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We analyze the response of bilayer graphene to an external transverse electric field using a variational
method. A previous attempt to do so in a recent paper by Falkovsky �Phys. Rev. B 80, 113413 �2009�� is shown
to be flawed. Our calculation reaffirms the original results obtained by one of us �E. McCann, Phys. Rev. B 74,
161403�R� �2006�� by a different method. Finally, we generalize these original results to describe a dual-gated
bilayer graphene device.
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The physics of monolayer and bilayer graphenes �BLG�
has been a subject of much interest recently.1 A unique fea-
ture of BLG is its tunable band structure: its band gap de-
pends on the external electric field, which can be controlled
by doping or gating. This effect was first analyzed
theoretically2–4 and recently studied experimentally.3,5–18

The subject of this Comment is the value of the gap at the
Brillouin zone �BZ� corners, which we denote by 2�U�.
Within the conventional mean-field Hartree theory,2,3 2U co-
incides with the electrostatic energy difference per electron
in the two layers,

2U = eEmdm, dm = 0.33 nm, �1�

where Em is the component of the electric field inside the
BLG directed from the bottom to the top layer and dm is the
interlayer spacing. In experimental practice, this field de-
pends not only on the external gate voltages but also on the
induced electron densities nt and nb of the layers, see Fig. 1.
For a given chemical potential �, these densities, and thus
the total electron density of BLG n=nt+nb are nonlinear
functions of U. In general, they can be calculated only
numerically.3,4,19–23 However, in a range �U�� �����1 an
asymptotic analytical formula for the interlayer bias was de-
rived by one of us4

2U � �1
N − 2Ndt

�Mc
−1 + �N� −

1

2
ln�N�

, N �
n

n�

. �2�

The derivation was done within the commonly used approxi-
mation that neglects certain small electronic structure param-
eters �3, �4, and �� �for their physical meaning and a dis-
cussion of their numerical values, see Ref. 23�. The
parameters that are retained include the interlayer hopping
energy �1=0.41 eV and the nearest-neighbor in-plane hop-
ping �0=3.0 eV, which define the characteristic density
scale in the problem

n� =
4

3�a2

�1
2

�0
2 = 1.2 � 1013 cm−2, �3�

where a=2.44 Å is the lattice constant. The remaining no-
tations in Eq. �2� are

Ndt = ndt/n�, �4�

which is the scaled background density of positive charge ndt
on the top layer �or above it, see below� and

�Mc =
2�e2dmn�

�m�1
� 1, �5�

which is the dimensionless strength of the interlayer screen-
ing, with �m	1 being the effective dielectric constant of the
medium between the layers. The screening is particularly
significant in the narrow gap regime. If Ndt=0, it is realized
in the limit n→0. According to Eq. �2�, the screened field Em
is suppressed compared to the external field Eb by a diver-
gent logarithmic factor �see Fig. 1 and also Eq. �30� below�.
As a result, 2U has a superlinear dependence on n.

Formula �2� was recently challenged by Falkovsky.24 Un-
der the same conditions and assumptions, he obtained the
simple linear law for Ndt=0,

2U = c�1N, c =
2


6.27842 − 1
= 0.3227. �6�

The goal of this Comment is to show that Ref. 24 contains
egregious mistakes. Once they are corrected, Eq. �2� is re-
covered.

These mistakes are apparent on physical grounds. One
key formula, Eq. �8� of Ref. 24, states �in our notations� that
the BLG polarization

db

dm

Eb

Em
Et

ndt
nt

nb

+U
−U

FIG. 1. �Color online� Device schematic. The BLG is shown as
two horizontal lines in the middle. The thicker line at the bottom
represents the gate. The arrows show the electric field in the system
and the crosses depict positive charge density ndt on �or on and
above� the top layer of the BLG.
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�n � nt − nb �7�

is positive for U ,�	0, i.e., the BLG is polarized against,
not along the electric field. In principle, such a phenomenon
can arise if a system has a negative compressibility25–27 due
to exchange and correlations �see the discussion at the end�.
However, neither exchange nor correlation effects are in-
cluded in the theory of Ref. 24. To expose the mistakes in
Ref. 24, we carry out below our own derivation using the
method proposed by Falkovsky in Ref. 24. Its idea is to treat
U and � as variational parameters and get their actual values
by minimizing the total energy density 
 of the system at a
fixed n.

Let us proceed. In the mean-field approximation 
 is the
sum of the kinetic and the Hartree interaction terms, 
=
kin
+
H. The Hartree term is straightforward,


H =
e2

2cb
�n − ndt − ndb

0 �2 +
2�e2dm

�m
�nt − ndt�2, �8�

which can be understood as the energy of two parallel-plate
capacitors in series. Here cb=�b / �4�db� is the capacitance
per unit area between the BLG and the bottom gate, �b is the
dielectric constant below the BLG, and ndb

0 is the density of
additional positive background charge on the bottom layer
�not shown in Fig. 1�. For ndb

0 =ndt, Eq. �8� agrees with Eq.
�10� in Ref. 24.

