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We evaluate the low-temperature conductance of a weakly interacting one-dimensional helical liquid

without axial spin symmetry. The lack of that symmetry allows for inelastic backscattering of a single

electron, accompanied by forward scattering of another. This joint effect of weak interactions and

potential scattering off impurities results in a temperature-dependent deviation from the quantized

conductance, �G / T4. In addition, �G is sensitive to the position of the Fermi level. We determine

numerically the parameters entering our generic model for the Bernevig-Hughes-Zhang Hamiltonian of a

HgTe=CdTe quantum well in the presence of Rashba spin-orbit coupling.

DOI: 10.1103/PhysRevLett.108.156402 PACS numbers: 71.10.Pm, 72.10.Fk

A key feature of a 2D topological insulator (TI) is the
presence of gapless edge states at its boundaries with a
‘‘normal’’ insulator or the vacuum [1,2]. If the system is
time-reversal (TR) invariant, the counter-propagating
states of the same energy (carrying momenta k and �k)
form a Kramers doublet, which makes elastic backscatter-
ing off a potential scatterer impossible [3,4]. Thus, poten-
tial scatterers on their own cannot prevent electrons from
ballistic propagation along helical edge states. The result is
a quantized, temperature-independent universal conduc-
tance of G0 ¼ e2=h per helical edge.

On the other hand, inelastic scattering due to a combi-
nation of electron-electron interactions and a potential
which violates translational invariance along the helical
edge may affect its conductance; weak interactions lead to
a temperature-dependent correction reducing the conduc-
tance compared to its universal value. The existing theories
[3–7] predict a power-law temperature dependence (unlike
in the quantum Hall effect [8]) and apply to interacting
helical edges with conserved Sz component of the electron
spin. In the presence of such an auxiliary symmetry, the
lowest-order processes affecting the conductance involve
backscattering of electron pairs. Such two-particle back-
scattering may result from the presence of a lattice
potential (umklapp process) or from an inhomogeneity
violating the translational invariance of the helical edge.
In the former case, the temperature dependence of the
leading correction to G0 is �G / T5, if the Fermi
level is tuned to the TR invariant point of the electron
spectrum [9]. In the latter case, the two-particle backscat-
tering off an impurity results in �G / T6 [6], as follows
from a straightforward phase space argument. If the Fermi
level is shifted away from the TR invariant point, the
Umklapp processes require activation energy, and are
therefore exponentially suppressed at low temperatures.
For the two-particle backscattering off impurities, one
would expect only a weak sensitivity of �G to the position
of the Fermi level.

The prediction of a 2D topological insulator state in
HgTe=CdTe quantum-well heterostructures [10] prompted
experiments which indeed found a low-temperature con-
ductance close to G0 for structures with the proper
quantum-well thickness [11,12]. The minimal model [10]
of Bernevig, Hughes, and Zhang (BHZ) is a block-diagonal
4� 4matrix Hamiltonian acting in the space of four bands
originating from two spins and two orbital states. This
minimal model assumes axial and inversion symmetry
around the growth axis of the heterostructure (z axis),
which carries over to the edge states obtained within the
BHZ model. The electron spins in these helical edge
eigenstates are indeed oriented along the �z direction at
any momentum k.
The assumed axial symmetry of a HgTe=CdTe hetero-

structure, even if it exists in the original band-structure
model, may be lifted by a gate-induced electric field in the
z direction. This results in a k-dependent Rashba spin-orbit
interaction (SOI) [13], and the Sz component of the elec-
tron spin is generally no longer conserved [14]. We expect
the absence of Sz symmetry to be a rather generic property
of helical edge states, which can also be realized in other
models.
In this work, we evaluate the correction �G to the uni-

