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Abstract 
 
    The Error function, and related functions, occurs in 
theoretical aspects of many parts of atmospheric science. This 
note presents a closed-form approximation for the error, 
complementary error, and scaled complementary error functions, 
with maximum relative errors within 0.8%. Unlike other approximate 
solutions, this single equation gives answers within the stated 
accuracy for [ )∞∈ 0x . The approximation is very useful in solving 
atmospheric science problems by providing analytical solutions. 
Examples of the utility of the approximations are: the computation 
of cirrus cloud physics inside a general circulation model, the 
cumulative distribution functions of normal and log-normal 
distributions, and the recurrence period for risk assessment.  
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Introduction 
 

Error and complementary error functions are extensively used 
in the fields that employ mathematics and physics, e.g., studies 
of heat and mass transfer (e.g., Chaudhry and Zubair, 1993; 
Swartzendruber, 2002). In atmospheric science, as elsewhere, the 
error and complementary error functions occur when normal or log-
normal distributions are expressed as cumulative distribution 
functions. This note presents a close-form approximation for the 
error, complementary error, and scaled complementary error 
functions with maximum relative errors within 0.8%. The benefits 
of using an analytical approximation for error function in 
atmospheric sciences are demonstrated in some examples. 

 
The closed-form approximation of error functions 

 
The error function is defined as 
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and the complementary error function is defined as 

  ( ) ( ) ∫
∞ −=−≡
x

t dtexerfxerfc
221

π
.      (2) 

Both functions contain integrals. Sometimes, when one wants to 
evaluate these functions as accurately as possible, rational 
Chebyshev approximations (Cody, 1969) can be used. Nowadays, 
built-in functions are available in several computer languages 
(Cody, 1990). At other times, however, one may forego some 
accuracy for the sake of a speedy calculation or in order to gain 
a clearer insight into the relationships between variables in a 
problem. Decker (1975) provides and cites approximations that are 



quick to compute, but all fail to give expressions in closed form. 
The following achieves closed-form approximations for the error, 
complementary error, and scaled complementary error functions with 
maximum relative errors within 0.8%. 

The complementary error function can be expanded as 
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where c is a positive real number with a value around 1. 
c increases with the increasing n , and Eq. (3) and (4) diverge 
when x  is near to c. However, from Eq. (3), we know 
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Similarly, from Eq. (4), 
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Both Eq. (5) and (6) suggest that 
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might be a good fit to the scaled complementary error function 
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parameter for (7) to match either (5) or (6). When aax =+ 22π  is 
used for 1<<x , the simple match of Eq. (7) to Eq. (5) requires 

2−
=
π
πa .  

    We derive a series of values for a  by trial-and-error. 
These values are given in Table 1, together with their accuracies 

when used in Eq. (7) to calculate ( )xerfcex2

. 
The errors introduced by using Eq. (7) to estimate ( )xerf  and 

( )xerfc  are shown in Fig. 1. One can choose a value of a  to evaluate 
the results of the error, complementary error, and scaled 
complementary error functions easily with a calculator to within 
the accuracy shown.  

 
Table 1   Values of a , errors in ( )xerf  and ( )xerfc , and advantages of each formulation 
a  

2a  Error in 
( )xerf  

Error in 
( )xerfc  

Best choice for 

2−π
π  7.5732 -0.65—0.00%  0.00—0.92% errors with 

known  sign 
2.7749 7.7000 -0.47—0.47% -0.01—0.82% ( )xerf  
2.7889 7.7780 -0.38—0.75% -0.03—0.76% single value of a  for 



both ( )xerf  and ( )xerfc  
2.9110 8.4740 -0.04—3.11% -0.34—0.34% ( )xerfc  
3 9  0.00—4.70% -0.65—0.12% simple formula 
 
