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Infinite bar-joint frameworks, crystals and
operator theory

J. C. Owen and S. C. Power

Abstract. A theory of flexibility and rigidity is developed for general
infinite bar-joint frameworks (G, p). Determinations of nondeformability
through vanishing flexibility are obtained as well as sufficient conditions
for deformability. Forms of infinitesimal flexibility are defined in terms
of the operator theory of the associated infinite rigidity matrix R(G, p).
The matricial symbol function of an abstract crystal framework is intro-
duced, being the multi-variable matrix-valued function on the d-torus
representing R(G, p) as a Hilbert space operator. The symbol function
is related to infinitesimal flexibility, deformability and isostaticity. Var-
ious generic abstract crystal frameworks which are in Maxwellian equi-
librium, such as certain 4-regular planar frameworks, are proven to be
square-summably infinitesimally rigid as well as smoothly deformable
in infinitely many ways. The symbol function of a three-dimensional
crystal framework determines the infinitesimal wave flexes in models
for the low energy vibrational modes (RUMs) in material crystals. For
crystal frameworks with inversion symmetry it is shown that the RUMS
generally appear in surfaces, generalising a result of F. Wegner [35] for
tetrahedral crystals.
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1. Introduction

Infinite bar-joint frameworks appear frequently as idealised models in the
analysis of deformations and vibration modes of amorphous and crystalline
materials. See [10], [17], [6], [13], [35] and [39] for example and the comments
below. Despite these connections there has been no extended mathemati-
cal analysis of such models. Notions of rigidity, flexibility, deformability,
infinitesimal flexibility, isostaticity, constrainedness and independence, for
example, are usually employed either in the sense of their usage for a finite
approximating framework or in a manner drawn from experience and em-
pirical fact in the light of the application at hand. It seems that a deeper
understanding of the models is of considerable interest in its own right and
that a mathematical development may prove useful in certain applications.
In what follows we provide formal definitions of the terms above in quite a
wide variety of forms and we examine some of their inter-relationships and
manifestations.

Suppose that one starts with a flexible square bar-joint framework in two
dimensions and that this is then extended periodically to create an infinite
periodic bar-joint network, see Figure 1. Note that each vertex enjoys two
degrees of freedom and is subject to two distance constraints (on average).
Is the resulting assemblage, with inextendible bars, continuously flexible
in two dimensional space? A moment’s reflection reveals a proliferation of
flexibility, such as sheering motions with one half of the network fixed.

However such movement is dramatically infinite and a natural second
question is whether for such balanced periodic frameworks there are flexes
for which the total joint movement is finite. Typically the answer is no and
this offers some satisfaction in reflecting the Maxwell counting equality. (See
Theorem 5.2 for example.)



INFINITE FRAMEWORKS AND OPERATOR THEORY 447

On the other hand if, for the grid example, one rigidifies alternate squares
by adding diagonal bars, as shown in Figure 2, then the resulting structure of
corner linked rigid squares remains properly flexible, although now uniquely
so. In fact the unique flex has an affinely contracting character (see Defini-
tion 4.3) with alternating rotation of the squares.

More generally the flexibility of polytope networks in two and three di-
mensions continues to be of interest in the modeling of crystals and amor-
phous materials, especially with regard to their low frequency vibrational
modes. Such modes appear, for example, in higher order symmetry phases of
tetrahedral crystals and are referred to as rigid unit modes (RUMs). Indeed
in the paper of Giddy et al. [10] the alternating flex of the squares frame-
work above has been associated with vibrational modes in perovskite. See
also Hammond et al. [17], Wegner [35], as well as Goodwin et al. [13] for a
useful overview. At the same time, in the modeling of amorphous materials,
such as glasses, there is interest in understanding the critical probabilities
that guarantee flexibility and rigidity for classes of randomly constructed
frameworks. See, for example, Chubynsky and Thorpe [6] for the recent
determination of such probabilities in simulation experiments.

Figure 1. The grid framework in the plane, GZ2 .

Figure 2. The corner-joined squares framework, Gsq.

Formally, a framework in Rd (or bar-joint framework, or distance-con-
straint framework) is a pair G = (G, p) where G = (V,E) is a simple
connected graph and p = (p1, p2, . . .) is a framework vector made up of
framework points pi in Rd associated with the vertices v1, v2, . . . of V . The
framework edges are the (closed) line segments [pi, pj ] associated with the
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edges E of the graph G = (V,E). As the ellipsis suggest, we allow G to be a
countable graph. We shall also define a crystal framework C as a framework
with translational symmetry which is generated by a connected finite motif
of edges and vertices. (See Definition 4.2.)

When G is finite and the framework points are generically located in R2

then a celebrated theorem of Laman [20], well-known in structural engineer-
ing and in the discrete mathematics of rigidity matroids [14], gives a simple
combinatorial criterion for the minimal infinitesimal rigidity of the frame-
work; the graph itself satisfies Maxwell’s counting rule 2|V | − |E| = 3, and
subgraphs G′ = (V ′, E′) must comply with 2|V ′| − |E′| ≥ 3. This is a beau-
tiful result since the rigidity here is the noncombinatorial requirement that
the kernel of an associated rigidity matrix R(G, p) has the smallest dimen-
sion (namely three) for some (and hence every) generic framework. On the
other hand frameworks with global symmetries, or even with “symmetric
elements” (such as parallel edges) are not generic, that is, algebraic depen-
dencies do exist between the framework point coordinates. Such frameworks
arise in classical crystallography on the one hand and in mathematical mod-
els in structural engineering and in materials science on the other. See, for
example, Donev and Torquato [7], Hutchinson and Fleck [18], Guest and
Hutchinson [15] and various papers in the conference proceedings [34].

The present paper develops two themes. The first concerns a mathe-
matical theory of deformability and rigidity for general infinite frameworks,
with frequent attention to the case of periodic frameworks. There is, unsur-
prisingly, a great diversity of infinite framework flexing phenomena and we
introduce strict terminology and some methods from functional analysis to
capture some of this. In the second theme we propose an operator theory
perspective for the infinitesimal (first order) flexibility of infinite frameworks.

Particularly interesting classes of infinite frameworks, from the point of
view of flexibility, are those in the plane whose graphs are 4-regular and those
in three dimensions whose graphs are 6-regular. In this case the graphs are
in Maxwell counting equilibrium, so to speak, and so in a generic frame-
work realisation any flex must activate countably many vertices. This is
also the case for various periodic realisations such as the kagome frame-
work, Gkag, formed by corner-joined triangles in regular hexagonal arrange-
ment, and frameworks in three dimensions formed by pairwise corner-joined
tetrahedra. Despite being internally rigid in this way (Definition 2.18 (vi))
these frameworks admit diverse deformations. For example we note that
the kagome framework admits uncountably many distinct deformations and
in Theorem 4.4 we note that Zd-periodic cell-generic grid frameworks in Rd
admit deformations associated with affine transformations.

A significant phenomenon in the infinite setting is the appearance of van-
ishing flexibility. This means, roughly speaking, that the framework is a
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union of finite flexible subframeworks but the extent of flexibility dimin-
ishes to zero as the size of these subframeworks increases, so that the in-
finite assemblage is inflexible. Elementary examples were indicated in [25]
but we give more subtle examples here which are due to flex amplification
at second order distances through concatenation effects. In particular there
are bounded infinitesimal flexes in periodic frameworks that admit no con-
tinuous extensions and which do not arise as the derivative of a smooth
deformation. We also note that there are Z2-periodic crystal frameworks
which are somewhat paradoxical, being indeformable despite the flexibility
of all supercell subframeworks. On the other hand, in the positive direction,
in Theorem 2.20 we give a general result which identifies a uniform principle
for the existence of a deformation. The proof uses the Ascoli–Arzela theorem
on the precompactness of equicontinuous families of local flexes. It remains
an interesting open problem to determine necessary and sufficient conditions
for the rigidity and bounded rigidity of periodic planar frameworks.

The operator theory perspective for frameworks was suggested in [25] as
an approach to a wider understanding of infinitesimal flexibility and rigidity.
In this consideration the rigidity matrix is infinite and determines operators
between various normed sequence spaces associated with nodes and with
edges. Also, in [27] we have given a direct proof of the Fowler–Guest formula
[9] for symmetric finite frameworks which is based on the commutation prop-
erties of the rigidity matrix as a linear transformation and this adapts readily
to the infinite case and the rigidity operators of crystal frameworks. Indeed,
translational symmetry ensures that the rigidity matrix R(G, p) intertwines
the coordinate shift operations. We consider square summable flexes and
stresses and for distance regular bounded degree frameworks R(G, p) is inter-
preted as a bounded linear operator between Hilbert spaces. Also, enlarging
to complex Hilbert spaces the Fourier transform FR(G, p)F−1 is identified
as a multiplication operator

MΦ : L2(Td)⊗ Cn → L2(Td)⊗ Cm

given by an m×n matrix-valued function Φ(z) on the d-torus. The function
Φ(z) for C is referred to as the matricial symbol function associated with the
particular generating motif. The terminology and notation is borrowed from
standard usage for Toeplitz operators and multiplication operators (see [3]
for example). Many aspects of infinitesimal flexibility and isostaticity are
expressible and analysable in terms of the matricial symbol function and
its associated operator theory. For example a straightforward consequence
of the operator theoretic approach is the square-summable isostaticity of
various nondegenerate regular frameworks that satisfy Maxwell counting,
such as grid frameworks and the kagome framework.

An explicit motif-to-matrix function algorithm is given for the progression

C = (G, p)→ R(G, p)→ Φ(z).
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Furthermore the identification of infinitesimal periodic-modulo-phase flexes
and their multiplicities is determined by the degeneracies of Φ(z) as z ranges
on the d-torus. In particular, the function

µ(z) := dim ker Φ(z) : Td → Z.

gives a determination of the mode multiplicity of periodic-modulo-phase
infinitesimal flexes.

In the discussions below we are mainly concerned with properties of math-
ematical bar-joint frameworks. (The framework bars are indestructibly inex-
tensible, the joints are located deterministically, maintain perfect, friction-
less fit and may even coincide.) Nevertheless, as we outline in Section 5.7,
the analysis of matricial symbol functions and their degeneracies is particu-
larly relevant to the description and analysis of Rigid Unit Modes in material
crystals. For example, we show in Theorem 5.12 that for crystal frameworks
with inversion symmetry the set of RUMS is typically a union of surfaces.
This generalises and provides an alternative perspective for a recent result
of Wegner [35] for tetrahedral crystals.

Operator theory methods have proven beneficial in many areas of math-
ematics and applications. This is well-known and established for systems
theory and for control theory for example. Infinite rigidity matrix analysis
seems to possess some similitudes with these areas, the symbol function be-
ing analogous to the transfer function, and it seems to us that here too the
operator turn will be a useful one.

The development is as follows. Section 2 gives a self-contained exploratory
account of continuous flexibility, continuous rigidity and vanishing flexibility
for infinite bar-joint frameworks. Also, one-sided flexibility is proven for cer-
tain periodic semi-infinite frameworks. Forms of flexibility, such as bounded
flexes, square-summable flexes, summable flexes and vanishing flexes are de-
fined and determined for some specific examples. Sufficient conditions are
obtained for the existence of a smooth flex and a flex extension problem
for generic finite frameworks is posed. A positive resolution of this problem
would provide a natural extension of Laman’s theorem to infinite frame-
works.