versal conductance as a function of temperature and Fermi
momentum (measured from the TR invariant point, k ¼ 0)
for a generic helical edge. Wewill show that if the tempera-
ture is low and the Fermi momentum is away from k ¼ 0,
�G is dominated by the combined effects of interaction and
potential scattering off the disorder potential. In the absence
of axial symmetry we find �G / T4, which is stronger than
the aforementioned �G / T6 in the Sz-symmetric case. In
addition, �G acquires a substantial dependence on the
Fermi level, increasing with its detuning from the TR
invariant point; see Eq. (12) below. Moreover, inelastic
backscattering of a single electron (with energy transfer to
another particle-hole pair) is possible even without involve-
ment of disorder when one of the participating states is at
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k ¼ 0. Similar to the two-particle Umklapp process in the
axially-symmetric model [9], these processes lead to
�G / T5 if the Fermi momentum is tuned to the TR invari-
ant point, and to a thermal activation law for �GðTÞ if the
Fermi momentum is tuned away from k ¼ 0; see Eqs. (10)
and (11). The crossover between the inelastic backscatter-
ing involving the k ¼ 0 state and processes utilizing the
disorder potential may lead to a nonmonotonic dependence
of �G on the Fermi momentum at fixed temperature. The
magnitude of the correction to the universal conductance
and the details of the crossover depend on the specific
interaction and disorder potentials. However, the very ex-
istence of the processes we consider rests on the rotation of
the spin quantization axis with k for an ideal free-electron
helical edge. We determine that rotation explicitly by solv-
ing numerically the Kane-Mele [9] and BHZ [10] models
with addedRashba SOI. The exponents of theT dependence
of �G in Eqs. (12) and (10) result from phase space con-
straints on the scattering events, together with the depen-
dence of the scattering amplitudes on the electronic
momenta; see Eqs. (6) and (7).

The eigenstates of a translation invariant 1D helical
system can be labeled by their momenta k. If we assume
that the system is TR invariant, Kramers theorem ensures
that for any k there exist two degenerate orthogonal eigen-

states, created by the operators c y
þ;k and c y

�;�k, which are

related by the TR operator�, e.g.,�c�;k�
�1 ¼ �c�;�k.

The kinetic energy has the general form,

H0 ¼
X
k

½�ðkÞc y
þ;kcþ;k þ �ð�kÞc y

�;kc�;k�: (1)

For momenta close to the Fermi momentum, k � kF, the

operators c y
þ;k and c y

�;�k create right-moving and left-

moving electrons, respectively, propagating with velocities
�vF, where vF ¼ d�ðkÞ=dkjk¼kF .

In a generic helical liquid, the electron spin component
along a fixed z direction does not have to be a good
quantum number. The field operators c �;k of an electron

with momentum k and spin projection � ¼" , # along the z
axis are related to the operators c�;k by a momentum-

dependent SU(2) matrix Bk,

c ";k
c #;k

� �
¼ Bk

cþ;k

c�;k

� �
: (2)

The normalization and the orthogonality of the momentum

eigenstates is reflected in the unitarity condition By
k Bk ¼

diagð1; 1Þ. Moreover, TR invariance entails the symmetry
Bk ¼ B�k which follows by comparing how TR affects c �

and c � (� ¼ �). This also ensures that states created by

c y
�;k and c y

��;�k at opposite momenta always have oppo-

site spins, e.g., ½By
k B�k�þ� ¼ 0. As one consequence,

elastic backscattering between such states is prohibited
for nonmagnetic impurities.

We take the electron-electron interaction to depend only
on the distance between the electrons so that Hint ¼R
dxdx0Uðx� x0Þ�ðxÞ�ðx0Þ, where �ðxÞ ¼ �"ðxÞ þ �#ðxÞ

is the total particle density. When expressed in terms of
the eigenstates of H0, this becomes

Hint ¼ 1

L

X
kk0q

X
���0�0¼�

UðqÞ½By
k Bk�q���½By

k0Bk0þq��0�0

� c y
�;kc �;k�qc

y
�0;k0c �0;k0þq; (3)

where L denotes the length of the helical edge and UðqÞ is
the Fourier transform of UðxÞ.
When considering an impurity violating translational

invariance along the edge, we concentrate on local pertur-
bations VðxÞ interacting with the electron density, HV ¼R
dxVðxÞ�ðxÞ. Expressed in terms of c�;k,

