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Abstract

Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community
and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A
common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial
communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution
mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively
managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test
how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed,
species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively
managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-
dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower
N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although
the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse
experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which
was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that
microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland
management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they
support the notion that microbial communities might be the key to improved N retention through tightening linkages
between plants and microbes and reducing N availability.
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Introduction

Humans have doubled the input of nitrogen (N) to the Earth’s

land surface. The excessive use of fertiliser N has caused severe

environmental problems as a result of increased gaseous N

emissions from agricultural soils. This increased gaseous N loss due

to denitrification contributes to climate change, as N2O is an

approximately 300 times stronger greenhouse gas than CO2 [1].

Moreover, it also results in increased atmospheric N deposition

and excessive N leaching from soils, which cause eutrophication of

ground and surface waters, and have led to widespread changes in

plant community composition and loss of plant species diversity

[2–4]. In addition, although less extensively studied, N enrichment

through atmospheric deposition or agricultural management can

affect the structure and function of soil microbial communities. For

example, chronic N addition has been shown to reduce soil

microbial biomass and alter microbial community composition

across ecosystems and biomes [5–7], and typically reduce the

biomass of decomposer [8,9], arbuscular mycorrhizal [10] and

ectomycorrhizal fungi [11], and the abundance of fungi relative to

bacteria [6]. Because soil microbes play a major role in regulating

processes of N cycling [12,13], such changes in microbial

communities will have consequences for the capacity of soils to

retain N, and might thus feed back to the N cycle, potentially

further increasing N loss from soil. However, our knowledge of the

factors that determine soil N retention, and hence the mitigation of

soil N loss, is limited, despite the importance of such information

for sustainable food production [13].

A long standing notion in soil microbial ecology is that

ecosystems with a soil microbial community dominated by fungi

have more efficient N cycling than bacterial-dominated systems

[14,15]. This concept is based on the general pattern that fungi

dominate soils of undisturbed, late-successional systems of low N

availability [16], and the knowledge that fungi are more efficient in

their resource use than are bacteria [17], thereby slowing down

rates of N cycling. Also, because of their filamentous growth form,

fungi can access spatially separated C and N [18], and soils with

microbial communities dominated by fungi have been shown to

immobilise more added N than soils with bacterial-dominated

microbial communities [19,20]. However, results from controlled
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experiments assessing differences in C use efficiency and N

immobilisation raise questions about the idea that fungi are more

efficient in their C and N use than are bacteria [17,21,22], and it is

possible that increased immobilisation of C and N in fungal-

dominated soil microbial communities might be more a conse-

quence of the soil conditions that they occur under in the field,

rather than a physiological difference between fungi and bacteria.

Land use intensification, and especially the application of fertiliser

N and tillage, generally leads to a shift from fungal to bacterial

dominated soil systems, although this shift is sometimes restricted

to top soil [23–26]. In contrast, land use extensification, for

instance through the cessation of fertiliser use, reductions in

grazing pressure and adoption of no-tillage farming, can cause

a shift from bacterial to fungal dominated systems, albeit in the

long term [9,25–27]. These increases in the abundance of fungi

relative to bacteria due to land use extensification have been linked

to more efficient N cycling and lower soil N losses [9,20,28], but

direct support for this is lacking and the mechanisms behind the

relationship between fungal abundance and soil N retention

remain unclear.

Species-rich, extensively managed hay meadows are highly

valued ecosystems, and the restoration of grassland biodiversity

is an important aim of European Agri-Environmental schemes.

A common feature of extensively managed, species-rich grass-

lands is that they have fungal-based food webs, which is in

contrast to more intensively managed grasslands that have

bacterial-based food webs [25,29]. Grassland restoration prac-

tices such as seed addition, reduced grazing and cutting, and

cessation of fertiliser application have been shown to promote

the abundance of fungi relative to bacteria [30,31]. In addition,

pot experiments based on mesotrophic grasslands have shown

that high plant diversity promotes soil fungal biomass with

associated increases in soil N retention and reduced N loss

[32,33]. The mechanisms for these plant community composi-

tion effects on N cycling are unclear, but they likely act through

linkages between plants and soil microbes [13]; plant species

differentially impact on belowground microbial communities

through altering the quality and quantity of organic matter

entering soil via root and leaf litter and root exudates [15]. For

example, it has been shown that fast-growing plant species

characteristic of N-rich grasslands, which produce N rich litter

and exudates, select for more bacterial-dominated microbial

communities, whereas slow growing species of N-poor condi-

tions, which produce less decomposable litter, select for fungal-

dominated microbial communities, both on the level of in-

dividual plant species [34], but also on a landscape-scale [35].

Here, we investigated how changes in soil microbial commu-

nities resulting from differences in grassland management intensity

affect the capacity of plants and soil to retain N. We hypothesised

that extensively managed, species-rich grasslands of high conser-

vation value would have lower N loss and greater N retention than

intensively managed, species-poor grasslands, and that this would

be due to a greater immobilisation of N by the biomass of a more

fungal-dominated microbial community in the former. This was

tested using mesotrophic grasslands of contrasting management

intensity in northern England, and involved a combination of field

and laboratory experiments. The field study tested whether

extensively managed grasslands have lower soil N leaching losses

at the landscape scale, whereas the glasshouse experiment was

done to identify, through the addition of 15N-labelled inorganic N,

the mechanisms for improved N retention in extensively managed

grasslands.