In Section 3 we essentially start afresh and consider infinitesimal theory
for general infinite frameworks and determine a number of rigidity operators
and their flex and stress spaces. The topic is taken up in more detail for
crystal frameworks in Section 5. In Section 4 we consider (abstract) crystal
frameworks in two or three dimensions. These are generated by a motif and
a discrete translation group. Various forms of deformations are considered,
such as strict periodic flexibility, flow-periodic flexibility and flexes with
reduced periodicity and symmetry. Also we indicate the flat torus model for
crystal frameworks and a periodic analogue of Laman’s theorem obtained
by Ross [30].
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In the final section we consider the matricial symbol function approach
to crystal frameworks and give various basic results and examples. Thus,
it is shown in Theorem 5.3 that for crystal frameworks in Maxwell count-
ing equilibrium the existence of a summable infinitesimal flex is equivalent
to the existence of a local infinitesimal flex. Also we determine the (unit
cell) infinitesimal wave flex multiplicities for the kagome net framework by
factoring the determinant of the matricial symbol function.

Acknowledgments. Some of the developments here have benefited from
discussions and communications with Robert Connelly, Patrick Fowler, Si-
mon Guest, Elissa Ross and Walter Whiteley during and following the Sum-
mer Research Workshop on “Volume Inequalities and Rigidity”, organised
by Károly Bezdek, Robert Connelly, Balázs Csikös and Tibor Jordán, at the
Department of Geometry, Institute of Mathematics, Eotvos Lorand Univer-
sity in July 2009.

2. Infinite bar-joint frameworks

In this section we give a self-contained rigourous development of infinite
frameworks and examine the nonlinear aspects of their flexibility by con-
tinuous deformations and their associated rigidity. In the next section we
consider infinitesimal flexibility and rigidity in a variety of forms.

2.1. Continuous flexibility and rigidity. We first define continuous flex-
es and continuous rigidity. The latter means, roughly speaking, that the
framework admits no proper deformations that preserve the edge lengths.
The definition below gives straightforward generalisations of terms used for
finite frameworks. In that case we note that a continuous flex is often re-
ferred to as a finite flex while in engineering models it is referred to as a
finite mechanism.

We consider frameworks which are proper in the sense that the framework
points do not lie on a hyperplane in the ambient space Rd and we assume
that the framework edges [pi, pj ] have nonzero lengths |pi − pj |.

Definition 2.1. Let (G, p) be an infinite framework in R2, with connected
abstract graph G = (V,E), V = {v1, v2, . . . } and p = (p1, p2, . . . ).

A base-fixed continuous flex, or, simply, a flex of (G, p), is a function
p(t) = (p1(t), p2(t), . . . ) from [0, 1] to

∏
V R2 with the following properties:

(i) p(0) = p.
(ii) Each coordinate function pi : [0, 1]→ R2 is continuous.
(iii) For some base edge (va, vb) with |pa − pb| 6= 0, pa(t) = pa(0) and

pb(t) = pb(0) for all t.
(iv) Each edge distance is conserved: |pi(t)− pj(t)| = |pi(0)− pj(0)| for

all edges (vi, vj), and all t.
(v) p(t) 6= p for some t ∈ (0, 1].



452 J. C. OWEN AND S. C. POWER

The framework (G, p) is flexible, or more precisely, continuously flexible,
if it possesses a base-fixed continuous flex.

The framework (G, p) is rigid, or continuously rigid, if it is not flexible.

Similarly one defines base-fixed continuous flexes and continuous rigidity
for proper frameworks in Rd by replacing a base edge by an appropriate set
of framework points with maximal affine span.

The simplest kind of continuously rigid framework in the plane is one
which is a union of continuously rigid finite frameworks. In particular the
following theorem follows simply from the theorem of Laman indicated in
the introduction.

Theorem 2.2. Let G be a connected graph which is the union of a sequence
of finite Laman graphs. Then every generic realisation (G, p) in the plane
is continuously rigid.

By generic, or, more precisely, algebraically generic, we mean, as is usual,
that the coordinates of any finite set of framework points is algebraically
independent over the rational numbers. Unlike the case of finite frameworks
it is possible to construct two generic frameworks with the same abstract
graph one of which is flexible and one of which is rigid. Accordingly it seems
appropriate to formulate the following definition to extend the usual usage.

Definition 2.3. An infinite simple connected graph G is said to be rigid,
or generically rigid, for two dimensions, if every generic framework (G, p) in
the plane is rigid.

Note that if G is rigid and if H is a containing graph for G with the same
vertex set then every generic framework (H, p) in the plane is rigid.

It seems likely that the converse to the theorem above holds. That is, if
H does not contain a sequentially Laman graph (in the sense below) with
the same vertex set, then H is not generically rigid. We comment more on
this later in Section 2.6.

Rigidity and flexibility are properties of the entire framework and it is such
entire features and their inter-relationships that are of primary interest in
what follows. One would like to understand the relationship with small scale
or local structure, such as local counting conditions and local connectivity.
Additionally, as above, one would like to relate entire properties to sequential
features that pertain to an exhaustive chain of finite subframeworks and for
this the following definition is helpful.

Definition 2.4. If P is a property for a class of finite, simple, connected
graphs (resp. frameworks) then a graph G (resp. framework G = (G, p)) is
sequentially P or σ-P if G is the union of graphs in some increasing sequence
of vertex induced finite subgraphs G1 ⊆ G2 ⊆ . . . , and each graph Gk (resp.
framework (Gk, p)) has property P .

For example, we may refer to an infinite graph as being σ-Laman, or
σ-(Laman-1) and an infinite framework as being σ-rigid. To say that an
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infinite framework is σ-flexible, or sequentially flexible, is rather vacuous.
The more interesting property is the failure of sequentially rigidity as in the
following definition.

Definition 2.5. A framework G is said to have vanishing flexibility if it is
continuously rigid but not σ-rigid.

An interesting topic for finite bar-joint frameworks is that of global rigid-
ity, also termed unique rigidity. This holds if, up to ambient isometric con-
gruency, there is only one framework which realises the underlying graph
and the framework edge lengths. One can extend the term to infinite frame-
works but we do not consider this issue here. One might be tempted to
say that a rigid infinite framework, especially one with vanishing flexibility,
is globally rigid, but we refrain from doing so because of conflict with this
usage.

The term “global” for global rigidity is natural since rigidity for finite
frameworks is equivalent to the “local” property that “nearby equivalent
frameworks are congruent”. That is, if there exists ε > 0 such that if (G, p′)
is a finite framework with |pi − p′i| < ε, for all i, and if (G, p′) is equivalent
to (G, p), in the sense that corresponding edges have the same length, then
(G, p′) and (G, p) are congruent. See, for example, Gluck [11] and Asimow
and Roth [1].

An infinite simple graph G is locally finite if for every vertex v there are
finitely many incident edges. Amongst such graphs are those for which there
is an upper bound to the degree of the vertices, as in the case of the graphs
of crystal frameworks. Within this class a graph G is said to be r-regular if
every vertex has degree r and we note that the theory of tilings provides a
wealth of examples of planar frameworks which are 4-regular.

Remark 2.6. In what follows we consider only locally finite frameworks.
Without this assumption it is possible to construct quite wildly flexing pla-
nar linkages. In fact, given a continuous function f : [0, 1] → R2 one can
construct an infinite linkage, in the sense of the definition below, and a base-
fixed flex p(t) with a motion pv(t) for a particular vertex v that is equal to
f(t). This includes the possibility of space filling curves. This is a conse-
quence of a continuous analogue of a well known theorem of Kempe which
asserts that any finite algebraic curve in the plane can be simulated by a
finite linkage. For more details see Owen and Power [26].

2.2. Linkages. The removal of a framework edge from a rigid framework
may result in flexibility which is, roughly speaking, of a one-dimensional
nature. We reserve the term linkage for such a mathematical object, which
we formally specify in the next definition. We remark that finite frameworks
are also referred to as linkages, particularly when they are flexible, perhaps
with several degrees of freedom, but this should not cause confusion.

A two-sided continuous flex p(t) of (G, p) is defined as above but for the
replacement of [0, 1] by [−1, 1]. The following formal definition of an infinite



454 J. C. OWEN AND S. C. POWER

linkage reflects the fact that the initial motion of a base-fixed linkage is
uniquely determined by the angle change at any flexible joint.

Definition 2.7. A linkage in R2 is a finite or infinite connected framework
G = (G, p) in R2 for which there exists a continuous two-sided base-fixed flex
p(t) with framework edges [pi, pj ], [pj , pk] such that the cosine angle function

g(t) = 〈pi(t)− pj(t), pk(t)− pj(t)〉
is strictly increasing on [−1, 1], and such that p(t) is the unique two-sided
flex q(t) of G with ql(t) = pl(t), for l = i, j, k.

Many interesting finite linkages were considered in the nineteenth century
in connection with mechanical linkages. See, for example, Kempe [19]. Note
however that the definition is liberal in allowing coincident joints and self-
intersecting flexes. Also the definition refers to local deformation behaviour
and this does not rule out the possibility of bifurcations occurring in a
parameter extension of the given flex.

It is a simple matter to construct diverse infinite linkages by tower con-
structions or progressive assembly. (See, for example, the Cantor tree frame-
works of [25].) However, some such constructions lead to frameworks with
vanishing flexibility and so are not linkages in this case. An elementary il-
lustration is given in Figure 4 wherein a two-way infinite rectangular strip
linkage is augmented by adding flex-restricting cross braces in an alternating
fashion. If the brace lengths tend to the diagonal length from above then
the infinite framework is rigid. Evidently in this case the triangle inequality
is playing a role in isolating one real solution to the solution set V (G, p) de-
fined below. One can also construct examples in which this isolation is less
evident, with all joint angles bounded away from zero and π/2 for example.

A more interesting and subtle form of vanishing flexibility is due to pro-
gressive flex amplification rather than local flex restrictions. Roughly speak-
ing, if a small flex is initiated at a particular joint and the flex propagates
in some amplifying manner, then the triangle inequality at some far remove
may prohibit any further increase. If the framework is infinite then no local
joint flex may be possible at all. The strip framework of concatenated levers
in Figure 5 gives an example where the amplification is evident, while the
rigidity of the strip framework in Figure 6 and the trapezium strip in Fig-
ure 7 is less evident. The lever framework has a natural infintesimal flex,
in the sense of Section 3, which is unbounded. The corresponding flexes
of Figures 6 and 7 however, are bounded with amplification unfolding as a
second order effect. This is proven in the next subsection.

It is a straightforward matter to incorporate the vanishing flexibility of
the strips above as subframeworks of a Z2-periodic framework. This process
is indicated in Figures 9, 10 and 11 below, where the infinite frameworks are
determined as the periodic extensions of the given unit cell. Figure 9 shows
a linkage formed as a “fence lattice” composed of infinite horizontal and
vertical σ-rigid bands. Figure 10 shows an analogue where the infinite bands
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Figure 3. An infinite rectangle strip linkage.

Figure 4. A restricted rectangle strip.

Figure 5. Rigid but not σ-rigid.

Figure 6. Rigid but not σ-rigid.

have been replaced by rigid strip frameworks. Figure 11 is an elaboration
of this in which cross braces have been introduced to remove the flexibility.
(Only one edge is needed for this whereas the example given is periodic.)
The additional degree 2 vertex in the cell ensures that the framework is not
σ-rigid, while the infinite bands remain vanishingly rigid.

Let us note that for the framework in Figure 11, with its curious mixture
of rigidity and flexibility, one can add any finite number of additional degree
2 vertices without changing the rigidity of the framework. In particular we
have a construction that proves the following proposition.

Proposition 2.8. Let c > 2. Then there is a Z2-periodic framework in R2

which is rigid, which is not σ-rigid and for which the average vertex degree
is less than c.

One can readily extend this fanciful idea in various ways to obtain such
structures in higher dimensions. For example, start with a one-dimensionally
periodic σ-rigid girder in 3D and augment it with trapezium “tents” of
alternating height to creates vanishingly rigid girders. Also periodically
interpolate any number of degree two vertices into the tent top edges without
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Figure 7. Rigid but not σ-rigid.

