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ABSTRACT 5 

An urban land-cover classification of the 900 km
2
 comprising the UK West Midland 6 

metropolitan area was generated for the purpose of facilitating stratified environmental 7 

survey and sampling. The classification grouped the 900 km
2
 into eight urban land-8 

cover classes. Input data to the classification algorithms were derived from spatial land 9 

cover data obtained from the UK Centre for Ecology and Hydrology, and from the UK 10 

Ordnance Survey. These data provided a description of each km
2
 in terms of the 11 

contributions to the land-cover of 25 attributes (e.g. open land, urban, villages, 12 

motorway, etc). The dimensionality of the land-cover dataset was reduced using 13 

principal component analysis, and eight urban classes were derived by cluster analysis 14 

using an agglomeration technique on the extracted components. The resulting urban 15 

land-cover classes reflected groupings of 1 km
2
 pixels with similar urban land 16 

morphology. Uncertainties associated with this agglomerative classification were 17 

investigated in detail using fuzzy-type analyses. Our study is the first report of a 18 

quantitative investigation of uncertainty associated with a classification of this type. The 19 

resulting classification for the UK West Midland metropolitan area offers an impartial 20 

basis for a wide range of environmental and ecological surveys. The methods used can 21 

be adapted readily to other metropolitan areas where generic urban features (e.g. roads, 22 

housing density) are gridded. 23 

 24 
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1. INTRODUCTION 5 

Urban land classification introduction 6 

Land classification is essential for geographers, planners, and, increasingly, for 7 

environmental scientists. Lofvenhaft et al. (2002) remind us that there is “no single 8 

correct way to describe reality and solve practical questions” regarding the classification 9 

of land-cover, and that all classifications are subjective. Thus the quality of the 10 

classification depends on the skill of the interpreter even with globally applicable 11 

classification methods, such as the Food and Agriculture Organization of the United 12 

Nations (FAO, 2000) Land Cover Classification System (LCCS).  13 

In the urban context, land classification is useful in a wide range of applications 14 

such as the study of urban land changes, urban ecology, illegal building development, 15 

urban expansion, etc. Around 49% of the world’s population live in metropolitan areas 16 

(FAOSTAT, 2004), and in some countries, a much higher percent of the population are 17 

concentrated in towns and cities, e.g. ~80% for England (Seymour, 2001) and 93% for 18 

Australia (FAOSTAT, 2004). The analysis of urban environments is therefore of direct 19 

relevance to a large proportion of the world’s population. 20 

Many urban land classification systems have been based on interpretation of 21 

satellite imagery, which at one time was inadequate for urban applications, but has 22 

undergone rapid and sophisticated improvement in recent years (e.g. Karathanassi et al., 23 

2000; Barr and Barnsley, 2000; Zhang and Foody, 1998; Hepner et al., 1998; Xiao et al., 24 

2004; Lo and Choi, 2004). There are also reports of detailed urban classification from 25 
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aerial photography. For example, Lofvenhaft et al. (2002) present a model to investigate 1 

the spatial aspects of biodiversity in urban planning for Stockholm, Sweden, based on the 2 

interpretation of colour infrared aerial photographs and laborious ground truthing. 3 

Lofvenhaft et al. (2002) conclude that urban planners sometimes have to deal with rapid 4 

and large-scale changes, so their basis for planning (for example an urban land-use 5 

classification) must be easy to use, and can never be regarded as complete. Modern 6 

satellite and aerial images can give very high resolution detail of urban land cover, but for 7 

applications requiring stratified sampling, aerial- and satellite-derived classifications need 8 

to be processed further to provide integrated information. Stratified sampling is 9 

commonly used to obtain samples more representative of a population than simple 10 

random sampling (e.g. Kaur et al., 1996). 11 

In the UK, there have been regular reviews of urban land-use by the UK 12 

government environmental departments: the Department of the Environment (DoE), the 13 

Department of the Environment, Transport and the Regions (DETR), and now the 14 

Department of the Environment, Food and Rural Affairs (DEFRA; 2001-present) (e.g. 15 

Coppock and Gebbett, 1978; Stamp, 1947; DETR, 2000). However, as far as we are 16 

aware, there has been no urban classification system designed for stratified sampling at 1 17 

km
2
 resolution which attempts to describe the morphological characteristics of urban land 18 

within that 1 km
2
 pixel. Bunce and Heal (1984) estimated that about 10% of land in Great 19 

Britain (GB) was “urban”, but they made no analysis of the nature of different urban land 20 

cover. They identified a need for stratified sampling strategies to improve databases for 21 

environmental description at national level, and suggested an approach for such a strategy 22 

based on work by Bunce and Smith (1978). This was developed by Bunce et al. (1996a), 23 

who described the land classification derived by the Institute of Terrestrial Ecology (ITE) 24 

(now Centre for Ecology and Hydrology (CEH)) of all 1 km-squares in Great Britain. 25 
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Although this was a successful tool for classifying the GB rural land cover for botanical 1 

survey (Bunce et al., 1996a), there were no detailed urban strata in the resulting 2 

classification. Therefore the method of Bunce et al. (1996a) was adapted in this study to 3 

classify the urban land comprising the UK West Midlands (UKWM) using land cover 4 

data stored as a raster dataset with Ordnance Survey coordinates.  5 

The classification process used principal component analysis to reduce 6 

dimensionality of the input database and extract the dominant relationships between land-7 

use variables, followed by cluster analysis to aggregate 1 km
2
 pixels into classes. The 8 

classification that we generate differentiates between different grades of urbanisation, 9 

grouping together the most closely related 1 km
2
 pixels in the same class. These classes 10 

(grades) of urbanisation then provide the basis for a range of applications that are not 11 

directly measurable from aloft. For example, a particular stratified class may give 12 

information about the amount of open space, open forest space and dwellings within any 13 