Materials and Methods

Field Sites and Sampling
We sampled mesotrophic grasslands from eleven sites, each with

an intensively managed (fertilised and grazed), species poor

grassland, and adjacent traditionally managed (unfertilised,

extensively grazed and cut), species-rich haymeadow of high

conservation value, on the same soils (sandy silt loam) and of

similar topography. The 22 mesotrophic grasslands we used were

located in northern England in the region of the Yorkshire Dales

(mean annual temperature 7.3uC, mean annual precipitation

1382 mm). For details of all sites used, see Table 1. Extensively

managed grasslands received no inorganic fertiliser, whereas

intensively managed grasslands received .100 kg N ha21 y21.

In general, plant communities of species-rich grasslands were

Anthoxanthum odoratum-Geranium sylvaticum grassland (MG3 or

subcategories), and plant communities of intensively managed

grasslands were Lolium perenne-Cynosurus cristatus grassland (MG6,

MG7, and subcategories), according to the UK National

Vegetation Classification of Rodwell [36]. In each of the 22

fields, three 1 m2 plots were randomly chosen within a central

25625 m plot to avoid any edge effects. From these 1 m2 plots,

a composite bulk soil sample was taken for assessment of moisture

content, microbial biomass and community, carbon (C) and N

availability, and total C and N pools. From all fields sampled, one

intact soil column (18 cm height, 12 cm diameter) was taken from

the centre of each plot for a field-based leaching measurement.

Permission for sampling locations was obtained from all land

owners. These field studies did not involve endangered or

protected species.

Glasshouse Experiment and Sampling
Four intact soil columns (one for each treatment–control and

15N addition, destructive sampling after 48 hours and two months)

were taken per plot from a subset of eight grasslands (four

intensively and four extensively managed, Table 1) for the

glasshouse experiment (with three plots per grassland this resulted

in 96 columns). Columns were arranged in a randomized block

design and kept in the glasshouse for one month prior to the start

of the experiment, during which time they were kept at 60% water

holding capacity to standardise initial soil moisture content. Two

weeks before the start of the experiment, a vegetation survey was

done for all columns. One week before 15N addition, aboveground

vegetation was cut to 4 cm, and the bottom of the columns was

sealed to prevent unwanted leaching. Twenty-five ml of
15NH4

15NO3 solution (99.5% enriched, 24.5 mg 15N column21,

equals 30 kg 15N ha21), and demineralised water for control

treatments, was injected in the top 5 cm of each column at five,

evenly spaced, locations (5 ml each). Forty-eight hours and 60 days

after 15N vs. demineralised water injection, columns were leached

in the same way as field columns, weighed, and dismantled, after

which all aboveground vegetation was clipped. Columns were then

divided in two: one half was used to determine root biomass,

whereas the other half was used for soil and microbial analyses.

Leachate, Soil, Vegetation, and Microbial Analyses
Columns used for the field-based leaching measurement were

kept cool and immediately leached on return to the laboratory, by

slowly adding 330 ml of demineralised water (equal to a 40 mm

rainfall event or a heavy summer thunderstorm (MetOffice, 2012)).

Columns from the glasshouse experiment were leached in the

same way, 48 hours and 60 days after 15N addition. Leachate

volumes were recorded. Vegetation was clipped and columns were

divided in two for root and soil analyses. Leachates, field soil, and
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column soil were analysed for concentrations of inorganic N and

dissolved organic carbon (DOC) and total N, as described by

Gordon et al. [28]. Vegetation samples were dried at 60uC,

weighed, ground, and analysed for total C and N content using an

Elementar Vario EL elemental analyzer (Hanau, Germany). For

the glasshouse experiment, 200 ml of leachate was freeze dried for
15N analysis. Microbial biomass C and N in field and column soil

was determined by fumigation extraction as described by Brookes

et al. [37]. For the glasshouse experiment, all N in microbial

extracts was converted into ammonium by Kjeldahl digestion,

which were then used to diffuse N onto an acid trap. Leachate

(after freeze-drying), shoot, root, total soil, and microbial biomass
15N (determined by diffusing microbial derived N onto an acid

trap) were analysed using a Carlo Erba NA2000 analyser (CE

Instruments, Wigan, UK) and a SerCon 20–20 isotope ratio mass

spectrometer (SerCon Ltd, Crewe, UK) at Rothamsted Research,

North Wyke. A dried and ground grass herbage sample labelled

with 15N (2.79 atom % 15N) or natural abundance wheat flour

(0.368 atom % 15N), both calibrated against IAEA-N-1 by Iso-

Analytical, Crewe, UK, were used as the references for enriched or

natural abundance samples respectively. 15N excess atom percent

values for enriched samples were calculated using mean 15N atom

percent values of unlabelled samples [38]. These values were then

used to calculate 15N concentrations in samples, and total amounts

of 15N in pools were calculated using total pool sizes in columns

[19], which were then scaled to kilograms per hectare using the

surface area of columns.