Figure 8. A periodic half-strip which is only right-flexible.

Figure 9. Unit cell for a “fence lattice” linkage.

Figure 10. Unit cell for a modified fence lattice linkage.

removing the vanishing flexibility. Join infinitely many such component
girders periodically at appropriate tent-top edges to create a fence framework
and add linear jointed cross braces to create, finally, a 2D periodic grid which
is continuously rigid in 3D, which is not σ-rigid and which has average
coordination number arbitrarily close to two.
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Figure 11. Unit cell for a rigid periodic framework which
is not σ-rigid.

2.3. Relative rigidity and the extension of flexes. For a finite or in-
finite framework G = (G, p) in R2 define the function

fG :
∏
V

R2 →
∏
E

R, fG(q) = (|qi − qj |2)e=(vi,vj).

This is the usual edge function of the framework and depends only on the
abstract graph G.

Definition 2.9. The solution set, or configuration space, of a framework
G = (G, p), denoted V (G, p), is the set f−1

G (fG(p)). This is the set of all
framework vectors q for G that satisfy the distance constraints equations

|qi − qj |2 = |pi − pj |2, for all edges e = (vi, vj).

In general the solution set of an infinite framework need not be a real
algebraic variety even when it is “finitely parametrised”. In less wild situ-
ations it can be useful to relate V (G, p) to the algebraic variety V (H, pH)
associated with a finite subgraph H of G, or with an elementary subgraph
such as a tree, or even a set of vertices.

Definition 2.10. An infinite bar-joint framework (G, p) in Rd is rigid over
the subframework (H, pH) if every continuous flex of (G, p) which is con-
stant valued on H is constant. Similarly, if H is a subgraph of a countable
connected simple graph G then G is rigid over H, or generically rigid over H
if, for every generic framework (G, p), every continuous flex of (G, p) which
is constant-valued on H is constant.

We may also form the following associated notions.

Definition 2.11. An infinite framework (G, p) in Rd is finitely determined
if it is rigid over (H, p) for some finite subgraph H and is finitely flexible if
it is flexible and finitely determined.

Finite flexibility in the sense above is a strong property in which paths
from p in the solution set V (G, p) are determined near p by the finite alge-
braic variety V (H, p). Note that the term “infinitely flexible” is not appro-
priate to describe a flexible framework which is not finitely flexible since it
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is possible to construct linkages, in our formal sense, which are not finitely
flexible. This is the case for the periodic framework in Figure 12 which is
a linkage because of the vanishing flexibility of the subgraph with the top
vertices and their edges removed.

Figure 12. A linkage which is not finitely determined.

An important class of frameworks which appear in mathematical models
are those that are distance regular.

Definition 2.12. A framework G = (G, p) in Rd is distance-regular if there
exist 0 < m < M such that for all edges (i, j),

m < |pi − pj | ≤M.

For such a framework (G, p) it is natural to consider the nearby frame-
works with the same graphs but with slightly perturbed framework points
(and therefore edge lengths). If a property holds for all such frameworks, for
some perurbation distance ε then we call such a property a stable property
for the the framework.

Formally, an ε-perturbation of a distance regular framework G = (G, p)
is a framework G′ = (G, p′) for which |pi − p′i| < ε, for all corresponding
framework points. Recall that a finite framework in Rd is said to be ε-
rigid if it is congruent to every equivalent ε-perturbation. Let us say that
a general framework is perturbationally rigid if it is ε-rigid for some ε. It
is a well-known fact that perturbational rigidity and rigidity are equivalent
in the case of algebraically generic finite frameworks [1], [11]. However, it
is straightforward to see that this equivalence thoroughly fails for general
infinite frameworks (see [25]).

Definition 2.13. Let G be a distance-regular framework. Then G is stably
rigid (resp stably flexible) if it is rigid (resp. flexible) and for sufficiently
small ε > 0 every ε-perturbation of G is rigid (resp. flexible).

Likewise, if P is any particular property of a distance-regular infinite
framework then we may say that G is stably P if, for some ε > 0, the
property P holds for all ε-perturbations.

Proposition 2.14. The periodic trapezium strip frameworks, with alternat-
ing unequal heights a > b > o, are rigid. In particular the rectangle strip
linkage (of Figure 3) is not stably flexible.
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Figure 13.

Proof. Figure 13 shows the displacement of a double trapezium to the right.
Let the three vertical bar lengths be a, b and a units with a > b > 0. The
displaced position has angles A,B,C at the base line and angles D,E, F,G
occurring relative to the trajectory tangents of the displaced vertices. For
a subsequent incremental change δA, with resulting incremental changes
δB, δC, δD, δE, δF, δG we can see from simple geometry that to first order

a(δA cosD) = b(δB cosE).

Suppose now that A is regarded as a specialisation of the input angle α with
resulting output angle β = β(α), so that at α = A we have β(α) = B. Then

dβ

dα

∣∣∣∣
α=A

= lim
δA→0

δB

δA
=
a

b

cosD

cosE
.

Similarly, with angle C regarded as the output angle γ(B) for the angle
transmission function γ = γ(β), we have

dγ

dβ

∣∣∣∣
β=B

=
b

a

cosF

cosG

and so
dγ

dα

∣∣∣∣
α=A

=
dγ

dβ

∣∣∣∣
β=B

dβ

dα

∣∣∣∣
α=A

=
cosD

cosE

cosF

cosG
.

Note that since B > A we have also D > E, and since B > C we have
F > G, from which it follows that both ratios above are less than one. Thus
certainly 0 < γ′(α) < 1 for 0 < α < α1 where α1 is the first positive angle
for which γ′(α1) = 0.

It follows, from the mean value theorem, that the double trapezium angle
transmission function is an increasing differentiable function with

γ(0) = 0, 0 < γ(α) < α, for 0 < α < α1.

It follows immediately that the right-semi-infinite trapezium strip is right
flexible.

We let λ = γ(α1), which we refer to as the locking angle. Note the second
trapezium of the double admits no increase of this angle. In view of the
above we have λ < α1.
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Suppose now that G is the two-way-infinite trapezium strip, with a 6= b.
Let p(t) be a flex and suppose that for a fixed framework edge with length a
the angle A is greater than zero for some time t1 > 0 and that t1 is the first
such time. Then certainly 0 < A < λ. Note thatA−n = γ−n(A), n = 1, 2, . . .
are the angles of the edges of length a, counted off to the left. In view of
the function dominance 0 < γ(α) < α it follows that A−n > α1 for some n,
which is a contradiction. �

The argument above also shows that the semi-infinite trapezium strip
framework of Figure 7 has a continuous flex but no two-sided flex.

Remark 2.15. It seems to be of interest to analyse strip frameworks in
further detail. For example, a trapezium strip framework is not stably rigid,
despite the apparent “robustness” of the argument above. To see this use
surgery in the following way. Remove one cross bar, then push the rightmost
semifinite strip to the right, by an angle perturbation A = ε > 0. Now insert
a replacement bar of the required length. One can flex the resulting structure
towards the left to restore the position of the right hand strip. Indeed, this is
all the flexibility the framework has. The possible flex of an ε perturbation,
such as the one described, seems to be of order ε and so there does seem to
be “approximate rigidity”.

Remark 2.16. Consider the periodic trapezium grid framework Gtrap which
is obtained by perturbing the geometry of GZ2 by adding a fixed small posi-
tive value to the y coordinate of the framework points pij for the odd values
of i and j. It has been shown by the authors and Avais Sait that this frame-
work is rigid over any linear subframework, in the sense of Definition 2.10.
This contrasts with the grid framework itself which is freely flexible over its
x and y axes in the following sense: any sufficiently small flex of the x-axis
plus y-axis subframework extends to a unique flex of the whole framework.
On the other hand note that Theorem 4.4 shows that Gtrap is deformable in
an affine manner.

2.4. Forms of flexibility. It seems to be a fundamental and interesting
issue to determine the ways in which infinite bar-joint frameworks are rigid
or continuously flexible. In this section we give some further definitions, we
give sufficient conditions for the existence of a proper flex and we consider
a plausible infinite framework version of Laman’s theorem. Also we pose
two open problems, although at the present stage it is not clear where the
deeper questions may lie.

Flexes are often infinitely differentiable or smooth in the sense of the fol-
lowing formal definition. This is the case for example, for the “alternation”
flexes of Gsq and Gkag.

Definition 2.17. A continuous base-fixed two-sided flex p(t) : t ∈ [−1, 1] of
a framework (G, p) in Rd is a smooth flex if each coordinate function pi(t)
is infinitely differentiable.
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The smoothness of a flex is a local requirement whereas the following
terms impose various increasing forms of global constraint. In particular ro-
tational flexes of infinite frameworks of unbounded diameter are not bounded
flexes, while a translational flex of an infinite framework is a bounded flex
but is not a vanishing flex. Adopting a term that has been used in applica-
tions [13] we refer to flexes which are not bounded as colossal flexes.

Definition 2.18. A continuous flex p(t) = (pk(t))
∞
k=1, (t ∈ [0, 1]) of an

infinite framework (G, p) in Rd is said to be

(i) a bounded flex if for some M > 0 and every k and t,

|pk(t)− pk(0)| ≤M,

(ii) a colossal flex if it is not bounded,
(iii) a vanishing flex if p(t) is a bounded flex and if the maximal dis-

placement

‖pk − pk(0)‖∞ = sup
t∈[0,1]

|pk(t)− pk(0)|

tends to zero as k →∞,
(iv) a square-summable flex if

∞∑
k=1

‖pk − pk(0)‖2∞ <∞,

(v) a summable flex if

∞∑
k=1

‖pk − pk(0)‖∞ <∞,

(vi) an internal flex if for all but finitely many k the function pk(t) is
constant.

Also we say that (G, p) has a deformation (resp. bounded or vanishing
deformation) if it has a base-fixed flex p(t) (which is bounded or vanishing).

Definition 2.19. A connected infinite locally finite proper framework in
two or three dimensions is boundedly rigid (resp. summably rigid, square-
summably rigid, smoothly rigid, internally rigid) if there is no deformation,
that is, no base-fixed proper continuous flex, which is bounded (resp. sum-
mable, square-summable, smooth, internal).

As an illustration let us say that a framework is linear if to each edge
[pa, pb] there is a sequence of edges [pn, pn+1], n ∈ Z, such that [pa, pb] =
[p1, p2] and such that pn+1 − pn = c(p2 − p1), with cn > 0, for each n.
It is evident that the simplest linear framework, whose graph is a single
branch source-less tree, has no vanishing deformation, and thus that no
linear framework has such a deformation.
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2.5. Sufficient conditions for flexibility. There is a sense in which van-
ishing flexibility is almost the only obstacle to the existence of a flex of a
framework all of whose finite subframeworks are flexible. More precisely, in
the hypotheses of the next theorem we assume that there are two distin-
guished framework vertices, p1, p2, such that any finite subframework (H, p)
containing p1, p2 has a flex which properly separates this pair in the sense
of condition (ii) below. The additional requirement needed is that there
is a family of flexes of the finite subframeworks whose restrictions to any
given subframework (H, p) are uniformly smooth in the sense of condition
(i). Note that the constant here depends only on (H, p) and indeed the
resulting flex may of necessity be a colossal flex.

Theorem 2.20. Let (G, p) be an infinite locally finite framework in Rd with
a connected graph, let

(G1, p) ⊆ (G2, p) ⊆ . . . ,
be subframeworks, determined by finite subgraphs Gr = (Vr, Er) with union
equal to G and let v1, v2 be vertices in G1. Suppose moreover that for each

r = 1, 2, . . . , there is a base-fixed smooth flex pr(t) = (prk(t))
|V (Gr)|
k=1 of the

subframework Gr = (Gr, p) such that:

(i) For each finite framework Gl the set Fl of restriction flexes,

Fl = {pr(t)|Gl : r ≥ l},
has uniformly bounded derivatives, i.e., there are constants Ml, l =
1, 2, . . . , such that∣∣∣∣ ddtprk(t)

∣∣∣∣ ≤Ml, for r ≥ l, vk ∈ Vl.