1 km
2
 pixel belonging to that class. This relationship inherent within all pixels of the 14 

same class is not captured with non-stratified classification, and is important for a range 15 

of applications, eg effects of different tree species on air quality or effects of urban 16 

environment on child health.  Similarly, there are several applications where it is 17 

important to classify urban land beyond a single “urban” definition, for example in 18 

boundary-layer atmospheric chemistry, where there are steep gradients in air pollutants 19 

between heavy-industrial and suburban regions.  20 

 The aims and objectives of this paper are to develop a classification system for 21 

the UKWM region, and characterise it as fully as possible by (1) interpreting the principal 22 

components, (2) testing the robustness of the classification, and (3) exploring thoroughly 23 

the uncertainties associated with the classification process. This work was carried out as 24 
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part of Lancaster University’s contribution to the NERC Urban Regeneration and the 1 

Environment (URGENT) programme  2 

 3 

2. METHODS 4 

2.1 Generation of urban classification for the UK West Midlands Metropolitan 5 

area 6 

The method used to generate the urban classification was adapted from that used to 7 

generate a classification of the whole of GB (Bunce et al., 1996a), which was used for 8 

the CEH Countryside Information System (CIS) (http://www.cis-web.org.uk/). An 9 

overview of the methodology is shown in Figure 1. Quantitative spatial data were 10 

available at 1 km
2
 resolution for each of the 900 km-squares comprising the West 11 

Midlands Metropolitan area in the UK (Table I; hereafter, km-square = “pixel”). These 12 

data were extracted from published sources (Crown Copyright Ordnance Survey; Fuller 13 

et al., 1994; and Wyatt et al., 1994.) and stored as tables in an EXCEL spreadsheet. 14 

Each 1 km
2
 pixel occupied one row. The data consisted of 27 variables (“attributes”) 15 

which occupied columns of the spreadsheet, with a value for each attribute for each of 16 

the 900 pixels. Twenty-five of the 27 attributes described land-cover (e.g. “urban”, 17 

“motorways”, etc; Table I). The remaining two of the 27 attributes did not contribute to 18 

land cover of the pixels, but were included as diagnostic attributes in the PCA. One of 19 

these was the first axis output from the CEH mean PCA values for the individual Land 20 

Classes of the GB land classification (“CIS axis 1”). This was used as an integrated 21 

environmental attribute for the urban land classification. The second diagnostic attribute 22 

“slope” described the gradient of land within the pixel was obtained from CEH data 23 

sources, and was included in case this physical parameter affected type of urban 24 

development (e.g. housing rather than heavy industry). The 25 land-cover attributes 25 
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shown in Table I were spatial land-cover data which contributed a certain number of 1 

hectares to each 1 km
2
 pixel of the UKWM, ie, the attributes were expressed as ha km

-2
 2 

land-cover in each pixel.  3 

Values for the 27 attributes for each 1 km
2
 pixel were used in principal 4 

component analysis (PCA) and cluster analysis programs ('Minitab'; Minitab Inc., State 5 

College, Pennsylvania, USA). In the PCA, extracting uncorrelated, orthogonal 6 

components (factors) reduced duplication in the variability of the 27 attributes across 7 

the 900 pixels. In this way ~45% of the variability of the 27 attributes was accounted for 8 

by 6 extracted components (Table II). Further component extraction accounted for little 9 

extra variability (Figure 2). The extracted components were then used in the cluster 10 

analysis. Euclidean distance was used as the dissimilarity matrix coefficient, and 11 

Ward’s method was used to minimise the increase in the error in sum of squares 12 

(variance) resulting from the clustering (Ward, 1963). This procedure uses an 13 

agglomerative hierarchical method that begins with all 900 pixels being separate, each 14 

forming its own “cluster”. In the first step, the two pixels closest together (defined by 15 

the dissimilarity matrix) are joined. In the next step, either a third pixel joins the first 16 

two, or two other pixels join together into a different cluster. With Ward’s method, 17 

every possible pair of pixels and existing clusters is tested iteratively, and the pair 18 

whose fusion results in the lowest increase of variance of the clusters are combined. 19 

This process continues until all clusters are joined into one, but output can be analysed 20 

to yield any number of clusters or groups. Initial visual interpretation of the components 21 

extracted from PCA (Table III) indicated that eight urban classes should be sufficient 22 

for the stratification of the 900 UKWM pixels (see below). The most widely used 23 

procedure for deciding on final number of classes in this type of analysis is to accept an 24 

ad hoc minimum size of group, guided by practicality and usability (Hall and Arnberg, 25 
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2002; Bunce et al., 1996b). The minimum and maximum number of squares in this 1 

UKWM classification were 7 and 218, respectively. Classes with large numbers could 2 

not be usefully subdivided, as they represented the extensive and homogenous farmland 3 

and open light suburban areas of the region (section 3.1). Similar use of PCA and 4 

cluster analyses have been reported by Huang et al. (2001) who classified energy flows 5 

in an urban region, reducing dimensionality of their input datasets from 19 variables to 6 

four factors. Cifaldi et al. (2004) performed PCA on two contrasting regions, one 7 

agricultural and one urban, to examine spatial patterns in land cover. The reduced the 8 

dimensionality of their data-sets of 25 variables to 5 extracted components which 9 

accounted for a large proportion of the variability in their original data. 10 

 11 

2.2 Validating the method of generating urban classes using principal component 12 

and cluster analyses 13 

The methodology was checked using different PCA and cluster analysis programs in 14 

two further software packages, “Clustan” (Clustan Ltd., Edinburgh, Scotland) and 15 

“Statistica” (Statsoft Inc., Tulsa, Oklahoma, USA). Clustan is a Fortran program 16 

running on a UNIX operating system. “Statistica” is a package available for Windows 17 

PC (StatSoft inc). Statistica was unable to run with the complete original 900-line 18 

dataset; therefore a subset of 300 lines was taken from the data file by extracting the 19 

first, then every third line of data. PCA and cluster analysis programs were run to 20 

produce eight classes from the subset of data, using Minitab and Statistica, with 21 

Euclidean distance and Ward’s linkage. Minitab software generated the classification 22 

system directly, with eight classes and six components defined for the output. Statistica 23 

output produced a cluster dendrogram, and an amalgamation schedule from which eight 24 

classes were extracted. The data for the dendrogram indicated the linkage distance of 25 
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the clusters that would result in 8 classes. Because the default dissimilarity coefficient 1 

for Clustan is squared Euclidean distance, a program was included in the Clustan syntax 2 

to define Euclidean distance as the dissimilarity coefficient. After processing output 3 

data, identical classifications were obtained using Minitab, Clustan and Statistica. 4 