HV ¼ 1

L

X
k1k2

X
��¼�

Vðk1 � k2Þ½By
k1
Bk2���c y

�;k1
c �;k2 ; (4)

where VðkÞ is the Fourier transform of VðxÞ. The total
Hamiltonian H ¼ H0 þHint þHV is TR invariant, as
can be seen explicitly using the unitarity and k ! �k
symmetry of Bk.
As we are interested in the conductance of edge states,

we concentrate on temperatures low compared to the bulk
gap and linearize the single-particle spectrum around the
Fermi momentum, �ðkÞ ¼ vFðk� kFÞ. We also make
some simplifying assumptions about the form of Bk. A
k-independent Bk describes a constant rotation of the spin
quantization axis. In this case, the spins of right- and left-
movers are still opposite, irrespective of momentum.
Because of the symmetry Bk ¼ B�k and unitarity, the
leading terms in Bk for small momenta k � k0 can be
written as

Bk ¼ 1� k4=ð2k40Þ �k2=k20
k2=k20 1� k4=ð2k40Þ

� �
: (5)

Here, k0 parametrizes the scale on which the spin quanti-
zation axis rotates with k. As confirmed for certain micro-
scopic models below, Eq. (5) represents the generic form of
Bk up to order ðk=k0Þ2. Higher-order terms in k only give
rise to subleading corrections to the conductance. Finally,
we neglect the momentum dependence of the interaction
and scattering potentials, and assume UðqÞ ¼ U0 and
VðkÞ ¼ V0.
Combining Eqs. (3) and (5), we find a TR invariant

interaction Hamiltonian with the structure

Hint /
X
kk0q

ðk2 � k02ÞU0

k20
c y

þ;kþqc
y
�;k0�q

cþ;k0cþ;k

� ðcþ $ c�Þ þ H:c: (6)

Hint describes backscattering of a single particle, accom-
panied by the creation of a comoving particle-hole pair.
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The conductance correction is proportional to the rate of
this process, which can be calculated using Fermi’s golden
rule. Of the three integrals over the momenta in the final
state (two particles, one hole), two are canceled by energy
and momentum conservation. At low T and kF ¼ 0, the
remaining momentum is of order k� T=vF. The / k2

scaling of Hint then yields �Gint / T5. Interactions of the
form (3) also cause two-particle backscattering processes.
However, these result in a contribution �G / T9, and are
thus subleading with respect to the two-particle backscat-
tering amplitude considered in Ref. [9].

The presence of impurities relaxes the requirement of
momentum conservation in the scattering process. The
corresponding low-energy effective Hamiltonian, appli-
cable for kF � 0 and T � vFjkFj, and derived within
perturbation theory in Hint and HV has the structure

Heff
V;int /

X
kk0qq0

ðk� k0ÞkFU0V0

k20vF

c y
þ;kþqþq0c

y
�;k0�q

cþ;k0cþ;k

þ ðcþ $ c�Þ þ H:c: (7)

The scattering rate now involves an additional momentum
integration. Combined with the / k scaling of Heff

V;int, one

finds �GV;int / T4.

For the detailed evaluation of the conductance, the left
and right ends (at x ¼ �L=2) of the helical edge are
coupled to electron reservoirs which are held at the same
temperature T, but at slightly different chemical potentials
�L ¼ V=2 and �R ¼ �V=2, respectively. In the clean,
noninteracting limit, the conductance G0 ¼ e2=h is
temperature-independent.

We calculate the change in conductance �G due to
interactions and impurity scattering using perturbation
theory in Hint and HV . The inelastic backscattering current

is determined by the transition rate 2�jhfjT̂jiij2�ð�f � �iÞ
between initial states jii ¼ c y

�i1;ki1
c y

�i2;ki2
j0i (with energy

�i) and final states jfi ¼ c y
�f1;kf1

c y
�f2;kf2

j0i (with energy

�f), weighted by thermal occupation factors. For single-

particle backscattering �i1�i2�f1�f2 ¼ �1. The T̂ matrix

satisfies the equation [15]

T̂ ¼ ðHint þHVÞ þ ðHint þHVÞ 1

�i �H0

T̂: (8)