(ii) The framework points p1, p2 are uniformly separated by each flex
pr(t) in the sense that

|pr1(1)− pr2(1)| − |pr1(0)− pr2(0)| ≥ c
for some positive constant c.

Then (G, p) has a deformation.

Note that it is essential that the separated vertices of condition (ii) are
the same for each subgraph. To see this note that the two-way infinite
trapezium strip framework considered in Figure 7 has smooth deformations
on each of its finite strip subframeworks, each of which “separates” some two
vertices (at the end of the strip) by a fixed positive distance. Nevertheless
the infinite strip fails to have a deformation.

Proof. For l = 1, 2, . . . , let Xl be the space of continuous functions from
[0, 1] to Rd|Vl| and note that the family Fl, by the hypotheses, is an equicon-
tinuous family in Xl. Moreover with respect to the supremum norm Fl is
a bounded set. This is a simple consequence of the connectedness of the
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graphs. By the Ascoli–Arzela theorem (see [33] for example) Fl is precom-
pact and in particular for F1 there is a subsequence r1, r2, . . . such that the
restrictions prk |G1 converge uniformly in their (finitely many) coordinates

to a flex q1 of G1. Relabel the sequence (prk) as (p(k,1)). The restrictions of

these flexes to G2 similarly have a convergent subsequence, say (p(k,2)), and

so on. From this construction select the diagonal subsequence (p(k,k)). This
converges coordinatewise uniformly to a coordinatewise continuous function

q : [0, 1]→ Rd × Rd × · · · .
Since the restriction of q to every finite subframework is a flex, q satisfies the
requirements of a base-fixed flex of (G, p), except possibly the properness
requirement (v) of Definition 2.1. In view of (ii) however, q(0) 6= q(1) and
so q is the required flex.. �

Remark 2.21. Computer simulations on small grids provide some evidence
for the fact that small random perturbations of the vertex positions of GZ2

yield frameworks that are flexible. It would be interesting if the theorem
above could assist in a proof of this.

Problem 1. Is GZ2 stably flexible?

2.6. Flex extensions and generic rigidity. Let us recall a version of
Laman’s theorem.

Theorem 2.22. Let (G, p) be an algebraically generic finite framework.
Then (G, p) is infinitesimally rigid if and only if the graph G has a vertex
induced subgraph H, with V (H) = V (G), which is maximally independent
in the sense that 2|V (H)| = |E(H)| + 3 and 2|V (H ′)| ≥ |E(H ′)| + 3 for
every subgraph H ′ of H.

For convenience we refer to a maximally independent finite graph as a
Laman graph. We remark that any Laman graph can be obtained from a
triangle graph by a sequence of moves known as Henneberg moves. The
first of these adds a new vertex with two connecting edges while the second
breaks an edge into two at a new vertex which is then connected by a new
edge to another vertex of the graph.

Now let G be an infinite graph which contains a subgraph H on all the
vertices of G and suppose that H is σ-Laman. In view of Laman’s theorem
every algebraically generic realisation of H (and hence G) in the plane is
σ-rigid and so continuously rigid. Is the converse true ? That is, if every
generic realisation of an infinite graph G is rigid does G necessarily contain
a σ-Laman subgraph with the same vertex set.

To see this one needs to show that if G is σ-(Laman-1) and not σ-Laman,
then there exists a vertex generic realisation (G, p) in the plane which has a
continuous flex. That is, we want to build up a flex of the infinite structure
by adding new vertices and edges, in the least handicapping way, to allow
all, or most of the flex of an initial finite subgraph to be extended.
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Alternatively, and more explicitly, suppose that one starts with a fi-
nite generic connected Laman-1 framework (G1, p), with framework vertices
p1, . . . , pn and an infinite sequence of Henneberg move “instructions” for G1

yielding a unique infinite graph G.

Problem 2. Is it possible to choose algebraically generic framework points
pn+1, pn+2, . . . so that some proper flex of (G1, p) extends fully to every
extension framework (Gk, (p1, . . . , pk)), for k > n.?

3. Rigidity operators and infinitesimal rigidity

In previous sections we have considered some variety in the nature of
continuous flexes p(t) and how they might distinguished. A companion con-
sideration is the analysis of various spaces of infinitesimal flexes. This gives
insight into continuous flexes since the derivative p′(0) of a differentiable flex
p(t) is an infinitesimal flex.

Here we give an operator theory perspective for an infinitesimal theory of
infinite frameworks in which the rigidity matrix R(G, p) is viewed as a linear
transformation or linear operator between various spaces. The domain space
contains a space of infinitesimal flexes, which lie in the kernel of the rigidity
operator, while the range space contains a space of self-stress vectors namely
those in the kernel of the transpose of R(G, p).

3.1. Infinitesimal rigidity and the rigidity matrix. Recall that for a
finite framework (G, p) in Rd with n = |V | an infinitesimal flex is a vector
u = (u1, . . . , un) in the vector space Hv = Rd ⊕ · · · ⊕ Rd such that the
orthogonality relation 〈pi−pj , ui−uj〉 = 0 holds for each edge (vi, vj). This
condition ensures that if each pi is perturbed to pi(t) = pi+tui, with t small,
then the edge length perturbations are of second order only as t tends to
zero. That is, for all edges,

|pi(t)− pj(t)| − |pi − pj | = O(t2).

If q(t) : [−1, 1] → Hv is a two-sided smooth flex of the finite framework
(G, p) then q′(0) is an infinitesimal flex and for a generic finite framework
every infinitesimal flex arises in this way. See Asimow and Roth [1] for
example.

Associate with an infinite framework (G, p) the product vector space

Hv =
∏
V

Rd

consisting of all sequences u = (u1, u2, . . . ). Conceptually such a vector cor-
responds to a specification of instantaneous velocities, or to a perturbation
sequence, applied to the framework joints. Define an infinitesimal flex of
(G, p) to be a vector u in Hv for which, as above, 〈pi−pj , ui−uj〉 = 0 holds
for each edge (vi, vj), and let Hfl denote the linear space of all these vec-
tors. In the planar case Hfl contains the three-dimensional linear subspace
(assuming G has at least one edge) of the infinitesimal flexes that arise from
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the isometries of R2. Note that a nonzero rotation infinitesimal flex u is an
unbounded sequence if and only if (G, p) is an unbounded framework. We
denote the space of rigid body motion infinitesimal flexes as Hrig. In two
dimensions this is the three-dimensional space spanned by two infinitesimal
translations and an infinitesimal rotation.

Definition 3.1. An infinite framework (G, p) is infinitesimally rigid if every
infinitesimal flex is a rigid body motion infinitesimal flex.

If G is infinite then Hv contains properly the direct sum space

H00
v =

∑
V

⊕Rd

consisting of vectors whose coordinates are finitely supported, in the sense of
being finitely nonzero. The following definition is convenient and evocative.

Definition 3.2. An infinite framework (G, p) is internally infinitesimally
rigid if every finitely supported infinitesimal flex is the zero flex.

Figure 14. Unit cell for an internally infinitesimally flexible
periodic framework.

We now give the usual direct definition of the rigidity matrix R(G, p) of a
framework (G, p) in the plane but allow G to be infinite. This matrix could
also be introduced via the Jacobian of the equation system that defines
V (G, p) since 2R(G, p) is the Jacobian evaluated at p.

Write pi = (xi, yi), ui = (uxi , u
y
i ), i = 1, 2, . . . , and denote the coordinate

difference xi − xj by xij . The rigidity matrix is an infinite matrix R(G, p)
with rows indexed by edges e1, e2, . . . and columns labeled by vertices but
with multiplicity two, namely the labels vx1 , v

y
1 , v

x
2 , v

y
2 , . . . . Note that any

matrix of this shape, with finitely many nonzero entries in each row, provides
a linear transformation from Hv to He =

∏
E R.

Definition 3.3. The rigidity matrix of the infinite framework (G, p) in R2,
with p = (pi) = (xi, yi), is the matrix R(G, p) with entries xij , xji, yij , yji
occurring in the row with label e = (vi, vj) with the respective column labels
vxi , v

x
j , v

y
i , v

y
j , and with zero entries elsewhere.
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The rigidity matrix of an infinite bar-joint framework in Rd is similarly
defined. It follows readily that a vector u in Hv is an infinitesimal flex if
and only if R(G, p)u = 0.

Definition 3.4.

(i) A self-stress of a finite or infinite framework (G, p) is a vector

w = (we) ∈ He =
∏
E

R

such that R(G, p)tw = 0.
(ii) A finite or infinite framework (G, p) is isostatic, or (more emphat-

ically) absolutely isostatic, if it is infinitesimally rigid and has no
nonzero self-stresses.

Since it is understood here that G is a locally finite graph the rigidity
matrix has finitely many entries in each column and so its transpose provides
a linear transformations from He to Hv.

In the finite case a self-stress represents a finite linear dependence between
the rows of the rigidity matrix, which one might abbreviate, with language
abuse, by saying that the corresponding edges of the framework are linearly
dependent. A self-stress vector w = (we)e∈E can be simply related to a
vector b = (be) conceived of as a sequence b = (be) of bar tension forces
with a resolution, or balance, at each node. Indeed, for such a force vector
b the vector w for which we = |pi − pj |−1be (e = (vi, vj)) is a stress vector.
Thus there is a simple linear relationship between the space of self-stresses
and the space of resolving bar tensions. We shall not consider here the more
general stress vectors, important in engineering applications, that arise from
external loading vectors.

Let H00
e be the space of finitely supported vectors in He. We say that an

infinite framework (G, p) is finitely isostatic if it is internally infinitesimally
rigid and if the finite support stress space H00

str := Hstr∩H00
e is equal to {0}.

It is straightforward to see that the grid frameworks GZd , in their ambient
spaces, are finitely isostatic, as is the kagome framework.

Between the extremes of infinitesimal rigidity and internal rigidity there
are other natural forms of rigidity such as those given in the following def-
inition. Write `∞, `2 and c0 to indicate the usual Banach sequence spaces
for countable coordinates, and write H∞e ,H∞v , . . . ,H0

v for the corresponding
subspaces of He and Hv.

Definition 3.5. An infinite framework (G, p) is

(i) square-summably infinitesimally rigid (or infinitesimally `2-rigid) if

H2
v ∩ kerR(G, p) = H2

v ∩Hrig,

(ii) boundedly infinitesimally rigid (or infinitesimally `∞-rigid) if

H∞v ∩ kerR(G, p) = H∞v ∩Hrig,
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(iii) vanishingly infinitesimally rigid (or infinitesially c0-rigid) if

H0
v ∩ kerR(G, p) = H0

v ∩Hrig,

(iv) square-summably isostatic (or `2-isostatic) if it is infinitesimally `2-
rigid and

Hstr ∩H2
e = {0},

(v) boundedly isostatic if it is boundedly infinitesimally rigid and

Hstr ∩H∞e = {0},
(vi) vanishingly isostatic if it is vanishingly infinitesimally rigid and

Hstr ∩H0
e = {0}.

There is companion terminology for flexes and stresses. Thus we refer to
vectors in H2

v ∩ kerR(G, p) as square-summable infinitesimal flexes and so
on.

Example 3.6. Let us use the shorthand (N, p) to denote a semi-infinite
framework in R2 whose abstract graph is a tree with a single branch, with
edges (v1, v2), (v2, v3), . . . and where p = (pi), pi = (xi, yi), i = 1, 2, . . . .
Then, writing xij and yij for the differences xi − xj and yi − yj , as before,
the rigidity matrix with respect to the natural ordered bases takes the form

R(N, p) =


x12 y12 x21 y21 0 . . .
0 0 x23 y23 x32 y32 0 . . .
0 0 0 0 ∗ ∗ ∗ . . .
...

