C be an associative composition algebra over k with conjugation invol-
ution, and let h, h′ be hermitian forms over C. Then h�h′ iff qh�qh′ .

Proof. This is shown in [18, 10·1·1,10·1·7].

PROPOSITION 3·2. Let C be an associative composition algebra over k of dimension 1
(resp. 2, 4). Then isomorphism classes of involutions on Mn(C) of orthogonal (resp. unitary,
symplectic) type correspond to similarity classes of n-dimensional hermitian forms over C,
under adh ↔ h.

Proof. This is proved in [11, proposition 4·2, p. 43].

We will call a Jordan algebra over k reduced if it is isomorphic to one of the form
(Mn ⊗ C, adq ⊗−)+ for some composition k-algebra C , and n-dimensional quadratic form
q over k.
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Notice this implies Jacobson’s [9] definition of reduced in terms of orthogonal
idempotents, and his definition implies this one, by his Coordinatization theorem for
n � 3.

LEMMA 3·3. Let J be a central simple Jordan algebra of odd degree n and of type r = 0
or 2. Then J is reduced.

Proof. So J � (A, σ )+, where (A, σ ) is a central simple algebra with an involution of
the first kind. So its index is a power of 2 (see [11, p. 18, 2·8]).

Case r = 0. The degree of A as a central simple algebra is n, so the index divides n, and
hence A is split. So J is reduced by Proposition 3·2 (or [11, p. 1]).

Case r = 2. The degree of A as a central simple algebra is 2n, so the index divides
2, and hence J is reduced by proposition 3·2 and the remarks at the beginning of this
section.

LEMMA 3·4. Let J be a central simple Jordan algebra of odd degree. Then J becomes
reduced after extending scalars by a field extension of odd degree.

Proof. The only non-reduced algebras are when r = 3 or r = 1 by Lemma 3·3. For the
r = 3 case, as stated in the introduction, we must have n = 3. By [20, 6·1] any non-reduced
Albert algebra becomes reduced after a cubic extension.

For r = 1 there are two cases, as follows.
Case J � (B × Bop, σ )+. Here σ is the exchange involution, and B is a central simple

algebra over k of degree n odd. Then any maximal subfield L is a splitting field for B of
degree dividing n. Then JL is reduced by Propositon 3·2.

Case J � (A, σ )+. Here A is a central simple algebra over K of degree n odd, where K
is a quadratic extension of k, and σ is an involution of the second kind (i.e. unitary) over k.
Since the Brauer group of a finite field is trivial, we may assume that k is infinite.

Let L/k be an odd degree extension such that ind(AL) = d is minimal, where AL is a
simple associative algebra with centre KL = K ⊗k L . d is odd since d|n. Let D be the
division KL -algebra that is Brauer equivalent to AL , and hence of degree d as a central
simple algebra. Then D has an involution of the second kind τ that fixes L by [11, 3·1,
p. 31].

We want to show that d = 1, so assume that d > 1. Then we can take a non-scalar element
a in the degree d Jordan algebra (D, τ )+. Since k is infinite, we may choose a to be of
maximal degree in the sense of [9, p. 224]. In other words, a is such that deg(ma) = d, where
ma(λ) ∈ L[λ] is the minimal polynomial of a in (D, τ )+, for some indeterminate λ. Here
we are using the fact from [9, p. 233] that the degree of the generic minimal polynomial of a
generic element is equal to the degree of the Jordan algebra as defined in the Preliminaries.
Also, the coefficients of ma are in L by [11, 32·1·2, p. 452].

If we let α be a root of ma in ks , then the minimal polynomial of α is ma . This is because
D is a division algebra and hence ma is irreducible. So E = L(α) is a field extension of
degree d over L , and in particular, of odd degree over k. Then by considering the generic
norm of a′ := α1 − aE ∈ DE , we see that n(a′) = ma(α) = 0 [9, p. 224]. So a′ � 0 and is
non-invertible, and hence DE is not a division algebra. So ind(AE) = ind(DE) < d, which
contradicts the minimality of d.