In field samples, the biomass and structure of the soil microbial

community was assessed by PLFA analysis. The fatty acids i-15:0,

a-15:0, 15:0, i-16:0, 17:0, cyclo-17:0, 18:1v7 and cyclo-19:0 were

chosen to represent bacterial PLFA, 10-methyl 18:0 and 10-methyl

16:0 represent actinomycetes, 18:1v9 represents eukaryotes, and

PLFA 18:2v6 was used as an indicator of fungal biomass [39]. The

ratio of fungal to bacterial PLFA was used as an indicator of

changes in the relative abundance of these two microbial groups

[40]. Shifts in microbial community composition were assessed

using PCA of relative abundances of all PLFAs, and Simpson’s

evenness was calculated of PLFA profiles [41]. In addition, fungal

and bacterial biomass were determined by epifluorescence

microscopy [20]. Briefly, microscopic slides for counting fungi

were stained with Differential Fluorescent Stain solution, and

slides for counting bacteria were stained with the fluorescent

protein dye 5-(4,6-dichlorotriazin-2-yl) aminofluorescein. Hyphal

length was measured using an epifluorescence microscope at 4006
magnification. Total hyphal length was calculated using the grid

intersection method [42]. Fungal biomass was calculated assuming

a mean hyphal diameter (width) of 2.5 mm and a specific C

content of 1.3 61013 g C mm3 [43,44]. Bacterial numbers, cell

volumes and number of dividing cells were measured automati-

cally with a confocal laser-scanning microscope (Leica TCS SP2)

combined with image analysis software (Leica Qwin Pro), as

described by [45]. Bacterial biomass (C) was estimated from the

biovolume using a specific C content of 3.1 61013 g C mm3 [46].

Table 1. Characteristics of the field sites used for the sampling and the glasshouse experiment; data from De Vries, et al [35].

Site Management Soil type Vegetation1 Latitude Longitude
Altitude
(m.a.s.) pH2

15N
exp.

Askrigg Bottoms Extensive Sandy silt loam MG3b 54.308398 22.074833 307 6.0 Yes

Intensive Sandy silt loam MG7c 54.308404 22.071801 292 6.0 Yes

Waldendale Extensive Homose sandy silt loam MG3b 54.206064 22.144537 398 6.3 Yes

Intensive Sandy silt loam U4b 54.244598 21.987352 335 5.3 Yes

Yockenthwaite Extensive Sandy silt loam MG3b 54.237597 21.991726 336 5.1 Yes

Intensive Sandy silt loam MG7b 54.204159 22.1443 398 5.1 Yes

Muker Extensive Sandy silt loam 54.379048 22.138109 490 5.2 Yes

Intensive Sandy silt loam MG3a 54.377735 22.138936 490 5.5 Yes

Thornton Rust Extensive Sandy silt loam MG4 54.237597 21.991726 307 5.62

Intensive Sandy silt loam MG7a 54.204159 22.1443 307 5.7

Church and Middlethorpe Ings Extensive Sandy silt loam MG4 53.902989 21.098635 10 6.94

Intensive Sandy silt loam OV29 53.905474 21.093162 10 5.99

Wheldrake and Storwood Ings Extensive Sandy silt loam MG4 53.890228 20.926907 33 6.4

Intensive Clay loam MG6a 53.880685 20.922468 31 7.44

Melbourne and Thornton Ings Extensive Sandy silt loam MG4 53.891644 20.847229 41 7.63

Intensive Sandy loam MG6a 53.891616 20.847169 41 7.28

East Cottingwith Ings Extensive Clay loam MG4 53.857938 20.944019 25 5.43

Intensive Clay loam MG7c 53.856805 20.942937 25 6.63

Thorganby and East Cottingwith
Ings

Extensive Clay loam MG4 53.862402 20.940607 28 5.16

Intensive Clay loam OV29 53.867402 20.94702 28 5.26

Selside Extensive Homose sandy silt loam MG5b 54.168173 22.340677 354 6.71

Intensive Clay loam MG6a 54.17053 22.3397 334 5.1

1According to Rodwell [36].
2Measured on a field level in 2005.
doi:10.1371/journal.pone.0051201.t001
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Statistical Analysis
Data were log-transformed to meet assumptions of normality.

Field data were analysed using linear mixed effects models with

a field level random effect to account for the nesting in fields, and

true significant values were obtained by a likelihood ratio test

(LRT) [47]. Apart from testing for effects of management on N

and C leaching, we selected the models best explaining field N and

C leaching. Parameters added to the models for nitrate availability

and N leaching included management, soil properties (total C,

total N, C/N ratio), plant and root properties (biomass, total N,

total C, C/N ratio), and microbial properties (microbial biomass C

and N, fungal PLFA, bacterial PLFA, F/B PLFA ratio, PC axis 1

(PC1) scores of all PLFAs, PC axis 2 (PC2) scores of all PLFAs,

PLFA evenness). Parameters retained in the models were selected

based on Akaike’s Information Criterion (AIC) and estimated

significance values, after which true significance of included

parameters was obtained by an LRT [48]. Glasshouse data were

analysed for treatment effects using ANOVA with an error term to

account for the nesting in block and field. In addition, glasshouse

data were analysed using linear mixed effects models to find the

parameters that best explained 15N leaching. Parameters added to

this model were management, soil properties (total C, total N, C/

N ratio), plant and root properties (biomass, total N, total C, C/N

ratio), and microbial properties (microbial biomass C and N,

fungal PLFA, bacterial PLFA, F/B PLFA ratio, PC1 scores, PC2

scores, PLFA evenness). Similar to the field data, parameters

included were selected based on AIC and estimated significance

values, after which true significance of included parameters was

obtained by an LRT. R-squared values were obtained by

regressing saved model predictions against observed values. For

all statistical analyses, P-values smaller than 0.05 were considered

significant. All analyses were done in R version 2.12.1 (R

Development Core Team 2009).