 .
With respect to the coordinate decomposition Hv = Hx ⊕Hy we have

R(N, p) =
[
Rx Ry

]
=
[
Dx Dy

] [T
T

]
where Rx = DxT,Ry = DyT , where Dx and Dy are the diagonal matrices

Dx =


x12 0 0 . . .
0 x23 0 . . .
0 0 x34 0
...

. . .

 , Dy =


y12 0 0 . . .
0 y23 0 . . .
0 0 y34 0
...

. . .


and

T =


1 −1 0 . . .
0 1 −1 . . .
0 0 1 −1
...

. . .

 .
If we now identify the domain and range spaces in the natural way for these
coordinates then we have T = I − U t where U t is the transpose of the
forward unilateral shift operator on the linear space of real sequences.
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The analogous framework (Z, p) has a similar matrix structure in all re-
spects except that in place of the Toeplitz matrix T one has the corre-
sponding two-way infinite Laurent matrix I −W−1 where W is the forward
bilateral shift. In both cases, the two-dimensional subspace spanned by the
translation flexes is evident, being spanned by the constant vectors in Hx
and Hy. Evidently there are infinitely many finitely supported flexes and in
fact it is possible to identify kerR(G, p) as a direct product vector space.

One can use operator formalism to examine the space of self-stresses. In
the case of the simple framework (Z, p) note that W t = W−1 and that

ker(I −W ) = ker(I −W−1) = Re

where e is the vector with every entry equal to 1. Since

R(Z, p)t =

[
I −W

I −W

] [
Dx

Dy

]
it follows that a vector w is a stress vector if and only if Dxw ∈ Re and
Dyw ∈ Re. Thus for some constants α, β we have xi,i+1wi = α, yi,i+1wi = β,
and so for all i

yi − yi+1

xi − xi+1
=
β

α
.

This colinearity condition shows that the space of stresses is trivial unless the
framework points pi, i ∈ Z are colinear in which caseHstr is one-dimensional.
This includes the colinear cases in which p is a bounded sequence and the
framework lies in a finite line segment in R2.

Example 3.7. With similar notational economy write (Zr, p), (resp. (Nr, p))
for frameworks associated with the grid graph with vertex set labeled by r-
tuples of integers (resp. positive integers) n = (n1, . . . , nr) where the edges
correspond to vertex pairs (n, n ± ej), where e1, . . . , er are the usual basis
elements. The ambient space for the framework is either understood or
revealed by the entries of the vector p.

Again one can use operator formalism to analyse the space of stresses as a
vector subspace of H. In the special case of the regular grid framework GZ2

in R2 one can see that the vector subspace Hstr is a direct product vector
space (like H itself) whose product basis is indexed by (two-way infinite)
linear subframeworks parallel to the coordinate axes. This is also true for
a general orthogonal grid framework such as the bounded grid framework
determined by the framework points (±(1− (1/2)i),±(1− (1/2)j)).

Note that we have defined an infinitesimal flex in a local way, being the
verbatim counterpart of the usage for finite frameworks. In particular the
notion takes no account of the possibility of (second order) amplification or
vanishing flexibility.

Our examples above indicate the importance of shift operators and in
the next section we see that the bilateral shift operators, in their Fourier
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transform realisation as multiplication operators, play a central role in the
discussion of periodic frameworks.

Let us note here that approximate infinitesimal flexes are natural for
infinite frameworks and the operator theoretic perspective.

Definition 3.8. An approximate square-summable flex of an infinite frame-
work (G, p) is a sequence of finitely supported unit vectors u1, u2, . . . in H2

v

(or K2
v) such that ‖R(G, p)un‖2 → 0 as n→∞.

Let (G, p) be a distance regular framework such that the degrees of the
framework vertices are uniformly bounded. Then it is straightforward to
show that the rigidity matrix determines a bounded Hilbert space operator
R. It is the metrical and geometric properties of the action of R and its
transpose that have relevance to rigidity theory rather than the spectral
theory of R. However we do have the almost vacuous statement that the
existence of approximate (square-summable) flexes corresponds to the point
0 belonging to the approximate point spectrum of R. For if 0 lies in the
approximate point spectrum then (by definition) Rvn is a null sequence for
some sequence of unit vectors vn, and approximation of these unit vectors
by vectors with finite support yields, after normalisations, an approximate
square-summable flex sequence (un).

It is implicit in the matricial function association below that the rigid
unit modes of translationally periodic frameworks are tied to the existence
of approximate flexes. This suggests that it would be worthwhile to examine
approximate flexes in more general settings such as perturbed or distorted
periodic frameworks.

4. Crystal frameworks and flexibility

In previous sections we have constructed frameworks to illustrate various
definitions and properties. It is perhaps of wider interest to understand,
on the other hand, how extant infinite frameworks, such as those suggested
by crystals or repetitive structures, may be flexible. Accordingly we now
formally define crystal frameworks and investigate various forms of flexibility
and rigidity.

4.1. Periodic and crystal frameworks. We have already observed some
properties of the basic examples of the grid framework GZ2 , the squares
framework Gsq and the kagome framework, Gkag. In R3 we also have ana-
logues, such as the cube framework Gcube, the octagon framework Goct and
the kagome net framework Gknet, which consist, respectively, of vertex-joined
cubes, octahedra and tetrahedra, with no shared edges or faces, each in a
natural periodic arrangement. The frameworks Gkag, Gcube, Goct and Gknet

are polytope body-pin frameworks but we consider the polytope rigid units
as bar-joint subframeworks formed by adding some, or perhaps all, internal
edges. As such these frameworks are examples of crystal frameworks in the
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sense of the formal definition below. We first comment on a wider notion of
periodicity.

Definition 4.1. An affinely periodic framework in Rd is a framework G =
(G, p) for which there exists a nontrivial discrete group of affine transfor-
mations Tg, g ∈ D, where each Tg acts on framework points and framework
edges.

For example, the two-way infinite dyadic cobweb framework in R2 illus-
trated in Figure 15 is affinely periodic for the dilation doubling map and the
four-fold dihedral group D4.

Figure 15. An affinely periodic cobweb framework.

For another example we may take the infinite Z-periodic framework in
three dimensions for which Figure 15 forms a perspective view down a central
axis, with framework vertices (±1,±1,m),m ∈ Z. Here the affine group is
an isometry group isomorphic, as a group, to Z× C2 ×D4.

To illustrate the following definition observe in Figure 16 a template of
six edges and three vertices which generates the kagome framework by the
translations associated with the parallelogram unit cell. Borrowing crystallo-
graphic terminology we refer to such a template as a motif for the framework
and the chosen translation group. The following formal definition gives a
convenient way of specifying abstract crystal frameworks.

Definition 4.2. A crystal framework C = (G, p) in Rd is a connected bar-
joint framework for which there is a discrete group T = {Tg : g ∈ D} of
translation isometries, a finite set Fe of framework edges and a finite set Fv
of framework vertices (usually a subset of the vertex set of Fe) such that:

(i) The unions

∪g∈DTg(Fe), ∪g∈DTg(Fv)
coincide with the sets of framework edges and vertices.

(ii) These unions are unions of disjoint sets.



INFINITE FRAMEWORKS AND OPERATOR THEORY 471

1

3 2

5

6

4 1 2

3

Figure 16. A motif (Fv, Fe) and unit cell for the kagome framework.

In this case C is written as the triple (Fv, Fe, T ), or as the triple (Fv, Fe,Zd)
in the case of integer translation group.

An associated unit cell for C may be defined as a set which contains Fv and
no other framework points and for which the translates under the translation
isometries are disjoint and partition the ambient space. For example in the
case of GZ2 we may take the semiopen set [0, 1)2 or the set [0, 1)× [1/2, 5/2)
as unit cells. Such parallelepiped unit cells are useful for torus models for
crystal frameworks. Voronoi cells (Brillouin zones) also play a unit cell role
in applications but we shall not need such geometric detail here.

In many applied settings the appropriate framework models have “short”
edges, spanning no more than two adjacent unit cells. Here we allow general
edges which may span a chain of adjacent cells.

Recall from elementary crystallography that, modulo orthogonal trans-
formations, there are 14 different forms (or symmetry types) in which a
countable set of isolated points can be arranged with translational symme-
try throughout three-dimensional space. These arrangements are called the
Bravais lattices and the translation group T above corresponds to such a lat-
tice. Thus each point of the framework lies in the Bravais lattice generated
by the orbit of its unique corresponding motif vertex under the translational
group.

4.2. Deformability and flow flexibility. Recall that a general (count-
able, locally finite, connected) framework G is rigid if there is no base-fixed
continuous flex and is boundedly rigid, or boundedly nondeformable, if there
is no bounded base-fixed continuous flex p(t). Recall, from Section 2, that
bounded flexes are those for which there is an absolute constant M such
that for every vertex v the time separation |pv(t)− pv(0)| is bounded by M
for all t and all v.

We first describe a context for the standard “alternation” flexes of Gsq

and Gkag and certain periodic flexes of Gkag with reduced symmetry. For
these nonbounded flexes translational periodicity is maintained but relative
to an affine flow of the ambient space. By an affine flow we mean simply a
path t → At of affine transformations of Rd which is pointwise continuous.
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The simplest such flow in two dimensions is a contracting flow such as

At(x, y) = ((1− tc)x, (1− tc))y, 0 < c < 1.

The alternating flexes of Gsq and Gkag are associated with such a flow.

Definition 4.3. Let d = 2, 3, let t→ At be a flow of Rd and let C = (G, p)
be a crystal framework for the translation group T = {Tg : g ∈ D}. A
flow-periodic flex of C, relative to the flow and the translation group T , is
a continuous flex p(t) such that for each t the framework (G, p(t)) is T t-
periodic, where

T t = {AtTgA−1
t : g ∈ D}.

Let us say simply that C is affinely periodically deformable if there exists
a non trivial flow-periodic flex.

A flow-periodic flex p(t) for C can be defined for a given flow if and only
if for each t one can continuously solve the distance constraint equations
for the vertex positions of the motif, with the periodicity constraint, in the
At-deformed unit cell. Equivalently, the motif and unit cell define a finite
framework on a torus with the noninterior edges of the motif providing
reentrant (“locally geodesic”) edges on the torus. For example consider the
torus framework in Figure 17.

Figure 17. A torus framework.

A horizontal affine contraction Ht : (x, y)→ ((1−t)x, y) leads to a contin-
uous flex of the torus framework and hence to a colossal flex of the associate
crystal framework. The same is true for the vertical affine contraction Vt
and for the skew affine transformation

St : (x, y)→ (x+ (sin t)y, y + (1− cos t)x).

Note that this particular transformation preserves both the cyclic width and
cyclic height of the torus.

For an illustration of the method we note the following affine deformation
result for what might be termed periodic cell-generic grid frameworks in Rd.
For more general results of this affine nature see also Borcea and Streinu [2].
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Theorem 4.4. Let C = (Zd, p) be a (n1, . . . , nd)-periodic grid framework in
Rd which is a 1/3-perturbation of GZd in the sense that

|p(k1, . . . , kd)− (k1, . . . , kd)| < 1/3

for 0 ≤ ki ≤ ni − 1, 1 ≤ i ≤ d. Then C is affinely periodically deformable.