 5 

2.3 Analysis of uncertainty associated with the classification 6 

All land cover data contributing to the analysis of a region the size of the UKWM is 7 

likely to carry uncertainties, irrespective of its source. When integrating land cover data 8 

to provide information at larger scales, more uncertainty is introduced as detail becomes 9 

sacrificed to average. When applications demand ground-truthing, surveying or 10 

sampling within a very large area, with view to extrapolating from the sampling domain 11 

to the entire study domain, uncertainties can become very large indeed. With this in 12 

mind, we undertook a rigorous analysis of uncertainty to make transparent the 13 

unavoidable and inherent sources of error when using a stratified sampling system. 14 

2.3.1 Calculating fuzzy membership of each urban land class for each pixel
 

15 

The vector of attribute values for any particular pixel will have some degree of 16 

similarity with all 8 urban class centroid properties, and therefore have some degree of 17 

membership to each of the 8 urban classes. To estimate the degree of membership of 18 

each pixel
 
in each of the 8 urban classes, the Euclidean distance (dE) between the pixel 19 

attribute vector, x, and that of each urban class mean (µc; Table IV) was calculated 20 

using:  21 

( ) ( )∑
=

−=
n

j

cjjcE xxd
1

2
, µµ …………………………………………………………..(1) 22 

where dE(x,µc) is the “distance” between pixel x and the class centroid µc for class c, (xj-23 

µcj) is the distance between pixel and class centroid for attribute j, and n = number of 24 
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attributes. This measures the similarity between the pixel vector of attribute values, and 1 

the class vector of centroid attribute values (Ahamed et al., 2000). The “distance” values 2 

[dE(x,µc)] were used to calculate a vector of fuzzy class membership grades for each 3 

pixel
 
using: 4 
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( )∑ =
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………………………………………………..…….…………(2) 5 

where fc(x) is the membership grade of pixel “x” in class “c”, with values between 0 and 6 

1, dE(x,µc) are calculated in equation (1), and m = number of urban classes (Ahamed et 7 

al., 2000). In this analysis, there are 8 urban classes (ie m=8), so a membership-grade 8 

vector of 8 values is calculated for each pixel (Table V).  By definition, the sum of all 9 

membership values in a pixel’s membership vector is 1. 10 

2.3.2 Calculating uncertainty for pixel allocation to urban classes 11 

Zhu (1997) described 2 stages in classification of spatial phenomena: (1) class 12 

definition and (2) class assignment. During class definition, the parameter space of a 13 

spatial phenomenon is discretised into regions (classes) with each region assigned a 14 

class name and represented by a centroid of that region, which is often the typical case 15 

for that class (Zhu, 1997). In the general case, the pixel is assigned to only one class 16 

based on a comparison of the observed attribute and the typical attributes of the classes. 17 

Once the pixel is assigned to that class, it assumes the centroid (mean) properties of that 18 

class, and thus loses its individuality. The loss of pixel individuality is the error 19 

introduced into the final classification product (Zhu, 1997). Zhu (1997) postulated that 20 

because no pixel is exactly identical to the class centroid in terms of attribute values, 21 

when a pixel is assigned to a class, an error of commission (“exaggeration uncertainty”) 22 

is made, by allocating centroid properties to a pixel that does not “fully” qualify for it. 23 
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Similarly, by allocating a pixel to a class, similarities between it and the other classes 1 

are ignored, thus introducing an error of omission (“ignorance uncertainty”).   2 

The classification method employed here does not pre-define class centroid properties, 3 

but generates them in the process of agglomeration. The centroid properties are then 4 

defined as the class means of the attributes, and the fuzzy membership functions 5 

described above are based on this process-derived centroid definition for each of the 8 6 

urban classes. 7 

2.3.3 Exaggeration Uncertainties 8 

Zhu (1997) describes exaggeration uncertainty as inversely related to the membership 9 

saturation in the class to which an object is assigned. Here we define an exaggeration 10 

uncertainty vector for a pixel’s possible assignation to each of the 8 urban classes. For 11 

any pixel x, possible allocation to class c with centroid µc, carries an exaggeration 12 

uncertainty which we define as: 13 

[ ]
( )

( )[ ]cE

cE

cc
xd

xd
xE

µ

µ
µ

,max

,
, = ……………………...……..…….………………………(3) 14 

where Ec [ ]cx µ,  is a measure of exaggeration uncertainty with values ranging between 0 15 

and 1,  dE(x,µc) are calculated in equation (1) and max[dE(x,µc)] is the maximum value 16 

of the distance dE(x,µc) from the centroid µc for pixels previously calculated to be in that 17 

class. By calculating E for possible assignation to each of the 8 urban classes, a vector 18 

of class exaggeration uncertainty values was generated for each pixel (Table VI).  19 

2.3.4 Ignorance Uncertainties 20 

The uncertainty associated with ignoring the similarities between a pixel and the classes 21 

to which it was not allocated is related to the fuzziness of the pixel compared with the 22 

definition of the class centroids (Zhu, 1997). The fuzzier a pixel’s relationship to the 23 

classes, the more evenly distributed is the membership in the vector and the greater is 24 
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the ignorance uncertainty. Ignorance uncertainty can be defined in several ways, but a 1 

method adopted by Zhu (1997) is based on the level of membership of a pixel in classes 2 

to which it was not assigned. The sum of values in a pixel’s membership vector is 1 3 

(section 2.3.1 and equation (2)), therefore we define a measure of ignorance uncertainty 4 

( ) ( )xfxI c−= 1 ……………………………………………….……………………….(4) 5 

where fc(x) is the membership value for the class to which a pixel x is assigned. Ι(x) was 6 

calculated for each pixel, and the mean (Ic) and standard deviation calculated for each 7 

class (Table VII).   8 
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3.  RESULTS 10 

3.1 The urban land classification 11 

The distribution of Eigenvalues derived from the PCA is presented in Figure 2. 12 

Eigenvalues represent the relative contribution of each component to total variation in 13 

the data. Figure 2 shows clearly that most of the variation in the data was accounted for 14 

by the first six components. The percentage of total variation explained by each 15 

component is calculated as (eigenvalue x 100/number of attributes). Thus ~45% of the 16 

variability was accounted for by successive extraction of the first six components (Table 17 