In the absence of interactions, U0 ¼ 0, backscattering is
forbidden by TR invariance. The first-order term in the

interaction, T̂ ¼ Hint, yields

�Gint ¼ e2

h
Lk0

�
U0

vF

�
2
�

T

vFk0

�
5
f

�
vFjkFj

T

�
;

fð	Þ ¼ 8

�

Z 1

�1
dx1dx2ðx21 � x22Þ2nFðx1 � 	ÞnFðx2 � 	Þ

� ½1� nFðx1 þ x2 � 	Þ�½1� nFð�	Þ�: (9)

Here, nFðxÞ ¼ 1=ðex þ 1Þ is the Fermi function, and the
function fð	Þ, plotted in Fig. 1, describes the dependence
on the Fermi energy. The nonmonotonic behavior of
fð	Þ is a consequence of the k dependence of the matrix
elements of the interaction Hamiltonian; see Eq. (8).
With the asymptotes fð	 ¼ 0Þ � 306:02 and fð	Þ ¼
ð44=45�Þ	6 expð�	Þ for 	 	 1, we obtain

�Gint � 306:02
e2

h
Lk0

�
U0

vF

�
2
�

T

vFk0

�
5

(10)

for kF ¼ 0, and

�Gint � 44

45�

e2

h
Lk0

�
U0

vF

�
2
�
kF
k0

�
6 vFk0

T
e�ðvF jkF j=TÞ (11)

for vFjkFj 	 T. The correction �Gint in Eq. (11) is acti-
vated because energy and momentum conservation require
that the counter-propagating particle in the final state
be created at zero momentum, which is deep within the
Fermi sea.
In the limit vFjkFj 	 T, combined processes involving

potential scattering off an impurity and scattering by the
interaction, provide the leading contribution to �G. The

second iteration of the T̂ matrix Eq. (8) yields a number of
cross-terms inHV andHint. A typical contribution is shown
in Fig. 2: one incoming particle is scattered at the impurity
into a virtual intermediate state, and subsequently interacts
with a second incoming particle. Summing all such
contributions, we find the effective Hamiltonian Heff

V;int

and (for vFjkFj 	 T)

�GV;int � 1:21� 84
e2

h
Lnimp

�
V0U0

v2
F

�
2
�
kF
k0

�
8
�

T

vFk0

�
4

(12)

in line with the power-counting argument given after
Eq. (7) above. In deriving Eq. (12) we assumed that the
impurities are randomly positioned along the edge with
dilute linear density nimp, such that multiple scattering

can be neglected. Specifically, interference terms are small
for T 	 vF=L [16]. A comparison of Eqs. (11) and (12)
shows that for sufficiently weak impurity scattering,

FIG. 1 (color online). Dimensionless factor fð	Þ ¼
fðvFkF=TÞ describing the dependence of the interaction-induced
conductance correction on the Fermi momentum; see Eq. (9).
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ðnimp=k0ÞðV0=vFÞ2ðT=vFk0Þ7 � 10�5, the dependence of

�G on kF at fixed T displays a minimum at some finite
value of jkFj.

The perturbation theory in U0 and V0 diverges if the
initial or final state of one of the electrons is at the TR
invariant momentum k ¼ 0, and the intermediate state in
Fig. 2 approaches it. This divergence is similar to the one in
the cotunneling amplitude in Coulomb blockaded quantum
dots, and may be treated in a similar way (see, e.g.,
Appendix C in Ref. [17]). The interactions lead to a finite
lifetime of the intermediate particle or hole at k ¼ 0 and
cut off the divergence. If that lifetime is longer than the
time of flight L=vF, then the singularity is cut off by the
deviation of the eigenstates from plane waves due to im-
purity scattering. In any case, higher-order terms in V0 and
U0 regularize the divergent contributions and make them
smaller than the results in Eqs. (9)–(12).

So far, we have used an effective one-dimensional model
of the helical edge. However, the edge states exist at the
boundaries of 2D topological insulators. Thus, their wave
functions decay exponentially on a momentum-dependent
length scale 1=
ðkÞ into the bulk of the topological insu-

lator, e.g., �kðx; yÞ / e�
ðkÞyeikx. As a consequence, the
spin-rotation matrices Bk involve convolutions over y of
the two-dimensional eigenstates along with the 2D inter-
action potential Uðx; yÞ and impurity potential Vðx; yÞ.
Importantly, however, the small-k behavior of Bk is always
compatible with the expansion (5), since the latter follows
from TR invariance.