Results

Field Sampling
First, we examined differences in soil and microbial properties,

and C and N leaching, between the different management

intensities. Intensively and extensively managed grasslands differed

in some soil, microbial, and vegetation properties, but were similar

for others. Inorganic N leaching was greater in intensively than in

extensively managed grasslands (L-ratio = 8.51, P= 0.0035),

whereas total N leaching, DOC leaching, and soil inorganic N

did not differ between the two grassland types (Table 2). Total soil

N content, and soil, root, and shoot C/N ratios did not differ

between grasslands, although total soil C content and microbial

biomass C and N tended to be greater in extensively than in

intensively managed grasslands, albeit non significantly.

Bacterial biomass measured as PLFA tended to be greater in

extensively managed grasslands (L-ratio = 2.77, P= 0.096), where-

as fungal PLFA was significantly (L-ratio = 17.7, P,0.0001)

greater, and more than twice as high, in extensively than in

intensively managed grasslands. As a consequence, the F/B PLFA

ratio was greater in extensively than in intensively managed

grasslands (L-ratio = 24.9, P,0.0001, Table 2). Surprisingly,

microbial community composition, as assessed by PCA of all

PLFAs, was not affected by management intensity, and neither

was evenness of PLFA profiles (Fig. 1, Table 2). Bacterial biomass,

as measured by microscopy, tended to be greater in extensively

managed fields (L-ratio = 2.64, P= 0.105). However, fungal bio-

mass measured by microscopy did not differ between extensive

and intensive management, and as a result the F/B biomass ratio

did not differ (Table 2).

Second, we used model selection (see Methods) to explore which

parameters best explained C and N leaching in the field. This

resulted in two satisfactory models for explaining leaching losses of

N and C from soils. Inorganic N leaching was strongly explained

by a model containing management intensity, (log-transformed)

shoot C/N ratio, and the interaction term between the two:

inorganic N leaching decreased with greater shoot C/N ratio, but

only in extensively managed grasslands (Table 3, Fig. 2A).

Although the models selected for DON leaching and total N

leaching were significant, their explanatory power was very low

(R2 = 0.04 and R2 = 0.09 respectively, Table 2). Leaching of DON

was explained by a combination of management intensity, soil C/

N ratio and shoot C/N ratio, and total N leached was explained

by only one factor, namely soil C/N ratio. The model for DOC

leaching was similar to the model explaining inorganic N leaching,

with the exception that a term for microbial community was

included, namely microbial biomass C (Table 3). Although

inorganic N leaching was not explained by microbial community

characteristics, soil NO3
2 concentration was strongly explained by

a combination of soil C/N ratio (Parameter Value (PV) =22.16,

P= 0.0025) (log-transformed), F/B PLFA ratio (PV =20.54,

P= 0.01), and shoot C/N ratio (PV =20.65, P= 0.0004)

(R2 = 0.48, Fig. 2B). A second model also including soil C/N

ratio (PV =22.84, P = 0.0004), shoot C/N ratio (PV =20.73,

Table 2. Differences in C and N leaching, and soil, vegetation,
and microbial properties between intensively and extensively
managed grasslands.

Intensive Extensive L-ratio P

Inorganic N
leached (kg ha21)

0.38 (0.07) 0.08 (0.02) 8.51 0.0035

Total N leached (kg ha21) 1.29 (0.12) 1.00 (0.14) 1.93 0.165

DON leached (kg ha21) 0.91 (0.08) 0.93 (0.14) 0.91 0.340

DOC leached (kg ha21) 2.12 (0.19) 1.82 (0.16) 0.78 0.376

Soil inorganic N
(mg kg21)

16.9 (1.5) 16.5 (3.3) 1.58 0.209

Total soil C (mg g21) 72.8 (2.5) 84.7 (5.7) 2.87 0.090

Total soil N (mg g21) 6.74 (0.26) 7.59 (0.56) 1.72 0.190

Soil C/N ratio 10.8 (0.1) 11.4 (0.2) 1.72 0.189

Root C/N ratio 22.5 (1.1) 25.3 (1.3) 1.79 0.181

Shoot C/N ratio 19.7 (1.4) 22.5 (1.2) 1.22 0.269

Root biomass (kg m22) 1.44 (0.15) 2.21 (0.17) 4.68 0.031

Microbial biomass
C (mg g21)

803 (96) 1175 (122) 2.54 0.111

Microbial biomass
N (mg g21)

277 (25) 387 (34) 2.82 0.093

Bacterial PLFA
(nmol g21)