II). Eigenvectors are sets of scores representing the weighting of each of the original 18 

land-cover attributes on each extracted component (Table III). The Eigenvector scores 19 

give information for the interpretation of the principal component analysis (Cifaldi et 20 

al., 2004).  The first component (or factor) describes a gradient between (a) built-up and 21 

(b) non built-up areas; the second component distinguishes between (a) wooded areas 22 

/heathland, and (b) farmed land; the third component, between (a) water/bare ground, 23 

and (b) suburban built-up areas; the fourth component, between (a) urban built-up 24 

areas/major transport corridors, and (b) suburban areas/minor transport corridors; the 25 
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fifth, between (a) wooded areas, and (b) heathland countryside; and the sixth between 1 

(a) less dense built-up areas, and (b) major transport corridors (Table III). The extracted 2 

components’ spectra of attribute weightings suggested, therefore, that eight classes 3 

would be an optimum number of classes to specify in the output from the cluster 4 

analysis, and that the classes would broadly reflect wooded areas, water, transport 5 

corridors, urban built-up areas, different density suburban built-up areas, open land, and 6 

farmland. Cluster analysis was then used to generate the classes, and class centroids 7 

were found by calculating the mean hectare-age of each of the 25 land-cover attributes 8 

in each urban class (Table IV). The distribution and brief interpretation of urban classes 9 

in the UKWM region is shown in the maps in Figure 3. The classes generated were 10 

named subjectively according to their dominant centroid attributes (Figure 3; class 1 – 11 

villages/farms; class 2 –suburban; class 3 – light suburban; class 4 – dense suburban; 12 

class 5 – urban/transport; class 6 – urban; class 7 – light urban/open water; class 8 – 13 

woodland/open land). Representative aerial view photographs of pixels representative of 14 

each land class are shown in Figure 4 (Cities Revealed (R) photography © 1998 The 15 

Geoinformation Group (R) Ltd). The interpretation of each class was confirmed by 16 

visual inspection of OS maps (1:50000, nos. 139 and 140).   17 

  18 

3.2 Fuzzy analysis of uncertainty of the urban land-cover classification 19 

3.2.1 Fuzzy membership of each urban land class for each pixel
 

20 

Mean membership grade vectors for each class are presented in Table V. Figures in bold 21 

depict the mean membership value in the membership-grade vectors (fc) for the class to 22 

which the member pixels are allocated.  For example, the average membership value of 23 

class 1 pixels for class 1 is 0.32±0.10, which is higher than the average membership 24 

values of these pixels for the other classes (Table V). 25 

3.2.2 Exageration uncertainties 26 
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Mean exaggeration uncertainties are presented in Table VI. The bold figures describe 1 

the exaggeration uncertainty of allocating pixels to their own class, and the non-bold 2 

figures describe the exaggeration uncertainty of allocating pixels to other classes. Thus, 3 

for the pixel members of class 1, the mean exaggeration uncertainty associated with 4 

assuming class 1 pixels possess the class 1 centroid properties is 0.20±0.11. 5 

3.2.3 Ignorance Uncertainties 6 

Table VII lists the ignorance uncertainties for each class. For example, the mean 7 

uncertainty associated with lost information about an individual pixel allocated to class 8 

1 is 0.68±0.10. This is lower than the mean exaggeration uncertainties associated with 9 

allocating these pixels to any other class.    10 

 11 

4. DISCUSSION 12 

4.1 The classification system 13 

The classification procedure reduced the number of input variables to the principal 14 

component analysis from 25 land-cover types to 6 factors, resulting in 8 urban 15 

morphology classes. The classification was robust in that different software packages 16 

generated identical classifications based on the same input data. Mean class 17 

characteristics were derived by interpreting the principal components (Table IV). While 18 

the characteristics of most classes are distinct, there is at first glance a close similarity 19 

between classes 5 and 6. However, the distinction between class 5 and 6 is real. Class 5 20 

is characterised by high density of transport corridors in an urban, rather than suburban 21 

or rural environment. Class 6 is high density urban with few transport corridors. This 22 

type of distinction is important if we are considering eg communication, ecology 23 

corridors for encouraging biodiversity, linear sources of anthropogenic pollutant gases, 24 

tree planting, etc. 25 
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 1 

4.2 Fuzzy membership of each urban land class for each pixel
 

2 

As described above, the vector of attribute values for any particular km
2
 “pixel” will 3 

have some degree of similarity with all 8 urban class centroid properties, and therefore 4 

have some degree of membership to each of the 8 urban classes. In theory, the largest 5 

fuzzy class membership grade of the 8 urban classes for any individual pixel should 6 

correspond to the urban class allocated to that pixel. In fact, there is a satisfactory 65% 7 

correspondence for all pixels, between allocated class and largest value in the class 8 

membership vector. The remaining 35% non-correspondence highlights the difference 9 

between the original clustering process (in which the mean properties of the cluster 10 

change as the cluster forms), and a post-hoc test using the final cluster-mean properties. 11 

In joining a new pixel to a growing class, it is possible that the pixel that minimizes 12 

overall variance at that point in the agglomerative clustering process is not necessarily 13 

the pixel
 
whose attribute values are nearest to the final class centroid.  14 

Except for class 7, the highest membership value in the average membership-15 

grade vectors (fc) is for the class to which the member pixels are allocated (Table V). 16 

The membership values in the average vector for class 7 are all very similar, indicating 17 

a very high degree of membership fuzziness for these pixels. These pixels were 18 

clustered together in the analysis on the strength of the large area of inland water land-19 

cover which these pixels share, but apart from inland water, their land-cover attribute 20 

composition is similar to that of other classes. Figure 5A illustrates how a pixel can 21 

have different degrees of membership in more than one class.  22 

 23 

4.3 Exaggeration Uncertainties 24 
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Individual pixel exaggeration uncertainties associated with allocating each pixel to its 1 

urban class ranged from 0.04 to 1.00. The fuzzy class vectors of the mean and standard 2 

deviation of the exaggeration uncertainties for each class ranged from 0.11±0.05 to 3 

