Lancaster EPrints

Fire accelerates assimilation and transfer of photosynthetic carbon from plants to soil microbes in a northern peatland

Ward, Sue and Ostle, Nick and Oakley, Simon and Quirk, Helen and Stott, Andy and Henrys, Peter and Scott, W. Andrew and Bardgett, Richard (2012) Fire accelerates assimilation and transfer of photosynthetic carbon from plants to soil microbes in a northern peatland. Ecosystems, 15 (8). pp. 1245-1257. ISSN 1432-9840

Full text not available from this repository.


Northern peatlands are recognized as globally important stores of terrestrial carbon (C), yet we have limited understanding of how global changes, including land use, affect C cycling processes in these ecosystems. Making use of a long-term (>50 year old) peatland land management experiment in the UK, we investigated, using a 13CO2 pulse chase approach, how managed burning and grazing influenced the short-term uptake and cycling of C through the plant–soil system. We found that burning affected the composition and growth stage of the plant community, by substantially reducing the abundance of mature ericoid dwarf-shrubs. Burning also affected the structure of the soil microbial community, measured using phospholipid fatty acid analysis, by reducing fungal biomass. There was no difference in net ecosystem exchange of CO2, but burning was associated with an increase in photosynthetic uptake of 13CO2 and increased transfer of 13C to the soil microbial community relative to unburned areas. In contrast, grazing had no detectable effects on any measured C cycling process. Our study provides new insight into how changes in vegetation and soil microbial communities arising from managed burning affect peatland C cycling processes, by enhancing the uptake of photosynthetic C and the transfer of C belowground, whilst maintaining net ecosystem exchange of CO2 at pre-burn levels.

Item Type: Journal Article
Journal or Publication Title: Ecosystems
Uncontrolled Keywords: peatland ; burning ; carbon cycle ; stable isotope pulse labelling ; 13C ; respiration ; photosynthesis ; plant functional types ; PLFA
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 58216
Deposited By: ep_importer_pure
Deposited On: 12 Sep 2012 16:19
Refereed?: Yes
Published?: Published
Last Modified: 19 Jun 2018 03:22
Identification Number:

Actions (login required)

View Item