72.2 (4.4) 92.8 (6.3) 2.77 0.096

Fungal PLFA
(nmol g21)

2.02 (0.22) 5.28 (0.40) 17.65 ,0.0001

F/B PLFA ratio 0.027 (0.002) 0.061 (0.004) 24.93 ,0.0001

PLFA evenness 0.813 (0.002) 0.815 (0.002) 0.20 0.658

Bacterial biomass
(mg C g21)

89.7 (5.7) 111.7 (7.5) 2.64 0.105

Fungal biomass
(mg C g21)

61.7 (6.9) 78.0 (7.6) 0.03 0.860

F/B biomass ratio 0.78 (0.11) 0.77 (0.08) 0.03 0.860

Values denote means (1SE), n = 66.
doi:10.1371/journal.pone.0051201.t002
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Figure 1. Principal components analysis (PCA) of the relative abundance of all PLFAs. PCA axis 1 explains 19.5% and PCA axis 2 explains
16% of variation in microbial community composition. Microbial community composition was not affected by grassland management.
doi:10.1371/journal.pone.0051201.g001
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P = 0.0002), but including PCA axis 1 scores for all PLFAs

(PV = 0.05, P = 0.008), along which the relative abundance of

actinomycetes increased (Fig. 1), explained a similar amount of

variation (R2 = 0.47). In addition, inorganic N leaching was

strongly explained by soil NO3
2 concentration (PV = 1.06,

P= 0.0029, R2 = 0.31).

Glasshouse Experiment
As for the field sampling, we first tested whether N leaching

losses, and uptake of added 15N into different pools, differed

between management intensities. Leaching of inorganic N in the

glasshouse experiment was lower (F1,86 = 17.7, P,0.0001) from

columns from extensively than from intensively managed grass-

land (Fig. 3). Total N leached from columns during the glasshouse

experiment was strongly related to total N leaching in the field

(P,0.001, R2 = 0.50). There was a weak trend (F1,42 = 2.16,

P= 0.149) towards lower 15N loss from columns from extensively

managed grasslands (Fig. 4A), but the total amount of added 15N

leached did not differ between management types. However, both

48 hours and two months after addition of 15N, significantly

(F1,40 = 7.5, P= 0.003) more added 15N was immobilised by the

microbial biomass in extensive than intensive management

(Fig. 4B). Roots took up the largest amount of 15N, and

significantly (F1,42 = 6.9, P= 0.01) more so in columns from

extensively than intensively managed grasslands; this pool only

decreased slightly over time (Fig. 4C). In contrast, shoot uptake did

not differ between the two management intensities and increased

towards the end of the experiment (Fig. 4D). Taken together, the

amount of added 15N retained in microbial, soil, and aboveground

and belowground vegetation pools was greatest in extensively

managed grasslands (F1,40 = 5.7, P= 0.02, Fig. 4E). In both

systems, total retention of 15N did not decrease towards the end

of the experiment.

Second, we selected the models that best explained leaching and

retention of 15N in the soil columns of the glasshouse experiment.

Leaching of 15N was found to decline with increasing (log-

transformed) abundance of fungi relative to bacteria across all

samples at both sampling dates (Sampling date P= 0.0006,

Fungal/Bacterial (F/B) ratio P= 0.0003, Sampling date 6 F/B

ratio P,0.0001, R2 = 0.72, Fig. 5A). A model including sampling

date and PC2 scores explained less variation, but showed a similar

pattern (Sampling date P,0.0001, PC2 P= 0.011, Sampling date

6 PC2 P= 0.06, R2 = 0.58); leaching of 15N increased with

increasing PC2 scores, along which the relative abundance of

fungal PLFA 18:2v6 decreased (Fig. 2). Immobilisation of added
15N into microbial biomass increased with increasing (log-

transformed) fungal biomass (Sampling date P = 0.03, Fungal

PLFA P,0.0001, Sampling date 6 Fungal PLFA P = 0.0001,

R2 = 0.58, Fig. 5B). In addition, the retention of added 15N

increased with greater (log-transformed) fungal biomass (Fig. 5C).

Similar to the field sampling, leaching of 15N was explained by the

(log-transformed) C/N ratio of aboveground biomass, but this

model explained a smaller part of the variation in 15N leached

than the model that included F/B ratio (R2 = 0.67, Fig. 5D).

Total recovery of added 15N in soil, vegetation and leachates

was greater in columns from extensive than from intensive

management (7665% vs. 6465%, respectively), but was not

affected by sampling date. Although grassland communities in the

two management types were different, the number of plant species,

and the abundance of legumes, grasses, and herbs, did not differ

between the columns taken from the two grassland types in the

glasshouse experiment (data not shown).