0.50±0.13 (bold type, Table VI). Surprisingly, allocation of a mean class-5 pixel to its 4 

own class carries slightly higher mean exaggeration uncertainty than allocating the pixel 5 

to class 6 (0.30±0.15 cf 0.29±0.17). Similarly, allocating a mean class 7 pixel to its own 6 

class carries exaggeration uncertainty (0.50±0.13) equivalent to the exaggeration 7 

uncertainty associated with allocating this square to some of the other classes. The 8 

values of the mean class exaggeration uncertainty vectors are a relative measure of how 9 

much each pixel is different from the centroid of its allocated class compared with how 10 

much the same pixel is different from the centroids of other classes (Figures 5A, 5B). 11 

Assuming that a feature we wish to ascribe to a class (e.g. biogenic emission rates, see 12 

below) varies linearly with dE, exaggeration uncertainty can be interpreted as the extra 13 

false pixel information acquired as each pixel in a class assumes the identity of the class 14 

centroid. This could be up to 50% (Table VI). Exaggeration uncertainties reflect the 15 

complex nature and broad scope of land-cover within each class. 16 

 17 

4.4 Ignorance Uncertainties 18 

Individual mean class ignorance uncertainties range from 0.65±0.11 to 0.87±0.04 (Table 19 

VII) and the overall average ignorance uncertainty is 0.73±0.11. As for the exaggeration 20 

uncertainties, ignorance uncertainty values are not absolute measures of uncertainty, but 21 

indicate the amount of information lost when classifying pixels using the agglomerative 22 

cluster analysis methodology, and assigning each pixel to a single class (Figures 5A, 23 

5B). Again, this assumes a linear relationship between some feature assigned to the 24 

class and pixels’ dE values. Although the results of the uncertainty analysis appear to be 25 
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cause for concern, all comparable systems of stratification, whether in ecology, social 1 

science or environmental studies, have comparable problems. The most important 2 

feature to emerge from the analysis of uncertainty of the classification described here, is 3 

that the allocation of pixels to classes is satisfactory for practical purposes, even for 4 

those pixels with very fuzzy membership grade vectors. However, the cluster test with fc 5 

(equation 2) broadly justifies the classes that have been formed using PCA and cluster 6 

techniques, but indicates that categorical statements regarding class membership, class 7 

behaviour and properties should be avoided.  8 

 9 

4.5 Specific Applications 10 

The classification can now be used as a structure for surveys and sampling, to answer 11 

questions such as “What is the total tree cover in the UK metropolitan region and what 12 

are the uncertainties associated with the estimates?”; “How much space is available for 13 

future tree planting in the UKWM?”; “What is the effect of the present and possible 14 

future tree populations on air quality in the UKWM?”. Given that the classification 15 

methodology can be applied to other metropolitan areas where gridded data is available, 16 

the same kind of questions may be addressed in metropolitan areas around the world. 17 

The classification described here has already been used in a desk study to 18 

estimate biogenic volatile organic compound (BVOC) emissions from the UKWM 19 

conurbation (Owen et al., 2003). It has also been used in a field survey study to estimate 20 

tree cover and tree biomass for the UKWM conurbation (Donovan, 2004), and in a 21 

modelling study to investigate the effect of pollutant deposition and biogenic VOC 22 

emissions on air quality in the UKWM (Donovan et al, 2005). In the field study 23 

(Donovan, 2004), a survey of trees in the UKWM was undertaken by stratified 24 

recording of all individual trees in sample plots in randomly selected 1 km
2
 pixels. A 25 
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total of 22 pixels were surveyed, the number of squares sampled for each of the eight 1 

urban land-cover classes was proportional to the area occupied by each class in the 900 2 

pixels comprising the UKWM. Data for each urban land-class pixel were extrapolated 3 

to the total area of each of the classes in the UKWM to obtain an integrated estimate for 4 

the tree population for the whole region based on the survey work, rather than on 5 

previously published tree data (c.f. Owen et al., 2003). Because the sampling was 6 

stratified, i.e. based upon the urban classification, there was compensation for the 7 

relatively small percentage of the total region that it was possible to sample with the 8 

available time and manpower. 9 

 10 

4.6 Wider Applications 11 

This type of urban land classification could facilitate first estimates of: 12 

• overall land resources of an urban region. This would be useful for features 13 

that are not recorded on a systematic basis by other agencies and that are not a 14 

simple linear sum or difference of standard recorded features, e.g. area occupied 15 

by transport corridors, commercial land suitable for tree planting. 16 

• the distribution of land resources throughout urban classes. For example, 17 

urban land class 5 is designated “urban/transport” here, and each UKWM pixel 18 

which is classified as “urban/transport” has a mean of ~20 ha km
-2

 19 

grassland/open land. This information could be of interest to planners, recreation 20 

and amenity officers and conservation bodies, to conduct more detailed survey 21 

of each pixel according to the application of interest (e.g. housing, creation of 22 

playing fields, new woodland planting etc) and to identify, for example, those 23 

“urban/transport” squares whose proportion of open space is detrimentally low. 24 



 19 

• land-use potential.  Survey work based on the classification can identify further 1 

land-use attributes for sample survey pixels (for example, future tree planting 2 

potential, derelict sites, sites suitable for recreational development etc.), which 3 

can be extrapolated to the whole UKWM region. 4 

• changes in the urban infrastructure. For example, removal of railway lines 5 

from a pixel in class 5 (urban transport) will result in re-classification of that 6 

square, bringing it into a class with less railway, but with other attributes similar 7 

to class 5 (e.g. class 2; Table IV), and therefore subject to monitoring or policies 8 

for the new class. Of course, when pixel re-classification exceeds some 9 

threshold (e.g.10%), then the basis of the original classification becomes 10 

obsolete and the region should be re-classified. The procedure described here 11 

ensures that updating the classification is a straightforward and time-efficient 12 

process. 13 

• policy options. For example, the classification provides an estimate of the 14 

spatial distribution of high-density transport corridors (i.e. class 5 squares). It is 15 

therefore possible to make a first estimate of the concentration of associated 16 

features and potential facilities (e.g. lighting, street tree planting, pollutant 17 

emissions), and their costs, without resorting to detailed survey in the first 18 

instance.  19 

• assessment and costings for scaling-up policies. Classification of urban land-20 

