Lancaster EPrints

Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation

Ahsan, M. Naveed and Paul, Christ P. and Kukreja, L. M. and Pinkerton, Andrew J. (2011) Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation. Journal of Materials Processing Technology, 211 (4). pp. 602-609. ISSN 0924-0136

Full text not available from this repository.

Abstract

The use of porous surface structures is gaining popularity in biomedical implant manufacture due to its ability to promote increased osseointegration and cell proliferation. Laser direct metal deposition (LDMD) is a rapid manufacturing technique capable of producing such a structure. In this work LDMD with a diode laser in continuous mode and with a CO2 laser in pulsed modes are used to produce multi-layer porous structures. Gas-atomized Ti-6Al-4V and 316L stainless steel powders are used as the deposition material. The porous structures are compared with respect to their internal geometry, pore size, and part density using a range of techniques including micro-tomography. Results show that the two methods produce radically different internal structures, but in both cases a range of part densities can be produced by varying process parameters such as laser power and powder mass flow rate. Prudent selection of these parameters allows the interconnected pores that are considered most suitable for promoting osseointegration to be obtained. Analytical models of the processes are also developed by using Wolfram Mathematica software to solve interacting, transient heat, temperature and mass flow models. Measured and modelled results are compared and show good agreement.

Item Type: Article
Journal or Publication Title: Journal of Materials Processing Technology
Uncontrolled Keywords: Osseointegration ; Laser metal deposition ; Surface porous structures ; Biomedical implants ; Analytical model
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Departments: Faculty of Science and Technology > Engineering
ID Code: 59507
Deposited By: ep_importer_pure
Deposited On: 26 Oct 2012 14:54
Refereed?: Yes
Published?: Published
Last Modified: 24 Jan 2014 05:34
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/59507

Actions (login required)

View Item