Proof. We sketch the proof in case d = 2 with (n1, n2) = (n,m). For con-
venience re-scale the framework so that the large cell [0, n− 1)× [0,m− 1)
of C becomes to the usual unit cell. Let (Fv, Fe,Z2) be the motif repre-
sentation of (Z2, p). Suppose first that n = m = 2 and the motif has four
noninterior edges (corresponding to the four reentrant edges on the associ-
ated torus). Let F ′e be Fe with one vertical and one horizontal reentrant
edge removed and let C′ be the associated framework. (See Figure 17.) For
t taking positive values in some finite interval there are affine deformations
of C′ associated with each of the flows Ht, Vt, St. Moreover there is an affine
deformation associated with any composition At = Vβ(t)Hα(t)St, where the
functions α and β are any continuous functions with α(0) = β(0) = 0, where
t takes values in some finite interval. Now note that we may chose α(t) so
that the separation distance corresponding to the omitted horizontal edge
is constant, and we may choose β(t) similarly for the omitted vertical edge.
Note also the essential fact that Vβ(t) does not change the cyclic width. In
this way an affine deformation for C is determined. (In the case of generic
points, the deformation is determined uniquely on some finite interval).

The same principle operates for general (n,m). The subframework C′,
with two deleted noninterior edges (one for each coordinate direction) once
again has a flow periodic deformation associated with a composition At =
Vβ(t)Hα(t)St, for t in a sufficiently small interval. This follows from a simple
induction argument. Once again the functions α and β are chosen to provide
a deformation of C′ in which the separations for the omitted edges is con-
stant. In this way a flow periodic deformation of C itself is determined. �

The deformations obtained in the last proposition are colossal deforma-
tions and this seems to be a necessary condition if some form of periodicity
is to be maintained. It would be interesting to determine when such frame-
works possess bounded “unstructured” deformations.

One may also consider affine deformations relative to a subgroup of D
associated with a supercell. By a supercell we mean a finite union (or pos-
sibly an infinite union) of adjacent cells which tile the ambient space by
translations from the subgroup. In this case the deformations maintain only
a longer period of translational symmetry and for an infinite linear supercell
one may even forgo translational symmetry in one direction.

To illustrate this let us note a class of interesting deformations of the
kagome framework (G, p) which have this form.

Start with an alternation flex p(t) which leaves fixed a particular vertex p∗
and leaves invariant a line of hexagon diameters. Note that this flex (which
is not base-fixed) has bilateral symmetry with respect to the line (viewed
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as a mirror line) but that the inversion symmetry of (G, p) about the fixed
vertex is broken for t > 0. Perform identical surgeries on the frameworks
(G, p(t)) as follows:

(i) Cut the frameworks along the fixed line.
(ii) Effect a reflection of one of the resulting half-planes frameworks in

the orthogonal line through p∗ and rejoin the half-planes to create
a new flex of (G, p(0)).

We might view this flex as one with a symmetry transition line. The
hexagons in this line maintain inversion symmetry while elsewhere the hex-
agons maintain bilateral symmetry.

One may perform such surgery on several parallel surgery lines simulta-
neously. Performing surgery on countably many lines leads to the following
theorem. This shows, roughly speaking, that the kagome framework sits in
its configuration space as an infinitely singular point in the sense that it is
the starting point for uncountably many distinct flexes. (Here we use the
term distinct in the sense of Definition 2.7.)

Theorem 4.5. There are uncountably many distinct flow periodic flexes of
the kagome framework.

4.3. Crystal frameworks and periodic infinitesimal flexibility. Let
C = (G, p) = (Fv, Fe,Z2) be a crystal framework in the plane for the integer
translation isometry group. A natural form of infinitesimal flex for C is that
of a 1-cell periodic flex in the following sense.

Definition 4.6. A vector u = (uv)v∈V in the real vector space Hv, or
in the complex vector space Kv, is a 1-cell-periodic infinitesimal flex for C
(or simply a periodic flex if there is no ambiguity) if u ∈ kerR(G, p) and
uκ+n = uκ for all κ ∈ Fv and n ∈ Zd.

Such an infinitesimal flex u is a bounded sequence of vectors determined
by periodic extension of what we may call the motif flex vector

umotif = (uκ)κ∈Fv .

There is a one-to-one correspondence between these periodic flexes and the
finite vectors that are in the kernel of the motif rigidity matrix Rm(G, p)
which we may define as the natural “periodic completion” of the |Fe|×d|Fv|
submatrix of R(G, p). This is the natural representing matrix for R(G, p)
viewed as a linear transformation between the finite dimensional subspaces
of Z2-periodic vectors.

Similarly we define periodic infinitesimal stresses as those which corre-
spond to periodic extensions of vectors in the cokernel of the motif rigidity
matrix.

The crystal framework C, with given motif and discrete translation group
indexed by D, is said to be 1-cell-periodically isostatic (or simply periodically
isostatic) if the only 1-cell periodic flexes are translation flexes and if there
are no nontrivial 1-cell periodic stresses.
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Once again it can be helpful to consider a flat torus model for such frame-
works. Note for example that the generic periodic framework defined by
Figure 17 is periodically rigid and indeed periodically isostatic.

The following interesting periodic variant of Laman’s theorem has been
obtained recently by E. Ross [30]. Let us say that the planar periodic frame-
work C is topologically proper if C is connected and for every torus subframe-
work motif F ′v, F

′
e with 2|F ′v|− |F ′e| = 2 there is an edge cycle from F ′e which

properly wraps around the torus in the sense that the associated homotopy
class is nonzero.

Theorem 4.7. Let C = (Fv, Fe,Z2) be an infinite framework in the plane
which is periodic for the integer translation group and is topologically proper.
Then following are equivalent.

(i) 2|Fv| − |Fe| = 2 and for all edge induced submotifs F ′v, F
′
e we have

2|F ′v| − |F ′e| ≥ 2.
(ii) C is periodically isostatic in the sense that the periodic vectors in

kerR(G, p) are spanned by the two translations (periodic rigidity)
and the periodic vectors in cokerR(G, p) are zero (periodic stress
free).

Added in proof. See also the recent articles of Malestein and Theran [22],
Power [29] and Ross, Schulz and Whiteley [31].

5. The matricial symbol function of a crystal framework

We now start afresh and derive matrix function operators for (abstract)
crystal frameworks. Our approach is decidedly Hilbert space theoretic and
allows for an extended conceptual framework for rigidity analysis. Through-
out the section we adopt complex scalars, replacing the Hv spaces of Section
3 by their complex counterparts, Kv,Ke,K∞v ,K2

v, and so forth.

5.1. Matrix function multiplication operators. First we outline the
standard identification of operators commuting with shift operators and mul-
tiplication operators in a Fourier transform space. Let φ be a continuous
complex-valued function on the unit circle T. It defines a multiplication op-
erator T on the usual complex Hilbert space L2(T). Its representing matrix
with respect to the standard orthonormal basis {zn : n ∈ Z} is the Z × Z
indexed matrix with entries

Ti,j = 〈φzj , zi〉 = 〈φzj−i, 1〉 = φ̂(i− j),

the (i− j)th Fourier coefficient of φ(z).
Similarly, let Φ(z) be a continuous matrix-valued function on the two-

dimensional or three-dimensional torus Td taking values in the space of n×m
complex matrices. One can specify such a function Φ(z) = Φ(z1, . . . , zd) in
terms of a matrix of scalar functions Φ(z) = [φk,l(z)]

n,m
k=1,l=1. Given in this

way Φ(z) defines a multiplication operator between the vector-valued Hilbert



476 J. C. OWEN AND S. C. POWER

spaces L2(T)⊗Cm, L2(T)⊗Cn. Indeed, choose a basis {ξl} for Cm and an
associated basis {ξl⊗ zp} for the domain space. Similarly let {ηk ⊗ zp} be a
basis for the codomain. Then the operator T of multiplication by Φ(z) may
be defined by specifying, for each continuous function f(z) on Td,

T (ξl ⊗ f(z)) =
m∑
k=1

ηk ⊗ φk,l(z)f(z),

and extending by linearity and continuity. Thus we can see that the repre-
senting matrix for T with respect to these bases is determined by the Fourier
coefficients of the matrix entries for Φ(z):

〈T (ξl ⊗ zp), ηk ⊗ zq〉Cm⊗L2(Td) = 〈φk,l(z)zp−q, 1〉L2(Td) = φ̂k,l(q − p).

Viewing an element of L2(Td) ⊗ Cm as a function F (z) taking values in
Cm (strictly speaking, taking values almost everywhere), and similarly for
vectors in the codomain, one also considers T (F ) as the function Φ(z)F (z).
This operator is usually denoted as MΦ.

Suppose now that orthonormal bases

{ξl,p : 1 ≤ l ≤ m, p ∈ Zd} {ηk,p : 1 ≤ k ≤ n, p ∈ Zd}

are given, for Hilbert spaces such as K2
v and K2

e respectively. Suppose also
that we are given an operator T from K2

v to K2
e by means of its representing

matrix with respect to these bases and suppose moreover that this matrix
has the translational symmetry above in the sense that the matrix entries

〈Tξl,p, ηk,q〉K2
e

are independent of the multi-index p − q. Let Fv : Cn ⊗ L2(Td) → K2
v

be the Fourier transform and Fe the Fourier transform for K2
e . These are

simply the unitary operators determined by the natural bijection of basis
elements, namely ξl,p → ξl⊗ zp and ηk,p → ηk⊗ zp, respectively. Thus, from
the scalar matrix entries the functions φk,l are determined and hence the
matrix function Φ(z). In this way one identifies F−1

e TFv as the associated
multiplication operator MΦ.

5.2. The rigidity matrix as a multiplication operator. Let us keep
in view the special case of the Z2-periodic grid framework determined by an
algebraically generic quadrilateral in the unit cell.

Let p1, . . . , p4 be four framework vertices in the unit cell [0, 1)2 con-
stituting the motif set Fv of Z2-periodic quadrilateral grid (Z2, p). Let
ptij = pt + (i, j), for (i, j) ∈ Z2, be the general framework points and let

e1, . . . , e8 denote the eight edges which form the motif set Fe given by

e1 = [p1, p2], e2 = [p2, p3], e3 = [p3, p4], e4 = [p4, p1],

e5 = [p2
−1,0, p

1], e6 = [p3
0,−1, p

2], e7 = [p4
1,0, p

3], e8 = [p1
0,1, p

4],
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and let eti,j = et + (i, j) be a typical edge. Write the corresponding basis for

the vector space K0
e as

{ηt,i,j : 1 ≤ t ≤ 8, (i, j) ∈ Z2}.

Also, label the natural basis for K0
v as the set of vectors {ξxs,i,j , ξ

y
s,i,j}, where

s ranges from 1 to 4 and (i, j) range through Z2.
The rigidity matrix R(G, p) satisfies the following symmetry equations,

Wi,jR(G, p)Ui,j = R(G, p)

with respect to the translation shift operators Ui,j on K00
v and Wi,j on K00

v .
By the discussion above the rigidity matrix for this framework gives rise
to an 8 × 8 matrix function Φ(z1, z2) = (φi,j(z1, z2)) on the torus T2 in C2

which is determined by the equations

φ̂k,{x,s}(−(i, j)) = 〈(R(G, p)ξxs,i,j , ηk,0,0〉,

together with a companion set of equations for the y-labeled basis elements.
Furthermore there is a simple algorithm for computing the symbol matrix
function from the motif (Fv, Fe) and the motif rigidity matrix.

For a general crystal frameworks in the plane we have the following recipe
for identifying Φ(z1, z2) and there is an entirely similar identification of the
matrix function of a crystal framework in higher dimensions.

Theorem 5.1. Let Φ(z) be the matricial symbol function of the crystal
framework C = (Fv, Fe,Z2). The entry of the rigidity matrix determined
by the edge ek of Fe and the column labeled vxs,i,j (resp. vys,i,j) provides the

(−i,−j)-th Fourier coefficient of φk,{x,s} (resp. φk,{y,s}).