use for all major cities would assist planners and policy-makers in the task of 21 

larger-scale assessments and costings. 22 

These are examples of the wide range of potential applications for an urban land-cover 23 

classification system, of interest and use to Local Authority planners, property 24 

developers, environmental researchers, utility companies and policy makers. The 25 
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classification system described here is “robust enough”, and useful for stratified 1 

sampling and extrapolation where time and resources are scarce. It is easy to apply to 2 

other UK conurbations, and indeed to any region for which there exists a spatial dataset 3 

consisting of attribute data to describe the component land-covers of each pixel. It is 4 

also easy to reapply using updated datasets, to monitor land-use changes at pixel and 5 

regional scales. 6 

 7 

5. CONCLUSIONS 8 

We generated a successful classification system for the UKWM region using land cover 9 

data stored as a raster dataset with Ordnance Survey coordinates. Our approach is 10 

supported by other workers who have also used PCA and cluster analyses to generate a 11 

classification relevant to urban land-cover (e.g. Huang et al., 2001; Cifaldi et al., 2004).  12 

We believe that this is the first time that an attempt to quantify uncertainties has 13 

been presented alongside an agglomerative land-cover classification. The same analysis 14 

of uncertainty could be applied to any application of PCA and clustering in landscape 15 

science, with similar uncertainty results. In view of the process of agglomeration and 16 

the associated errors, we expected a very large degree of uncertainty associated with the 17 

classification and therefore the results of the uncertainty analyses were encouraging.  18 

The methodology is statistically robust and reproducible and enables standard 19 

errors to be estimated. By including a posteriori tests of the classification, its limits 20 

become more clearly defined, and the tendency to make categorical statements based on 21 

the classes is reduced. The statistical procedures used can vary according to the 22 

availability of algorithms in PCA packages. Even though the decision about the number 23 

of classes to allow the cluster analysis to generate is subjective, the principal feature of 24 

our approach is the use of objective procedures to construct the classification, and to 25 
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facilitate subsequent estimation of environmental parameters.  Similar data for the 1 

generation of an urban land classification are available in most European countries so 2 

that the approach could be adapted to many other situations. 3 

 4 
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 1 

Table I  Attributes used in the principal component analysis to generate eight urban  2 

classes 3 

From ITE land cover database: From OS data:  

      

urban   OS A roads  

suburban   OS B roads  

tilled land  OS towns   

managed grassland  OS villages  

rough grassland  OS canals  

bracken   OS minor roads  

heath grassland  OS motorway  

open heathland  OS open countryside 

dense heathland  OS railway  

coniferous woodland OS rivers   

inland bare ground   OS inland waters  

inland water  OS woodland  

deciduous woodland   

slope   CIS Axis 1*  

     

* First axis scores (upland/lowland weighting) of the principal 

component analysis used to generate the CIS land classes. 

 4 
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 1 

Table II   Eigenvalues from successive extractions of Principal Components from 27  

                land cover attributes 

Component Eigenvalue % of total 

variance 

Cumulative 

eigenvalue 

Cumulative % 

1 4.62 17.10 4.62 17.10 

2 2.49 9.22 7.11 26.33 

3 1.93 7.15 9.04 33.48 

4 1.49 5.52 10.53 39.00 

5 1.09 4.04 11.62 43.04 

6 0.55 2.05 12.18 45.09 

     

 2 
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Table III  Eigenvector scores for each of the urban land-cover attributes 1 

  Component (factor)
1
  

 1 2 3 4 5 6 

Slope -0.001 0.064 0.058 -0.05 -0.079 -0.473 

Bracken 0.04 0.084 0.05 -0.002 0.324 -0.212 

Inland bare -0.001 -0.088 -0.181 0.165 -0.045 -0.153 

OS
2
 village 0.05 -0.047 0.007 0.023 -0.048 -0.123 

Urban -0.125 -0.02 -0.189 0.212 0.09 -0.119 

OS
2
 canals -0.047 -0.038 -0.113 0.176 0.14 -0.078 

OS
2
 open country 0.187 -0.094 -0.026 0.071 0.034 -0.049 

OS
2
 B road -0.044 0.053 0.041 -0.015 -0.02 -0.046 

Heath grass 0.106 0.166 0.102 -0.04 0.31 -0.045 

OS
2
 A road -0.086 -0.017 -0.083 0.155 0.111 -0.032 

Deciduous wood 0.077 0.279 -0.039 0.072 -0.03 -0.017 

Managed grass 0.163 -0.091 0.053 -0.012 0.048 -0.009 

Rough grass 0.038 -0.003 0.029 0.033 0.226 0.016 

Inland water 0.02 0.023 -0.374 -0.324 0.06 0.017 

OS
2
 inland water 0.018 0.027 -0.37 -0.328 0.06 0.018 

OS
2
 rail -0.064 0.026 -0.141 0.177 0.175 0.02 

Tilled land 0.12 -0.165 -0.029 0.048 -0.12 0.022 

Dense heath 0.054 0.24 -0.063 0.074 -0.083 0.04 

OS
2
 minor road 0.059 -0.061 0.102 -0.18 -0.146 0.043 

OS
2
 towns -0.189 0.079 0.066 -0.074 -0.013 0.048 

Open heath 0.042 0.237 0.074 -0.044 0.17 0.069 

OS
2
 wood 0.052 0.184 -0.105 0.16 -0.305 0.07 

Coniferous wood 0.043 0.128 -0.114 0.149 -0.317 0.07 

Suburban -0.155 0.058 0.157 -0.172 -0.076 0.093 

OS
2
 motorway 0.004 -0.03 -0.073 0.146 0.162 0.228 

OS
2
 rivers 0.052 -0.018 0.012 0.064 0.131 0.316 

CIS axis1
3
 -0.005 -0.013 0.003 0.016 0.041 0.549 

1
component 1=built-up (-ve scores) vs non-built up (+ve scores); 2=farmed land (-ve scores) vs wooded 2 

and heathland (+ve scores); 3=urban built-up, water and wooded areas (-ve scores) vs suburban built-up 3 
(+ve scores); 4=suburban built-up and water (-ve scores) vs major transport, built-up urban and wooded 4 
areas (+ve scores); 5=wooded areas and farmland (-ve scores) vs heathland countryside and transport 5 
corridors (+ve scores); 6=less dense built-up (-ve scores) vs major transport corridors (+ve scores). Bold 6 
type indicates high scores contributing to interpreting components; 