Discussion

We hypothesised that N leaching would be lower from

extensively managed, species-rich grasslands than from intensively

managed, species-poor grasslands, and that this would be because

of a greater immobilisation of available N into microbial biomass

in more fungal-dominated soils of the former. In the field

experiment, extensively managed grasslands showed less inorganic

N leaching than intensively managed grasslands, and the amount

of inorganic N leached was best explained by a combination of

grassland management and the C/N ratio of aboveground

vegetation. In the glasshouse experiment, we found that exten-

sively managed grasslands had greater retention of added 15N than

Figure 2. Soil inorganic N availability and inorganic N leaching from soil in the field sampling. A, Inorganic N leached in the field as
explained by shoot C/N ratio in intensive (filled symbols) and extensive (open symbols) grasslands. B, Modelled relationship between soil nitrate
availability, shoot C/N ratio and F/B ratio in the field. Soil C/N ratio was kept constant in the model. Soil C/N ratio P= 0.0025, Shoot C/N ratio
P= 0.0004, F/B ratio P=0.01. Variables were log-transformed, but axes represent true values.
doi:10.1371/journal.pone.0051201.g002
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intensive grasslands, because of a combination of greater root

uptake and microbial immobilisation of 15N.

In the field sampling, and in accordance with our hypothesis,

the fungal to bacterial PLFA ratio, and PCA axis 1 scores along

which the relative abundance of actinomycetes increased, ex-

plained a significant portion of variation in soil NO3
2 concentra-

tion, which is highly prone to leaching. However, inorganic N

leaching was best explained by the C/N ratio of aboveground

plant biomass, but only in intensively managed grasslands, which

were more variable in their N leaching (Table 1, Fig. 1A). The C/

N ratio of aboveground plant biomass most likely reflects

differences in management within the improved grasslands, rather

than differences in plant community composition, which was

consistent within grassland type. There is growing evidence that

plant traits, such as leaf N content, exert a strong control on

belowground processes through altering the quality and quantity

of organic matter entering soil [49,50]. For instance, slow-growing

plants with low leaf N content that are adapted to low-fertility

conditions have been shown to decrease rates of nitrification [51]

and N mineralisation [34], and to select for a more fungal-

dominated microbial community [34,35], which should decrease

rates of N cycling even more [15]. Our results, therefore, point to

an indirect link between plant traits, in this case leaf C/N ratio,

and processes that govern N availability and leaching from soil at

the field-scale. Although leaching of DOC did not differ between

the two grassland types, it decreased with increasing C/N ratio of

aboveground biomass similar to inorganic N leaching, which

further points to the importance of plant traits for processes of C

cycling. Moreover, DOC leaching increased with greater micro-

bial biomass C, which is consistent with the notion that the

microbial biomass stimulates decomposition, and thus the

Table 3. Selected models for inorganic N leached, DON leached, total N leached, and DOC leached in the field sampling.

Inorganic N leached (kg ha21) DON leached (kg ha21)
Total N leached (kg
ha21) DOC leached (kg ha21)

Parameter Value P Parameter Value P
Parameter
Value P Parameter Value P

Intercept +5.27 0.0059 23.24 0.68 +7.55 0.037 +0.77 0.43

Management 27.07*E 0.019 +20.2*E 0.029 23.3*E 0.012

Soil properties +1.42*soil C/N 0.64 23.19*soil C/N 0.03

211.6*E*soil C/N 0.0016

Vegetation properties 22.29*shoot C/N 0.0006 20.13*shoot C/N 0.82 20.73*shoot C/N 0.0087

+1.99*E*shoot C/N 0.044 +2.4*E*shoot C/N 0.004 +1.0*E*shoot C/N 0.017

Microbial community +0.31*microbial C 0.032

R-squared 0.46 0.04 0.09 0.28

E = extensive management.
doi:10.1371/journal.pone.0051201.t003

Figure 3. Total amounts of inorganic N leached in intensive vs. extensive soils in the glasshouse experiment, as affected by 15N
addition and sampling date. Management F1,86 = 17.7, P,0.0001, N addition F1,86 = 75.7, P,0.0001, Sampling date F1,86 = 21.9, P,0.0001, N
addition6 Sampling date F1,86 = 45.4, P,0.0001. Bars represent means (n = 12) 61SE.
doi:10.1371/journal.pone.0051201.g003
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availability of DOC in soil, or that a C-rich soil sustains a greater

microbial biomass [52,53].