Therefore d = 1, and hence AL � Mn(KL). So by Proposition 3·2 we see that JL is
reduced.
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PROPOSITION 3·5. For n � 3 odd, let J be an Aut(J r
n )-torsor over k. Then there is an

odd-degree extension L/k such that JL is in the image of

H : Pfr (L) × Quadn,1(L) −→ H 1(L , Aut(J r
n ))

(φ, q) 
−→ (Mn ⊗ Cφ, adq ⊗ −)+.

Moreover, if r = 2 the map is a surjection, and for r = 0 it is a bijection.

Proof. From Lemma 3·3 and 3·4 we get L/k such that JL is reduced, and since n is
odd, we can scale q so that det (q) = 1. Lemma 3·3 gives the r = 2 surjection, and the r = 0
bijection is well–known.

COROLLARY 3·6. We have an injective map of invariants

Inv(Aut(J r
n )) ↪→ Inv(Pfr ) ⊗ Inv(Quadn,1).

Proof. By [4, lemma 5·3] we can use the surjectivities from Proposition 3·5 to induce an
injective map on invariants. Then from [5, exercise 16·5], we can express the invariants of
the direct product Pfr × Quadn,1 as the tensor product of the invariants of each factor.

4. Construction of the invariants

Now it is a matter of deciding which of these invariants occur. In other words, we wish
to determine the image of the injective map in Corollary 3·6. It turns out to be the constant
invariants together with all multiples of er , the degree r invariant of Pfr (Theorem 4·7).

THEOREM 4·1. For n odd, r = 0, 1, 2 or 3, the invariants er ⊗w2i ∈
Inv(Pfr ) ⊗ Inv(Quadn,1) extend uniquely to Aut(J r

n )-invariants of degree r + 2i , which we
will call vi .

If the invariants extend, then by Corollary 3·6 they are unique. First we will show how
to construct the invariants on reduced Jordan algebras, and then use [4, Proposition 7·2] to
extend them to all Jordan algebras.

For a reduced Jordan algebra J = (Mn(C), adq ⊗−)+, we call C the composition algebra
associated to J . It is determined up to isomorphism by the isomorphism class of J (see [9]
or [13, 16]). We will usually denote its norm form φ, which is a Pfister form.

LEMMA 4·2. The quadratic form φ⊗q is determined up to similarity by the isomorphism
class of the reduced Jordan algebra J = (Mn(C), adq ⊗ −)+.

Proof. First consider the case when C is associative, which is to say, r�3. By [9,
p. 210] the Jordan algebra J determines the isomorphism class of the algebra with invol-
ution (Mn(C), σ ). Then Proposition 3·2 lets us associate up to a scalar, the n-dimensional
hermitian form h on C . Finally, Lemma 3·1 allows us to determine its trace form φ ⊗ q up
to similarity.

In the case r = 3, we use the following argument. For any reduced Jordan algebra of
degree n, the quadratic (reduced) trace form, TJ (x) = T rd(x2) = trace(x2) is determined
up to isometry by the isomorphism class of J , and is of the form

TJ �n〈1〉 ⊥ 〈2〉φ ⊗ ∧2q.

But since q is similar to ∧2(q) for 3-dimensional forms, we see that φ ⊗ q is determined up
to similarity for n = 3, and in particular when r = 3.
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Remark 4·3. In the r = 2 case, this observation was noted in [7, lemma 4·2].

LEMMA 4·4. Let φ be an r-fold Pfister form, and q, q ′ quadratic forms over k. Then
φ ⊗ q �φ ⊗ q ′ implies er (φ)w(q) = er (φ)w(q ′) ∈ H ∗(k).

Proof. This is an extension of [3] or [14] where it is shown for r = 0. We need the fact
from [21] that says if φ ⊗ q�φ ⊗ q ′ then q and q ′ are φ-chain equivalent.

Two quadratic forms are simply φ-equivalent if they can both be diagonalized in such a
way that q�〈a1, . . . , an〉 and q ′′�〈λa1, a2, . . . , an〉, where λ is represented by φ. Then two
forms are φ-chain equivalent if there is a finite chain of simple φ-equivalences from one to
the other.