Note that for the motif for the periodic quadrilateral grid each edge has
vertices with different s index. This is rather typical and in such cases it
follows that φk,{x,l} is either zero or has one nonzero Fourier coefficient. In
the case of a “reflexive” edge in Fe, of the form [pκ,0, pκ,δ] there are entries in

the columns for κ corresponding to (1−zδ)ve where ve is the usual vector of
coordinate differences appearing in the rigidity matrix for the edge e. That
is, ve = pκ,0 − pκ,δ.

Thus we may obtain the following theorem where the direct construction
of Φ(z) from C is given above.

Theorem 5.2. Let C = (Fv, Fe,Zd) be a crystal framework with m = |Fe|,
n = |Fv| and with rigidity operator R from K2

v to K2
e.

(i) The motif (Fv, Fe) determines a matrix-valued trigonometric func-
tion Φ : Td → Mm,dn(C) for which there is a unitary equivalence
F−1
e RFv = MΦ where MΦ is the multiplication operator

MΦ : Cnd ⊗ L2(Td)→ Cm ⊗ L2(Td).



478 J. C. OWEN AND S. C. POWER

(ii) The framework C is square-summably rigid (resp. square-summably
stress-free) if the column rank (resp. row rank) of Φ(z) is maximal
for almost every z ∈ Td.

The following theorem shows that the existence of a square-summable flex
is a rather strong condition.

Theorem 5.3. The following are equivalent for a crystal framework with
Maxwell counting equilibrium.

(i) C has an nonzero internal (finitely supported) infinitesimal flex.
(ii) C has an nonzero summable infinitesimal flex.

(iii) C has an nonzero square-summable infinitesimal flex.

Proof. Note that (i) implies (ii) and (ii) implies (iii) so it remains to show
(iii) implies (i). Suppose that the matrix Φ(z) has a square-summable vector
f(z) in its kernel. Then det(Φ(z)) = 0 for almost all points in the support of
f(z). Since det Φ(z) is a mutivariable trigonometric polynomial it necessarily
vanishes identically, that is the polynomial det Φ(z) is the zero polynomial.

Recall that for any square matrix X over a ring we have XX̃ = det(X)In
where X̃ is given by the usual formula

X̃i,j = (−1)i+jXi,j det(Xij)

involving the cofactors (Xij). In particular if X̃ is not zero and det(X) = 0

then for a nonzero column vector f(z) of X̃ we have Xf(z) = 0. Applying
this to X = Φ provides the desired polynomial (finitely supported) vector
in this case.

If X̃ happens to be the zero matrix we make use of the minimal polynomial
lemma below. To apply the lemma let q be the minimum polynomial of X
so that q(X) = 0. By the lemma we have q(X) = Xq1(X) and q1(X) 6= 0
by minimality. Thus there is a nonzero vector f(z) in the range of q1(X)
and this provides the desired local flex. �

Lemma 5.4. Let q(λ) in R[λ] be the minimal polynomial of an n by n matrix
X whose entries lie in an integral domain R and suppose that detX = 0.
Then q(0) = 0.

Proof. Let p(λ) be the characteristic polynomial det(λIn−X). Recall from
the Cayley–Hamilton theorem that p(X) = 0. In the algebraic closure of
the field of fractions of R the linear factors of q(λ) and p(λ) agree. See Lang
[21] for example. Thus

q(λ) =
∏

(λ− αi)si , p(λ) =
∏

(λ− αi)ri

with si ≤ ri for each i. In particular for suitably large n the polynomial
q(λ)n is divisible by p(λ) and in particular q(0)n is divisible by p(0). Since
detX = 0 it follows that p(0) = 0 and so q(0)n = 0. Since q(0) is in the
integral domain R it is equal to zero and the proof is complete. �
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5.3. From motifs to matrix functions. We now consider some exam-
ples. Adjusting notation, write z, w for the coordinate variables of T2 so
that a trigonometric polynomial takes the form a finite sum

φ(z, w) =
∑
i,j

φ̂(i, j)ziwj .

Examining the recipe of Theorem 5.1 above in the case of the periodic
quadrilateral grid we see that the internal edges e1, . . . , e4 of the motif pro-
vide four rows for Φ(z, w) whose entries are constant functions with con-
stants corresponding to those of the rows for the rigidity matrix R(G, p).
The other edges provide rows according to the following simplified mono-
mial rule. As we have intimated above, this rule applies generally when all
the “external” edges of the motif have vertices with distinct s index:

The entries of the eth row of Φ(z, w) that appear in the columns for
the external (nonmotif) vertex are the corresponding entries for the motif
rigidity matrix multiplied by the monomial ziwj, where (i, j) is the shift
index for the cell occupied by the external vertex.

Thus we obtain the matrix identification in the next proposition. We
write pi = (xi, yi), for i = 1, . . . , 4. Note, for example, that the entry
x12 + 1 = x1 − (x2 − 1) denotes the constant function corresponding to the
entry of R(G, p) for row e5 and column x1, while −(x12 + 1)z is the entry
corresponding to the x-coordinate of the external vertex of e5.

Proposition 5.5. The matricial symbol function Φ(z, w) of the periodic
quadrilateral grid framework (Z2, p) for the four vertex motif is the matrix
function on T2 given by



x12 y12 −x12 −y12 0 0 0 0

0 0 x23 y23 −x23 −y23 0 0

0 0 0 0 x34 y34 −x34 −y34

−x41 −y41 0 0 0 0 x41 y41

x12 + 1 y12 −(x12 + 1)z −y12z 0 0 0 0

0 0 x23 y23 + 1 −x23w −(y23 + 1)w 0 0

0 0 0 0 x34 − 1 y34 (1− x34)z −y34z

−x41w (1− y41)w 0 0 0 0 x41 y41 − 1



Furthermore, if the four points in the unit cell have algebraically independent
coordinates then (Z2, p) is square-summably isostatic.

Proof. The first four rows are linearly independent since p1, . . . , p4 have al-
gebraically independent coordinates. It can be shown from elementary linear
algebra for almost every z, w the full matrix has rank 8. Thus Theorem 5.2
applies. �
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As a special case we obtain the matrix symbol function for GZ2 determined
by the eight-edged motif, namely

Φ(z, w) = 1/2



−1 0 1 0 0 0 0 0

0 0 0 −1 0 1 0 0

0 0 0 0 1 0 −1 0

0 −1 0 0 0 0 0 1

1 0 −z 0 0 0 0 0

0 0 0 1 0 −w 0 0

0 0 0 0 −1 0 z 0

0 w 0 0 0 0 0 −1


.

The determinant in this case is

− 1

256
zw(1− z)2 (1− w)2.

On the other hand for this symmetric quadrilateral framework GZ2 the
formalism above can be applied to a smaller unit cell with the simple two-
edged motif of Figure 18.

Figure 18. A motif and unit cell for GZ2 .

Note that the index s for the recipe takes the value 1 only and both mo-
tif edges have vertices with the same s index. It follows that the rigidity
operator of GZ2 associated with the motif is unitarily equivalent to the mul-
tiplication operator on the Hilbert space C2 ⊗ L2(T2) determined by the
matricial symbol function

Ψ(z, w) =

[
z − 1 0

0 w − 1

]
.

One can similarly verify the following.

Proposition 5.6.

(i) The matricial symbol function of the kagome framework determined
by the six-edge motif is given by
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Φkag(z, w) =
1

4



−2 0 2 0 0 0

0 0 1 −
√

3 −1
√

3

−1 −
√

3 0 0 1
√

3

2 0 −2 z 0 0 0

0 0 −1
√

3 zw −
√

3zw

w
√

3w 0 0 −1 −
√

3


.

(ii) The determinant of Φkag(z, w) is a multiple of

zw(z − 1)(w − 1)(z − w).

(iii) The kagome framework is square-summably isostatic.

In fact since the kagome framework is a linear framework, in the sense
indicated following Definition 2.9, it is quite straightforward to obtain (iii)
directly.

We remark that the function matrix association above has also arisen in
engineering in the analysis of Hutchinson and Fleck [18] of the stresses and
rigidity of the kagome repetitive truss framework. This is derived from the
crystallographic perspective of wave periodic flexes and Bloch’s theorem.

5.4. Symmetry equations for infinite frameworks. Let C be a crystal
framework in Rd with complex Hilbert space rigidity operator R. Also let
K2
v,K2

e be as before, let K2
fl be the space of square-summable infinitesimal

flexes, let K2
str be the space of square-summable infinitesimal stresses and

let M = K2
v 	K2

fl, N = K2
e 	K2

str be their complementary spaces.
As well as commuting with the coordinate shift operators the rigidity

operator satisfies commutation relations for every isometric symmetry of C.
For example, let S be an isometric (not necessarily linear) operator on Rd
which effects a symmetry of C. There is an induced unitary operator Se
on the complex Hilbert space `2(E) and an analogous operator Sv on `2(V )

which permutes the standard basis elements. Write S̃v for the isometric
(not necessarily linear) operator Sv ⊗ S on Hv = `2(V ) ⊗ Cd where S is
also viewed as an isometric operator on Cd. Then we have the fundamental
symmetry equation SeR = RS̃v. (See also [27], [29].)

Moreover, if G is the symmetry group of C arising from isometric trans-
formations of Rd and if ρe and ρ̃v are the associated representations of G on
K2
e and K2

v then we have the symmetry equations

ρe(g)R = Rρ̃v(g) for g ∈ G.

We have shown in [27] how such symmetry equations may be used to obtain
a simple proof of a unitary equivalence which implies the Fowler–Guest
formula [9] together with various generalisations. In the present setting
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we have the following analogue which also leads to counting conditions for
isostatic and rigid frameworks.

Theorem 5.7. Let C be a crystal framework with isometry symmetry group
G and let

ρ̃v = ρM ⊕ ρfl

ρe = ρN ⊕ ρstr

be the decompositions associated with the spaces of square-summable infini-
tesimal flexes and stresses. Then ρM and ρN are unitarily equivalent rep-
resentations. In particular if C is square-summably isostatic then ρ̃v and ρe
are unitarily equivalent.

Proof. In the square-summably isostatic case R is a bounded operator with
trivial kernel and trivial cokernel. The partially isometric part U of the polar
decomposition R = U(R∗R)1/2 is therefore a unitary operator and it is a
standard verification that this unitary also intertwines the representations.
In general the symmetry equations show that the space K2

fl is reducing for
ρ̃v and K2

str is reducing for ρe and so the asserted direct sum decompositions
do exist. Now the restriction of R to M maps to N with trivial kernel
and cokernel and so as before the restriction representations are unitarily
equivalent. �

5.5. From matrix function to wave modes. For a crystal framework
C = (Fv, Fe,Zd) with a given motif let Φ : Td → Mm,nd be the associated
matricial symbol function.

Definition 5.8. The mode multiplicity function of C associated with the
given motif and translation group is the function µ : Td → Z+ given by
µ(z) = dim ker Φ(z).

For d = 2 we also consider µ as being parametrised by coordinates s, t
in [0, 1) × [0, 1) so that (z, w) ∈ T2 corresponds to (e2πis, e2πit). From the
determinant calculations above we obtain the following.

Proposition 5.9.

(i) For the grid framework GZ2 and the 8-edged motif the mode multi-
plicity function has values µ(0, 0) = 2,

µ(s, 0) = µ(0, t) = 1,

if s and t are nonzero, and is zero otherwise.
(ii) For the kagome framework Gkag and the 6-edged motif the mode

multiplicity function has values µ(0, 0) = 2, at the origin while
µ(s, s) = µ(s, 0) = µ(0, t) = 1 if s 6= 0 and t 6= 0 and is zero
otherwise.