Surprisingly, although fungal PLFA and the F/B PLFA ratio

were significantly greater in extensively managed than intensive

grasslands, as has been shown previously [25,29], fungal biomass

and the F/B ratio, measured by microscopy, were not (Table 1). In

contrast, bacterial PLFA and bacterial biomass, as measured by

microscopy, both tended to be greater in extensive grasslands, and

by the same magnitude (25%). An explanation for the discrepancy

between fungal PLFA and microscopic counts of fungal hyphae

could be that a large part of hyphae visible through a microscope

might be inactive or dead [54], although the assumption that

PLFAs degrade more rapidly than cell walls, and thus represent

active biomass more accurately than microscopy, has been

challenged [55]. Although all of our samples were treated and

stored in a similar way, storage might have resulted in differences

in decay of fungal hyphae and PLFAs, although this is hard to

judge given that very little is known about the impacts of pre-

Figure 4. 15N pools in intensive (black bars) vs. extensive grasslands, 48 hours and two months after 15N addition. A, 15N leached
(Management F1,42 = 2.15, P= 0.15, Sampling date F1,42 = 58.1, P,0.0001, Management 6 Sampling date F1,42 = 1.61, P= 0.21); B, 15N uptake in
microbial biomass (Management F1,40 = 7.5, P= 0.003, Sampling date F1,40 = 9.7, P=0.009, Management6Sampling date F1,40 = 5.2, P= 0.03); C, 15N in
roots (Management F1,42 = 6.9, P= 0.01, Sampling date F1,42 = 3.1, P= 0.08, Management6Sampling date F1,42 = 0.03, P=0.85); D, 15N in aboveground
plant biomass (Management F1,42 = 0.06, P=0.80, Sampling date F1,42 = 59.6, P,0.0001, Management 6 Sampling date F1,42 = 0.03, P=0.87). E,
amount of 15N retained in the different pools, after 48 hours and two months (Management F1,40 = 5.7, P=0.02, Sampling date F1,40 = 0.2, P= 0.69,
Management6 Sampling date F1,40 = 0.005, P= 0.94). Bars represent means (n = 12) 61SE.
doi:10.1371/journal.pone.0051201.g004

Figure 5. 15N leaching and microbial 15N immobilisation in the glasshouse experiment. A, 15N leaching in the glasshouse experiment as
explained by F/B ratio. Sampling date P = 0.0006, F/B ratio P = 0.0003, Sampling date 6 F/B ratio P,0.0001, R2 = 0.72. B, Microbial 15N uptake as
explained by fungal PLFA. Sampling date P = 0.03, Fungal PLFA P,0.0001, Sampling date6Fungal PLFA P=0.0001, R2 = 0.58. C, 15N retention in the
glasshouse experiment across both sampling dates as explained by fungal PLFA (P = 0.03, R2 = 0.12). D, 15N leaching in the glasshouse experiment as
explained by shoot C/N ratio. Sampling date P = 0.0006, Shoot C/N ratio P= 0.0001, Sampling date6Shoot C/N ratio P,0.0029, R2 = 0.67. Analyses
were done on log-transformed data, but axes represent true values. Filled symbols represent improved grasslands, open symbols unimproved
grasslands; diamonds represent 48-hour-sampling (except for 4C, where sampling dates are pooled), triangles two-month-sampling. Solid lines are
the predicted relationship for 48-hour-sampling, dashed lines are predicted relationships for two-month-sampling.
doi:10.1371/journal.pone.0051201.g005
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treatment of soil samples on these methods [55,56]. Furthermore,

a general problem with PLFAs is that species composition within

groups cannot be detected (for example within decomposer fungi,

which are all represented by PLFA 18:2v6), while different species

within a group might differ in their PLFA content [56], and fungal

communities are likely to be impacted by grasslands management

[57]. Another possibility is that fungi in extensive grassland had

thicker hyphae, and thus greater membrane surface and PLFA;

however, then also greater microbial biomass C would have been

found. Furthermore, the PLFA 18:2v6 only includes decomposer

fungi, while the microscopic measure also includes mycorrhiza.

Although not measured here, arbuscular mycorrhizal fungi can be

measured by quantifying the PLFA 16:1v5, although this PLFA

also occurs in Gram-negative bacteria [58]. Thus, a combination

of different methods is needed for a complete picture.

In the glasshouse experiment, and in support of our hypothesis,

significantly more added 15N was immobilised into microbial

biomass in extensively managed than intensive grassland soil, and
15N immobilisation into microbial biomass increased with in-

creasing fungal biomass (measured as PLFA). In addition, leaching

of 15N declined with increasing abundance of fungi relative to

bacteria (F/B ratio, measured as PLFA). Although it has been

suggested that fungi would immobilise available N more efficiently

than bacteria, it is not possible to distinguish between 15N

immobilised by bacteria and fungi. Therefore, although in the

current study we cannot elucidate the exact mechanism, our

results suggest that a greater fungal abundance is linked to

increased soil N retention, a key ecosystem service in grassland.

Greater microbial immobilisation of added N in extensively

compared to intensively managed grasslands [19], and in fungal-

dominated microbial communities compared to bacterial-domi-

nated microbial communities [20], has been shown previously; but

here we provide the first evidence that this greater microbial

immobilisation of N is linked to smaller N leaching losses across

a range of grassland sites.

The amount of 15N immobilised by microbes in extensively

managed grassland soil was twice as high as the amount leached

after 48 hours, which shows that microbes can be a significant

short-term N sink in grassland (Bardgett et al. 2003). Roots took

up the largest amount of added 15N, however, and significantly

more so in columns from extensively managed than intensive

grasslands; this pool only decreased slightly over time. Root

biomass did not differ between the two grassland types in the

glasshouse experiment (whereas it did in the field sampling).

Therefore, arbuscular mycorrhizal fungi, which were not mea-

sured in this study, may have contributed to greater root N uptake,

and also to greater N immobilisation in microbial biomass, in the

extensively managed grassland. Indeed, it is known that arbuscular

mycorrhizal fungi are adversely affected by intensive grassland

management, including liming and fertilisation [59], and they

have been shown to reduce N leaching, albeit under highly

artificial conditions, and have been suggested to significantly

contribute to ecosystem N retention [13]. However, as far as we

are aware, there is no experimental evidence that AMF reduce N

leaching under field conditions, so more work is needed to

quantify their role in N uptake and recycling in grasslands

[13,29,60,61].