In order to justify our effective 1D model (1)–(4), we
determined the momentum-dependent rotation of the
spin quantization axis explicitly for the BHZ model [10]
in the presence of Rashba SOI. This model provides a
description of 2D topological insulators realized in
HgTe=CdTe quantum wells. We used exact diagonaliza-
tion to solve the Hamiltonian on a cylinder of width W,
with periodic boundary conditions in the x direction and
edges at y¼0 and y ¼ W. In the following, we shall out-
line the procedure and the results; details will be published
elsewhere.

The 2D topological insulators realized in HgTe=CdTe
quantum wells can be modeled using a Hamiltonian
H ¼ P

kHðkÞ, where HðkÞ has a 4� 4 matrix structure
in a basis containing two spin-degenerate orbitals,

V ¼ fE"; H"; E#; H#g [10]. In the original BHZ model,

HðkÞ is block-diagonal and does not couple spin-up and
spin-down states. However, it was shown in Ref. [13] that
breaking inversion symmetry by applying an out-of-plane
electric field leads to Rashba SOI and thus a coupling
between spin-up and spin-down states. As long as
Rashba SOI remains weak, the gapless edge states remain
intact. For a given momentum k, HðkÞ has four eigenvec-
tors which correspond to left-moving and right-moving
states localized either on the upper or lower edge. These
eigenmodes are four-component spinors in the basis V and
will be labeled ��;	;kðx; yÞ, where � ¼ � denotes the

chirality as before, and 	 ¼ U, L labels the upper or lower
edge, at y ¼ W and y ¼ 0, respectively.
In order to translate the numerical solution of the 2D

model into parameters of the effective 1Dmodel, we match
the impurity scattering operator (4) with a corresponding
operator in the 2D system. The 1D description of the edge
state scattering can be applied if the penetration depth 1=

of the edge state into the bulk [1] is small compared to the
range lV of the impurity potential. Since we are not inter-
ested in the detailed shape of the impurity potential, we
assume that the impurity potential is approximately con-
stant over the length scale 1=
, and that lV is small
compared to the Fermi wavelength in the edge direction.
In that case, the potential can be treated as constant in y
direction and pointlike in x direction. For an impurity
located at position (x0, y0) near the upper edge,
the 2D scattering operator is then given by Hbs ¼
V0�ðx̂� x0Þdiagð1; 1; 1; 1Þ, where x̂ is the position operator
along the edge. By comparing matrix elements of Hbs

between the eigenstates ��;U;kðx; yÞ with the matrix

elements of HV , we can identify

½By
k1
Bk2��1�2 ¼

Z
dy�y

�1;U;k1
ðx0; yÞ��2;U;k2ðx0; yÞ: (13)

FIG. 2. Representative one-particle backscattering process to
second order in the electron-electron interaction (wavy line) and
impurity scattering (cross).
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FIG. 3 (color online). Off-diagonal component ½By
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Bk2 ��þ of

the spin-rotation matrix determined from the numerical solution
of the BHZ model with Rashba SOI using Eq. (13).

PRL 108, 156402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

13 APRIL 2012

156402-4



The result of the numerical solution is shown in Fig. 3.
Importantly, it shows the quadratic dependence on k1 and
k2, in agreement with the low-momentum expansion (5).

In addition, we have numerically calculated the
momentum-dependent rotation of the spin axis for various
other 2D topological insulators with broken Sz symmetry,
e.g., the Kane-Mele model in the presence of Rashba SOI,
the BHZ model with bulk inversion asymmetry, and the
model by Shitade et al. [18] for monolayers of sodium
iridate. We found similar results as in Fig. 3 in all cases.
For small momenta, Bk follows directly from TR invari-
ance and translational invariance, so we expect it to be
universally applicable for helical liquids at low energies
and weak disorder. As a consequence, the scaling �G / T4

in Eq. (12) can be expected to hold generically for helical
liquids with broken Sz symmetry, even if the spin rotation
is created by other mechanisms.
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