This immediately reduces the problem to showing that equality holds at each stage of the
chain equivalence. This is the same as showing er (φ)w(〈a〉) = er (φ)w(λ〈a〉) for λ represen-
ted by φ. For such a λ, we have φ⊗〈1, −λ〉 is isotropic, and hence er (φ)·(λ) = 0 ∈ Hr+1(k).
Expanding w(λ〈a〉) = 1 + (λ) + (a), the result clearly follows.

So the following Lemma shows that the quadratic form φ ⊗q, where det(q) = 1, is in fact
determined up to isometry by the isomorphism class of a reduced Jordan algebra. Since q is
odd dimensional, there is always a determinant 1 quadratic form similar to it. We will write
d(q) = det(q) for the element of k∗/(k∗)2 corresponding to w1(q) ∈ H 1(k).

LEMMA 4·5. Let φ be an r-Pfister form, λ ∈ k∗, and q, q ′ quadratic forms. If φ ⊗ q �
φ ⊗ λq ′ then φ ⊗ d(q)q �φ ⊗ d(q ′)q ′.

Proof.

er (φ) · w1(q) = er (φ) · w1(λq ′) ∈ Hr+1(k) ⇐⇒ er (φ) · (λd(q)d(q ′)) = 0

⇐⇒ φ ⊗ 〈〈λd(q)d(q ′)〉〉 is hyperbolic

⇐⇒ d(q)d(q ′) = λ mod D(φ)∗

�⇒ φ ⊗ d(q)q �φ ⊗ d(q ′)q ′.

Proof of theorem 4·1. First we will show that the invariants er ⊗ w2i extend to invariants
on k-isomorphism classes of reduced Jordan algebras.

Consider the reduced Jordan algebra J = (Mn(C), adq ⊗ −)+ with n = 2m + 1. Then
we can assume det(q) = 1. Lemma 4·2 together with Lemma 4·5 show that φ ⊗ q is de-
termined up to isometry by the isomorphism class of J . Then by Lemma 4·4 we can define
vi(J ) = er (φ)w2i(q) ∈ Hr+2i (k) on k-isomorphism classes of reduced Jordan algebras, for
1 � i � m. This clearly extends er ⊗ w2i .

Finally, by Lemma 3·4, any odd degree Jordan algebra becomes reduced after an odd
degree extension. So by [4, proppsition 7·2] these invariants may be extended to non-reduced
Jordan algebras as well, and in other words, to all Aut(J r

n )-torsors. By Corollary 3·6, vi is
the unique invariant extending er ⊗ w2i .

Remark 4·6. For r = 1, there is an invariant closely related to v1 defined on conjugacy
classes of algebras with unitary involution of odd degree in [11, p. 438, 31·44]. They related
it to the Rost invariant.

Now we can state and prove our main theorem.

THEOREM 4·7. Invk0(Aut(J r
n )) is a free H ∗(k0)-module with a basis consisting of the

invariants {1, v0, v1, v2, . . . , vm}.
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Proof. For r = 0 this is shown in [5, chapter VI], noting that in this case v0 = 1, causing
a redundancy in the set of basis elements. So take r > 0. From Corollary 3·6 we know that
every Aut(J r

n )-invariant restricts to some

1 ⊗ a + er ⊗ b ∈ Inv(Pfr ) ⊗ Inv(Quadn,1),

for some uniquely defined a, b ∈ Inv(Quadn,1). We know from [5, Chapter VI] that any b ∈
Inv(Quadn,1) is in the H ∗(k)-span of the even Stiefel–Whitney classes, so by Theorem 4·1,
er ⊗ b is the restriction of some Aut(J r

n )-invariant in the H ∗(k)-span of {v0, v1, . . . , vm}. So
all that remains to show is that if 1 ⊗ a is the restriction of an Aut(J r

n )-invariant, then a is
constant.