Consider now the wave flexes of C which we define as the infinitesimal
flexes which are 1-cell-periodic modulo a phase factor.
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Definition 5.10. Let C = (Fv, Ev,Zd) be a crystal framework in Rd. An
infinitesimal wave flex of C is a complex infinitesimal flex u = (uv)v∈V which
is wave periodic (or phase-periodic) in the sense that for some wave vector
q in Rd

uκ+n = e2πi〈q,n〉uκ

for each vertex κ in the motif set Fv and each d-tuple n = (n1, . . . , nd).

The values of the mode multiplicity function correspond to the dimen-
sion of the spaces of wave flexes. To see this suppose that Φ(z) is the
matricial symbol function for C = (G, p) = (Fv, Fe,Z3), that w ∈ T3 and
that det Φ(w) = 0. Then Φ(w)um = 0 for some nonzero complex motif
vector um. For the Dirac delta function δw(z) on T3 we have, informally,
Φ(z)F (z) = 0 for all z on the 3-torus where F (z) is the function δw(z)um.
Thus, taking Fourier transforms it follows that the wave periodic vector
u = F(F ) in Kv satisfies R(G, p)u = 0. This shows that the bounded (and
non square-summable) vector

u = (uκ,n)κ∈Fv ,n∈Z3 = F(F )(κ, n) = wnuκ

is a wave flex. The Dirac delta argument can be rigourised in the usual
manner and so we obtain the following theorem for crystal frameworks in
Maxwell counting equilibrium.

Theorem 5.11. Let C = (Fv, Fv,Zd) be a crystal framework in Rd with
d|Fv| = |Fe| and with associated symbol function Φ(z). Then infinitesimal
wave flexes exist, with phase factor ω ∈ Td, if and only if det Φ(ω) = 0. In
this case the dimension of the corresponding vector space of wave flexes with
phase ω is dim ker Φ(ω).

Of particular computational and theoretical interest is what one might
refer to as wave flex acquisition when a crystal framework deforms under
a colossal flex to a framework with higher symmetry. This phenomenon
serves as a model for the appearance of so-called Rigid Unit Modes (RUMs)
in higher symmetry phases of various material crystals.

The following theorem generalises an interesting result of Wegner [35]
for tetrahedral crystals. It may be viewed as an expression of the simple
principle that additional symmetry often entails additional flexibility. Our
proof applies to arbitrary crystal frameworks and is quite direct, benefitting
somewhat from the economy of operator theory formalism. We remark that
there are also natural operator algebra perspectives that are relevant to
symmetry considerations. The result shows in particular, for d = 3, that
the RUM set is typically a union of surfaces, being the zero set of a single
real-valued polynomial, rather than the generic expectation of the lower
dimensional intersection of the zero sets of the real and imaginary part of a
complex polynomial.

For a given crystal framework and motif write Ω for the subset of Td
formed by the phases ω of the 1-cell periodic wave flexes.
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Theorem 5.12. Let C = (Fv, Fe,Zd) be a crystal framework in Rd with
d|Fv| = |Fe| and suppose that C possesses inversion symmetry. Then the set
Ω has the form

Ω = Td ∩ V (p)

where V (p) is the zero set of a complex polynomial p(z1, . . . , zd, z1 . . . , zd)
which is real-valued on Td.

Proof. Let us denote the set of framework vertices and edges as

V = {κ+ n : κ ∈ Fv, n ∈ Zd},

E = {e+ n : e ∈ Fv, n ∈ Zd}.
Effecting a translation, if necessary, we may assume that the inversion is
σ : x → −x, that the unit cell has inversion symmetry and σ(Fv) = Fv. It
may or may not be possible to re-choose the noninternal edges of Fe so that
that σ(Fe) = Fe. Suppose first that this is the case. We show that det Φ(z)
itself is either real-valued or purely imaginary, from which the stated form
for Ω follows.

With the notation of Section 5.4 we have the symmetry equation

ρe(σ)R = Rρ̃v(σ).

Recall that ρe(σ) and ρ̃v(σ) are the isometric operators induced by the
(isometric) symmetry element σ. Taking Fourier transforms this equation
takes the form

U(σ)MΦ(z) = MΦ(z)V (σ)

where U(σ) and V (σ) are the unitary operators determined by their action
on the distinguished orthonormal bases. In view of the assumption we have

U(σ)(ηk ⊗ zl) = ησe(k) ⊗ z−l, k = 1, . . . , |Fe|
and

V (σ)(ξxik ⊗ z
l) = ξxiσv(k) ⊗ z

−l, k = 1, . . . , |Fv|, i = 1, . . . , d,

for certain induced permutations σe, σv. That is, these operators have the
form

U(σ) = Eσ ⊗ J, V (σ) = Vσ ⊗ J
where J is the inversion unitary operator on L2(Td) given by

(Jf)(z) = f(z̄),

and where Eσ and Vσ are scalar permutation matrices induced by σ. Sub-
stituting these forms we see that

Φ(z) = (Eσ ⊗ J)−1Φ(z)(Vσ ⊗ J) = E−1
σ Φ(z)Vσ.

It follows that

det Φ(z) = det Φ(z) det(Eσ)−1 det(Vσ) = (−1)τdet(Φ(z))

for some integer τ , since the determinant polynomial has real coefficients.
Thus the determinant is either real or purely imaginary.
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In the general case because of edges lying on inversion axes (lines through
the origin) σ cannot be made to act freely on the motif edges. However for

each motif edge index k there is a monomial shift factor zp(k) such that with
D the diagonal matrix function

D = diag(zp(1), . . . , zp(d))

we have

U(σ) = D(Eσ ⊗ J).

Now we see that det Φ(z) = (−1)τzpdet(Φ(z)) for some multi-index p. Write

det Φ = F1 + iF2, with the Fi real-valued, and write (−1)τzp = eiγ(z) with
γ(z) real. Equating real and imaginary parts it follows that either cos γ = 1
or

F1(z) = (sin γ)(1− cos γ)−1F2(z).

Thus for almost all points z on the torus F1(z) = 0 if and only if F2(z) = 0,
and so we can take p(z) to be F1(z) in this case. �

5.6. Honeycomb frameworks and the kagome net. The explicit for-
mulation of the matricial symbol function makes clear a simple additive
principle which is useful for calculation : adding internal edges to a unit cell
results in adding the same number of rows to the symbol function to form
the new symbol function, and each of these rows has the standard form with
constant entries.

Consider the honeycomb frameworks of Figures 19, 20 which are based
on regular hexagons.
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6

Figure 19. A 3-regular honeycomb framework.

The 3-regular honeycomb framework, with the translation group implied
by the unit cell, has a 9 by 12 matricial symbol function. There are vectors
in the kernel of the multiplication operator providing internal infinitesimal
flexes and there are evident bounded infinitesimal flexes associated with
parallel deformations.

The 4-regular framework of Figure 20 may be constructed by rigidifying
the hexagon internal to the unit cell, by adding three cross-bar edges. The
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Figure 20. A 4-regular honeycomb framework.

matricial symbol function is correspondingly enlarged by three scalar rows,
appearing in rows 10, 11 and 12 in the following matrix.

−1/3 0 1/3 0 0 0 0 0 0 0 0 0

0 0 −1/6 −1/6
√
3 1/6 1/6

√
3 0 0 0 0 0 0

0 0 0 0 1/6 −1/6
√
3 −1/6 1/6

√
3 0 0 0 0

0 0 0 0 0 0 1/3 0 −1/3 0 0 0

0 0 0 0 0 0 0 0 1/6 1/6
√
3 −1/6 −1/6

√
3

1/6 −1/6
√
3 0 0 0 0 0 0 0 0 −1/6 1/6

√
3

0 0 0 0 −1/3 0 0 0 0 0 1/3 z 0

1/6w 1/6
√
3w 0 0 0 0 −1/6 −1/6

√
3 0 0 0 0

0 0 −1/6w 1/6
√
3w 0 0 0 0 1/6 z −1/6

√
3z 0 0

−1/3 −1/3
√
3 0 0 0 0 1/3 1/3

√
3 0 0 0 0

0 0 1/3 −1/3
√
3 0 0 0 0 −1/3 1/3

√
3 0 0

0 0 0 0 2/3 0 0 0 0 0 −2/3 0


The cross-barred hexagon is continuously rigid but is well-known to be

infinitesimally flexible. We refer to this flex as the in-out flex. (See Whiteley
[37] for related discussions.) It is straightforward to show that this flex
extends periodically as a 1-cell-periodic infinitesimal flex of the framework.

The motif rigidity matrix is obtained by evaluating at z = w = 1. This has
rank 8 reflecting the four independent 1-cell-periodic flexes corresponding to
horizontal translation, to vertical translation, to local rotation of the cross-
barred hexagon, and to the periodic “in-out” flex.

The kagome net framework may be defined as the three-dimensional crys-
tal framework Gknet = (Fv, Fe,Z3) determined by the motif diagram in Fig-
ure 21. This figure shows a tetrahedron internal to a parallelepiped unit
cell together with six additional noninternal edges, each of which extends a
tetrahedron edge as indicated.

For the given motif Gknet has a 12 by 12 matrix-valued symbol function
on the 3-torus. Different motifs, for the same translation group, give matrix
functions that are related by permutations on columns and monomial mul-
tiplication on rows. The determinant of such a matrix function is equal to
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Figure 21. A twelve-edged motif for the kagome net, Gknet.

a scalar and monomial multiple of the polynomial

(z − 1) (w − 1) (u− 1) (z − w) (w − u) (u− z) ,
in analogy with the polynomial for the kagome framework. This may be
obtained by direct (computer assisted) calculation or by infinitesimal flex
analysis (see [28]). In the light of earlier discussions we may draw the fol-
lowing conclusions.

Theorem 5.13.

(i) The kagome net Gknet is square-summably isostatic and possesses
no internal infinitesimal flexes.

(ii) The phase-periodic flex spectrum Ω(Gknet) is equal to the intersec-
tion of T3 with the six planes

z = 1, w = 1, u = 1, z = w,w = u, u = z.

5.7. Crystallography and rigid unit modes. Rigidity theory and a
Hilbert space operator viewpoint have led us to determine, ab initio, the
matricial symbol function Φ(z) of an abstract crystal framework and motif.
The zeros of the determinant of Φ(z), in the square matrix case, correspond
to the phases of infinitesimal periodic-modulo-phase wave flexes, and the
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mode multiplicity function µ(w) of Φ(z) detects the multiplicities of inde-
pendent wave flexes for w.

In fact there are close connections between these mathematical obser-
vations and the so-called Rigid Unit Modes (RUMs) that are observed in
certain material crystals through diffraction experiments. These modes are
the low energy phonon modes which have been shown to be correlated with
strong-bond-length-preserving oscillations. Indeed comparisons of extensive
simulations and experimental results have shown the RUM modes of sim-
ulated crystals to coincide with observed RUMs. For this see the seminal
paper of Giddy et al. [10], and also, for example, Dove et al. [8] and Goodwin
et al. [13]. (The connection between the low frequency harmonic oscillation
viewpoint and the infinitesimal flex viewpoint is given in Power [28].) It
seems to us that the explicit algorithm for the passage from crystal motif to
matrix function will provide a useful computational and theoretical tool for
identifying RUMs and their relationships.

An interesting advance has been obtained recently by Wegner [35] who
has derived mathematically, rather than through simulation, the RUM sets
for various idealised tetrahedral crystals that model the geometry of mate-
rial crystals, including β-cristobalite, HP tridymite, β-quartz, α-cristobalite
and α-quartz. These models are standard framework models that coincide
with crystal bar-joint frameworks in our terminology and the results are
obtained by determining vanishing determinants (zero sets of det Φ in our
formalism) by means of computer algebra and symmetry reductions. In par-
ticular Wegner obtains an analytic derivation of some of the curious surfaces
observed in experiments of Dove et al.

Added in proof. The themes in Sections 4, 5 are developed further in
Power [28], [29].
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