The retention of 15N was significantly greater in extensively

managed grasslands than in intensive grasslands. Importantly, in

both systems, the total retention of 15N did not decrease towards

the end of the experiment, which suggests that the immediate N

uptake in the different pools determines longer-term ecosystem N

retention in mesotrophic grasslands. This is in sharp contrast with

earlier results from a forest ecosystem [62], where the added N

retained in soil pools after 16 weeks was only a quarter of the

amount retained immediately after addition, although here

aboveground N uptake was not measured. Similarly, in a study

comparing N retention in urban lawns and forest, the amount of

added N retained in the system after 70 days was significantly

lower than the retention after one day [63]. In our experiment,
15N in aboveground plant biomass showed a three-fold increase

during the two months of our experiment, indicating a transfer of

retained 15N from belowground to aboveground pools. Differences

in soil N retention and recovery of added 15N can also be

a consequence of differences in gaseous N losses, which can make

up a substantial amount of total N lost from soil. Our results of

greater recovery of added 15N in extensively managed grassland

soil are in line with previous findings of smaller recovery of 15N

and greater N loss through denitrification in soils with bacterial-

dominated microbial communities [20].

In conclusion, the results from our field sampling show that

extensively managed, species-rich grasslands of high conservation

value have lower leaching of inorganic N than agriculturally

improved, species poor grasslands. Our linked glasshouse exper-

iment showed that both roots and microbes form a stronger sink

for added N in extensively managed grasslands, and that the

strength of the microbial sink is related to a greater abundance of

decomposer fungi relative to bacteria. This greater root and

microbial uptake of N contributes to smaller N leaching losses and

greater soil N retention in extensively managed grasslands. Our

results advance understanding of the mechanisms of N retention in

terrestrial ecosystems and how the capacity to retain N is affected

by grassland management. Moreover, they support the notion that

microbial communities might be the key to improved N retention

through tightening linkages between plants and microbes and

reducing N availability [13]. However, more detailed experiments

are needed to elucidate the role of arbuscular mycorrhizal and

decomposer fungi, and specific bacterial groups, in controlling N

cycling processes. Pressures on land for production of food, feed

and biofuel are increasing, and this has led to an urgent need to

make managed systems more sustainable. Here we show that

extensification of grassland management has the potential to

optimize the delivery of ecosystem services like N retention, which

is of central importance to sustainable food production [64,65]

and pollution mitigation [2,3].

Acknowledgments

We thank Marina Louzada, Victor van Velzen, Nicola Thompson, An

Vos, and Louise Walker for help in the field and in the laboratory. Liz

Dixon of Rothamsted Research North Wyke performed, and gave

invaluable advice on, 15N analyses. We are very grateful to the landowners

and farmers for allowing us to sample their fields, and to the DIGFOR

project members for help in selecting the sites. Dave Johnson of Aberdeen

University provided us with helpful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: FTdV RDB HQ. Performed the

experiments: FTdV HQ CJS RB. Analyzed the data: FTdV. Contributed

reagents/materials/analysis tools: HQ RB JB CJS. Wrote the paper: FTdV

RDB.

Grassland Management and Nitrogen Retention

PLOS ONE | www.plosone.org 10 December 2012 | Volume 7 | Issue 12 | e51201



References

1. IPCC (2007) Climate Change 2007: The Physical Science Basis; Solomon S, Qin
D, Manning M, Chen Z, Marquis M et al., editors. Cambridge, United

Kingdom and New York, NY, USA: Cambridge University Press.

2. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, et al. (2008)
Transformation of the nitrogen cycle: Recent trends, questions, and potential

solutions. Science 320: 889–892.

3. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. P Natl Acad Sci
USA 106: 203–208.

4. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen

deposition on the species richness of grasslands. Science 303: 1876–1879.

5. Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, et al. (2011) Responses of

ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:

1040–1050.

6. Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis

of ecosystem studies. Ecol Lett 11: 1111–1120.

7. Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen
amendments on soil microbial communities and processes across biomes. Glob

Change Biol: n/a-n/a.

8. Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen
enrichment affects the structure and function of the soil microbial community

in temperate hardwood and pine forests. For Ecol Manage 196: 159–171.

9. De Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/
bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol

Biochem 38: 2092–2103.

10. Bradley K, Drijber RA, Knops J (2006) Increased N availability in grassland soils
modifies their microbial communities and decreases the abundance of

arbuscular mycorrhizal fungi. Soil Biol Biochem 38: 1583–1595.

11. Nilsson LO, Baath E, Falkengren-Grerup U, Wallander H (2007) Growth of
ectomycorrhizal mycelia and composition of soil microbial communities in oak

forest soils along a nitrogen deposition gradient. Oecologia 153: 375–384.

12. Canfield DE, Glazer AN, Falkowski PG (2010) The Evolution and Future of
Earth’s Nitrogen Cycle. Science 330: 192–196.

13. De Vries FT, Bardgett RD (2012) Plant-microbial linkages and ecosystem N

retention: lessons for sustainable agriculture. Front Ecol Environ 10: 425–432.

14. Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen
majority: soil microbes as drivers of plant diversity and productivity in terrestrial

ecosystems. Ecol Lett 11: 296–310.

15. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, et al.
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