Let a′ be an Aut(J r
n )-invariant that restricts to 1 ⊗ a for some Quadn,1-invariant a. If we

let Cs be the split composition algebra of dimension 2r , then

J = (Mn(Cs), adq ⊗ −)+

is isomorphic to the split algebra J r
n (by Proposition 3·2 for r�3 and by [20, corol-

lary 5·8·2] for r = 3). So for any such J , we must have that a′(J ) = a(q) is a constant,
independent of q. Since we can take q to be an arbitrary n-dimensional form of determinant
1, this implies a is constant. This completes the proof.

Remark 4·8. One may ask to what extent do these vi determine the Aut(J r
n )-torsors?

There are examples of non-isometric quadratic forms with determinant 1 in each dimen-
sion � 4 that have equal total Stiefel–Whitney classes [17, beispiel 3·4·1]. So one can use
these examples to write down two different reduced Aut(J r

n )-torsors for n � 4 odd, whose
invariants agree.

In the case of n = 3, on the other hand, for r = 0 or 2, the torsors are determined com-
pletely by v0 and v1. This is because they are determined by their quadratic trace form [20,
section 5]. But for r = 1 and r = 3 this is not the case, because (for n = 3) the trace form
of any non-reduced algebra is isometric to the trace form of some reduced algebra. Never-
theless, for r = 1 one may define a degree 2, mod 3 invariant, which together with v0 and
v1, classify Aut(J 1

3 )-torsors [11, section 19·B, section 30·C]. For r = 3, one may define a
degree 3, mod 3 invariant, but it is an open problem whether this invariant together with v0

and v1, classify Aut(J 3
3 )-torsors [19, 9·4].

5. Essential dimension

Given an algebraic group G over k0, and a G-torsor E over k, the essential dimension
of E is defined to be the minimum transcendence degree over k0 of all fields of definition
of E . The essential dimension of an algebraic group is defined to be the supremum of the
essential dimensions of all of its torsors ([1, 2, 15]). The essential dimension of many simple
algebraic groups is unknown. We will determine the value of the essential dimension at 2 for
some groups G, which we will denote by ed(G; 2) (see [2] for a definition of the essential
dimension at a prime). In all cases that we consider, ed(G; 2) is equal to the lower bound
given in [2, theorem 1] (or [15, theorem 7·8] for characteristic 0).

PROPOSITION 5·1. For n � 3 odd, we have ed(Aut(J r
n ); 2) = r + n − 1.

Proof. By the surjectivity in Lemma 3·5 we have that for any Aut(J r
n )-torsor J over k,

there is an odd degree extension L/k such that JL is reduced. So by using [1, lemma 1·11]
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we have that ed(J ; 2) � edL(JL) � ed(Pfr) + ed(Quadn,1) = r + n − 1. This gives us the
upper bound ed(Aut(J r

n ); 2) � r + n − 1.
The lower bound follows from [2, theorem 1]. Alternatively, we could deduce the lower

bound by using the non-triviality of the degree r + n − 1 cohomological invariant vm . This
follows from a slight modification of [1, corollary 3·6], that if there is a degree d invariant
mod 2, then the essential dimension at 2 is at least d.

Let us consider what Proposition 5·1 says for different r and n � 3 odd.
For r = 0 we get the well-known fact that ed(SOn) = ed(SOn; 2) = n − 1.
For r = 1 we get ed(Z/2Z � PGLn) � ed(Z/2Z � PGLn; 2) = n. The exact value of

ed(Z/2Z � PGLn) is unknown to the author for any n � 3.
For r = 2 we get ed(PSp2n) = ed(PSp2n; 2) = n + 1, since all PSp2n-torsors are reduced.

Previously, the best known upper bound for ed(PSp2n) was 2n2 − 3n − 1, which holds for n
even as well [12].

For r = 3 we get ed(F4) � ed(F4; 2) = 5, which is the best known lower bound for ed(F4).
The best published upper bound for the essential dimension is ed(F4) � 19 in [12]. [10]
claimed to show that ed(F4) = 5, but there was a mistake in the proof.
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