Examples of applications in atmospheric science 
 

As indicated in Table 1, using 3=a  results in the simplest 
formula: 
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which is never in error by more than 0.65% for complementary error 
and scaled complementary error functions, and which provides a 
neat closed solution that can be incorporated into analytical 
solutions for a broad range of physical and engineering problems. 
An example of one such problem, and the driver for the development 
discussed above, is the nucleation and growth of cirrus cloud 
particles (Ren and MacKenzie, 2005). The approximation allowed us 
to describe the behaviour of cirrus clouds under all conditions, 
avoiding an unwieldy and unhelpful description based on asymptotic 
expansions to both ends when it is, in fact, the middle range that 
is most interesting (Kärcher and Lohmann, 2002; Ren and MacKenzie, 
2005). The cirrus parameterisations are designed for 
implementation in global climate models (GCMs) (Lohmann et al., 
2004), where the error associated with the closed-form 
approximation is small compared to uncertainty in the model output 
resulting from missing processes and other simplifications. There 
are clear advantages ⎯ in calculation speed and interpretation of 
results ⎯ in the use of closed-form approximations to the error 
and related functions within these very large GCM computer codes. 

Other examples relate to normal or log-normal distributions. 
The size distributions of aerosols and clouds, and the parameters 
of turbulent processes are often log-normally distributed. Shoji 
and Kitaura (2006), for example, found that hourly, daily, and 
annual precipitation distributions were fitted well with log-
normal distributions. The cumulative distribution function, ( )ID  — 
which indicates the probability that rainfall amount, I , will not 
be exceeded within period of time (hourly, daily, or annual), T  — 
can, therefore, be given by 
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where mI  is the geometric mean of rainfall amount, σ  is the 

geometric standard deviation of rainfall amounts, and 
σ

λ
ln2
lnln mII −

=  

is a convenient measure of the position of a particular rainfall 
amount in the rainfall distribution. 21=λ  when mII σ= , 22=λ  

when I=σ2Im, and so on. You can calculate D(I) with a given λ by a 
calculator, even by hand.  



Having derived an analytical expression for the cumulative 
distribution function, the recurrence interval is then 
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This relatively simple expression is much easier to “read” than 
the equivalent retaining the error function. For instance, for I = 
Im, λ = 0 and so ( ) TIR m 2= , which confirms that there is a 50:50 

chance that rainfall exceeds the geometric mean, mI . For 21=λ , 

R(σIm)≈6.3T; for 22=λ , R(σ2Im)≈43.6T. Using Eq. (10), values of 

λ for the 50-, 100-, and 200-year events are given in Table 2. 
This time, 7889.2=a  is used, as this value of a  guarantees the 
approximation having relative errors within 0.8%. Beyond their 
intrinsic interest, log-normal rainfall statistics also propagate 
into hydrological theory — theoretical treatments of slope 
stability for example (Iida, 2004) — and engineering design, where, 
again, avoiding the use of error functions makes model building 
and theoretical interpretation easier (Swamee, 2002).  
 
 
Table 2 Values of λ  for calculating the rainfall amount at a given recurrence interval 

( )IR         λ  
50yrs 100yrs 200yrs 

Hourly 3.2417 3.3427 3.4409 
Daily 2.7361 2.8533 2.9663 
Annual 1.4543 1.6468 1.8230 

 
 
Conclusion 
 
    A closed-form approximation for the error, complementary error, 
and scaled complementary error functions with maximum relative 
errors within 0.8%. Unlike other approximate solutions, this 
closed-form equation gives answers within the stated accuracy for 

[ )∞∈ 0x . It is very useful when one wants to gain a clearer 
insight into the relationships between variables in a problem 
involving error functions. 
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Figure 1 Relative errors of using Eq. (7) with a = ( )2−ππ , 2.7749, 
2.7889, 2.9110, and 3 to calculate error functions. Each line is 
for a single value of a . For erf, a  increases from bottom up; for 
erfc, a  increases from top down. Errors in erf(x) with a = ( )2−ππ  
and in erfc(x) with a =3 are almost identical when x<1. 