2
OS Ordnance Survey data; other 7 

attributes from ITE database (see text);
 3

First axis scores (upland/lowland weighting) of the principal 8 
component analysis used to generate the CIS land classes. 9 



 28 

 1 

Table IV                 Mean cover (ha km
-2

) of 25 attributes in each of eight urban classes* 

Class 1 2 3 4 5 6 7 8 

total pixels 216 218 37 155 71 183 13 7 

CIS land cover (LC) attributes 

 

      

urban 2.6±5.4 5.7±6.6 3.6±5.0 6.3±6.7 39.6±22.7 27.6±15.0 8.8±8.6 3.7±8.1 

suburban 15.5±10.6 50.5±12.4 32.7±12.3 71.1±10.3 38.1±11.5 51.2±11.0 33.2±22.0 7.2±5.8 

tilled 30.2±16.2 14.4±8.8 9.9±5.9 9.3±5.0 10.1±6.4 9.7±5.2 19.8±13.2 10.8±14.9 

managed grassland 41.4±18.3 19.5±11.6 23.5±13.4 9.8±6.3 8.2±12.1 7.0±6.2 19.0±13.0 15.5±15.0 

rough grassland 0.1±0.3 0.02±0.08 0.4±1.0 0.01±0.06 0.03±0.11 0.01±0.09 0.01±0.04 0.1±0.1 

bracken 0.01±0.03 0.00±0.02 0.1±0.3 0.00±0.00 0.00±0.00 0.00±0.01 0.01±0.04 0.04±0.09 

heath grassland 2.6±2.3 2.1±1.8 7.7±6.9 0.8±0.8 0.4±0.7 0.5±0.7 1.1±1.8 5.0±5.1 

open heath 1.2±1.2 2.1±2.3 7.2±5.2 0.9±1.1 0.5±0.8 0.7±0.7 1.2±2.2 6.0±5.0 

dense heath 0.2±0.6 0.2±0.4 0.9±1.1 0.05±0.3 0.02±0.08 0.03±0.1 0.2±0.5 7.1±7.6 

coniferous wood 0.1±0.3 0.1±0.2  0.1±0.2 0.02±0.1 0.04±0.2 0.01±0.04 0.1±-.3 4.6±4.1 

inland bare ground  1.4±2.4 0.9±1.1 0.4±0.6 0.4±0.5 1.8±1.5 1.2±1.2 1.8±2.0 1.2±2.6 

inland water 0.1±0.4 0.1±0.6 0.2±0.6 0.01±0.1 0.2±0.5 0.05±0.2 10.2±14.2 0.9±1.5 

deciduous wood 4.3±4.9 4.3±4.5 13.0±8.6 1.3±1.6 1.1±1.7 2.0±3.0 4.2±7.2 37.9±22.3 

OS attributes 

 

A roads 0.5±1.0 0.8±1.1 0.8±1.0 0.9±1.1 2.9±2.2 2.1±1.7 1.0±1.6 0.1±0.2 

B roads 0.2±0.4 0.3±0.7 0.5±0.7 0.6±0.9 0.4±0.6 0.5±0.7 0.4±0.7 0.6±0.6 

towns 6.4±13.8 65.0±22.9 48.5±31.3 90.6±9.3 73.4±26.5 87.3±14.3 41.0±37.1 6.4±11.8 

villages 3.8±9.7 0.1±1.0 0.00±0.00 0.00±0.02 0.04±0.3 0.00±0.00 0.00±0.00 1.7±4.6 

canals 0.2±0.4 0.1±0.3 0.1±0.2 0.1±0.2 0.8±0.6 0.4±0.5 0.2±0.4 0.00±0.00 

minor roads 1.0±0.8 0.9±0.8 0.6±0.6 1.0±0.8 0.2±0.3 0.5±0.6 0.9±0.9 0.4±0.4 

motorways 0.3±1.0 0.1±0.5 0.1±0.7 0.1±0.5 1.8±2.2 0.2±0.8 0.3±0.9 0.00±0.00 

open countryside 86.4±16.1 32.0±22.5 48.4±31.1 6.7±9.0 19.5±26.2 8.6±14.1 41.0±33.8 58.9±17.1 

railways 0.1±0.3 0.1±0.3 0.3±0.4 0.1±0.2 0.9±0.7 0.5±0.5 0.2±0.5 0.2±0.3 

rivers 0.4±0.5 0.3±0.5 0.4±0.5 0.2±0.4 0.5±0.6 0.2±0.4 0.5±0.5 0.3±0.4 

inland waters 0.02±0.2 0.2±1.1  0.2±1.0 0.01±0.1 0.1±0.3 0.00±0.00 14.5±17.4 1.2±1.9 

woodland 0.7±3.4 0.00±0.02 0.3±1.6 0.03±0.4 0.00±0.00 0.00±0.00 0.4±1.5 30.5±18.8 

*attributes slope and CIS axis1 did not contribute to “land cover”  (see text) 2 
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Table V               Mean class membership vectors 

  Allocated to class:-       

  1 2 3 4 5 6 7 8 

 Mean membership fc(x) 

 of class:-                 

1 0.32±0.10 0.09±0.02 0.12±0.03 0.07±0.02 0.08±0.02 0.07±0.02 0.12±0.02 0.12±0.02 

2 0.07±0.05 0.20±0.09 0.14±0.06 0.16±0.10 0.11±0.02 0.13±0.06 0.13±0.04 0.06±0.02 

3 0.12±0.09 0.14±0.04 0.19±0.08 0.10±0.06 0.10±0.02 0.10±0.05 0.14±0.03 0.09±0.04 

4 0.04±0.01 0.14±0.06 0.08±0.02 0.35±0.11 0.10±0.02 0.17±0.05 0.08±0.01 0.04±0.01 

5 0.08±0.06 0.13±0.04 0.11±0.04 0.12±0.03 0.19±0.06 0.19±0.08 0.11±0.04 0.07±0.02 

6 0.05±0.02 0.13±0.05 0.08±0.03 0.19±0.10 0.17±0.05 0.26±0.09 0.08±0.03 0.05±0.01 

7 0.15±0.11 0.14±0.07 0.12±0.03 0.13±0.11 0.11±0.04 0.13±0.07 0.13±0.04 0.10±0.05 

8 0.15±0.05 0.10±0.01 0.13±0.01 0.07±0.01 0.09±0.01 0.08±0.01 0.13±0.01 0.25±0.04 
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 1 

Table VI        Mean class exaggeration uncertainties 

 Allocated to class:-       

 1 2 3 4 5 6 7 8 

  

Member of class:-                

1 0.20±0.11 0.78±0.16 0.62±0.14 0.84±0.13 0.81±0.14 0.83±0.14 0.64±0.13 0.48±0.07 

2 0.58±0.19 0.28±0.14 0.39±0.16 0.31±0.17 0.38±0.10 0.32±0.15 0.42±0.15 0.64±0.14 

3 0.46±0.22 0.43±0.20 0.36±0.20 0.50±0.22 0.50±0.17 0.48±0.21 0.45±0.17 0.52±0.16 

4 0.83±0.09 0.37±0.10 0.62±0.11 0.11±0.05 0.38±0.07 0.22±0.05 0.65±0.11 0.86±0.08 

5 0.71±0.23 0.48±0.17 0.58±0.20 0.40±0.14 0.30±0.15 0.29±0.17 0.59±0.19 0.74±0.17 

6 0.80±0.12 0.39±0.12 0.59±0.13 0.23±0.11 0.26±0.07 0.16±0.09 0.61±0.13 0.81±0.10 

7 0.51±0.25 0.52±0.25 0.54±0.14 0.51±0.30 0.53±0.23 0.50±0.29 0.50±0.13 0.59±0.18 

8 0.45±0.15 0.80±0.11 0.63±0.11 0.81±0.08 0.78±0.09 0.79±0.08 0.68±0.12 0.27±0.05 
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Table VII   Mean Class Ignorance uncertainties (Ic) 1 

class     

1 0.68±0.10 

2 0.80±0.09 

3 0.81±0.08 

4 0.65±0.11 

5 0.81±0.06 

6 0.74±0.09 

7 0.87±0.04 

8 0.75±0.04 
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Figure 1 Schematic presentation of urban land classification methodology 1 

 2 

Figure 2   Results of extracting principal components from 27 urban land-cover  3 

attributes. Columns represent the relative contribution of each 4 

component to total variation in the land cover data (Eigenvalue) 5 

 6 

Figure 3 Distribution of urban land classes in the West Midlands  7 

 8 

Figure 4 Aerial photographs of pixels (square km) typical of each urban class 9 

 10 

Figure 5A Allocating urban class membership to a pixel 11 

Figure 5B Exaggeration and Ignorance uncertainties in terms of centroid and pixel 12 

attributes 13 



 33 

  1 

              EXPLORATION OF DATASET 

                  PRINCIPAL COMPONENT ANALYSIS (PCA) 

• Extracting “best fit” components from the attribute values 

for each pixel. 

• Confirms that the data are classifiable 

• Indicates possible class characteristics 

900 squares (pixels),  

each 1 km x 1 km. 

 

Pixels are described 

 in terms of a total  

of 27 attributes 
Att 4 

Att1 
Att 3 

Att 2 

RAW DATA 

GENERATING 8 URBAN LAND-COVER CLASSES 

CLUSTER ANALYSES 

 

Extracted components for each pixel are used to cluster the 900 

pixels into 8 “urban land-cover classes”  

VALIDATING CLASSIFICATION 

 

• Visual inspection to compare features of OS map  

squares with their class centroid values. 

• Estimating the amount of variability accounted for in the  

extracted components in PCA. 

• Exaggeration and Ignorance uncertainty estimates 

CHARACTERISING CLASSES 

 

Calculate “centroid” (mean) values of  25 land-cover 

attributes for all pixels contributing to each class 

 

For UK West Midlands 

Figure 1 Schematic presentation of urban land classification methodology 
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Figure 2   Results of extracting principal components from 27 urban land-cover  

attributes. Columns represent the relative contribution of each component to 

total variation in the land cover data (Eigenvalue) 
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Class 1   villages/farms Class 2   suburban 

Class 3   light suburban Class 4   dense suburban 

Class 5   urban/transport Class 6   urban 

Class 7   light urban/open water Class 8   woodland/open land 

Figure 3 Distribution of urban land classes in the West Midlands 
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 1 Figure 4 Aerial photographs of pixels (square km) typical of each urban class 
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Figure 5A Allocating urban class membership to a pixel.       pixels;        class centroids. 

 Pixel X has attribute values that are close to those of the centroids of class 1 (µ1) 

and class 2 (µ2). During the process of clustering, it is likely that the pixel will be 

allocated to class 2, whose centroid is “closer” to the pixel. However, pixel X 

may be allocated to class 1 if, early in the clustering process, it is linked with 

nearby pixels which form a cluster which is nearer to µ1, than to µ2 (small cluster 

delineated within dashed line). All pixels have some degree of membership in 

each of the generated urban classes. Generally, a pixel is allocated to the class 

whose centroid is closest. After allocating to a class, the pixel assumes the 

characteristics of the class centroid. This results in an exaggeration uncertainty 

due to false pixel information acquired (solid arrows), and an ignorance 

uncertainty due to loss of individual pixel information (dashed arrows). Further 

explanation of these uncertainties is illustrated in Figure 5B below. 
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Figure 5B Exaggeration and Ignorance uncertainties in terms of centroid and pixel 

attributes. A – G represent different attributes for class 1 and class 2 centroids 

(µ1 and µ2, respectively), and pixel X. Pixel X has similar values to µ1 for 

attributes A and B, and similar values to µ2  for attributes E, F and G. 

Exaggeration uncertainties associated with allocating pixel X to classes 1 and 

2, respectively, are represented by the attribute values enclosed in the solid line 

boxes. Ignorance uncertainties associated with allocating pixel X to classes 1 

and 2, respectively, are represented by the pixel X attribute values enclosed in 

the dashed line box (for class 1 allocation ) and in the dot-dash line box (for 

class 2 allocation). 
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