The kinetic term 
kin requires a little care. The author of
Ref. 24 seems to assume that it coincides with the sum of the
occupied single-particle energies


sum =
1

A
�
�

��� − E��E�, �9�

where � is a short-hand notation for all quantum numbers,
��x� is the unit step function, and A is the area of the system.
In fact, each energy E�, which is an eigenvalue of the BLG
Hamiltonian H=Hkin+ also contains a potential term:
E�= ���Hkin��+ �����. Here  stands for the electrostatic
energy that is equal to �U in the top �bottom� layer. Lump-
ing together 
sum and 
H is incorrect as it leads to double
counting of the interaction energy. Instead, the proper for-
mula is


kin =
1

A
�
�

��� − E�����Hkin�� = 
sum − U�n . �10�

Next, using the Hellmann-Feynman theorem, we get

�n = �
�

��� − E��
A

���
�H

�U
�� =

��
sum − �n�
�U

,

which entails

nt,b =
n � �n

2
=

1

2
�n �

�

�U
�
sum − �n�� . �11�

The correct variational functional to minimize is

� = 
H + 
sum − U
�

�U
�
sum − �n� − �n , �12�

where � is a Lagrange multiplier. The sought minimum is
determined by the equations �� /��=�� /�U=0, which
leads to

2U = 4�e2�dm/�m��nt − ndt� . �13�

This equation is obviously correct because it follows from
Gauss’s law. Indeed, it is the starting equation �Eq. �2�� of
Ref. 4. The closest to Gauss’s law in Ref. 24 is Eq. �11� of
that paper but the electric field is defined in the wrong direc-
tion in that equation, as can be seen by comparison with Fig.
3 in Ref. 24.

Let us now compute nt by the present method to demon-
strate where Ref. 24 contains another mistake. The total po-
larization �n=�s1,s2

�ns1s2
is the sum over all four bands of

BLG, where, in keeping with notations of Ref. 28, we label
the bands as follows: s1=� distinguishes the conduction and
valence bands while s2=� denotes the outer �inner� bands.
The band dispersions are given by

Es1s2
= s1
�1

2

2
+ 
2�q� + U2 + s2�2�
�q�� , �14�

�2�
� �
�1
4

4
+ 
2��1

2 + 4U2� , �15�

where q is the quasimomentum and 
�q� is the energy dis-
persion in monolayer graphene. Near a BZ corner K, the
Dirac approximation is valid 
�q�= �
3 /2��0a�k�, where
k=q−K.

For simplicity, we consider the case where the Fermi sur-
face is singly connected and includes only the �+−� states so
that n=kF

2 /�, where kF is the Fermi momentum measured
from the nearest BZ corner and

� = E+−�kF� �
U2 +

4�kF�

�1
2 � 
U2 + �1

2N2. �16�

As explained above, if U is positive, then �n should be
negative. In Ref. 24 however only the conduction band
term,4,24

�n+− =
n�U

�1
ln��

U
+
�2

U2 − 1� , �17�

is included while the much larger negative contribution
�n−��n−++�n−− of the completely filled valence bands is
neglected. This important term is given by

�n− =
�

�U
�

BZ

2d2q

�2��2 �E−+�q� + E−−�q���U=0
U	0. �18�

Within the Dirac approximation, the above integral can be
done exactly by extending the integration domain to infinity,
with the result
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�n− = −
n�u

1 + 4u2�2u�u + 
1 + u2�2

+
1 + 2u2


1 + 4u2�sinh−11 + 2u2

u
+ sinh−1 2u�� , �19�

where u�U /�1. The leading term for U��1 is

�n− � −
n�U

�1
ln

2�1

U
, �20�

in agreement with Ref. 4. The nonvanishing and, in fact,
dominant contribution of the filled valence bands to the total
polarization is not an artifact of the Dirac approximation. To
prove that we repeated the calculation of �n− within the
simplified tight-binding model, using


�q� = �0�eiq·�1 + eiq·�2 + eiq·�3� �21�

in Eq. �14�, with � j being the vectors connecting a lattice site
to its three nearest neighbors. The integration in Eq. �18� was
done numerically and the results are shown in Fig. 2. As
expected, the Dirac approximation remains accurate up to
U��0=3.0 eV. At �1�U��0, the polarization varies qua-
dratically with U because it is dominated by the properties of
a single layer, where the density of states is linear in
energy. Finally, when 2U exceeds the bandwidth
6�0=max 
�q�−min 
�q� of the monolayer dispersion, �n−
quickly approaches its minimum possible value, which is
equal to the total atomic density of BLG na=4
3 /3a2, with
the minus sign.

Most relevant for current experiments is the case U��1,
where Eq. �20� applies. Combined with Eqs. �16� and �17�, it
yields the result of the correct sign for the total polarization,

�n � −
n�U

�1
ln

2

N + 
N2 + �U/�1�2
. �22�

Substituting it into nt= �n+�n� /2 and using Eqs. �4�, �5�, and
�13�, we obtain the equation for the function U�N�,

2U�N� � �1
N − 2Ndt

�Mc
−1 +

1

2
ln

2

N + 
N2 + �U/�1�2

. �23�

This formula is actually valid for arbitrary signs of U and N.
In the region

2U�0�/�1 � N � 1 �24�

it coincides with Eq. �2� within the accuracy of this calcula-
tion. Here

2U�0� � −
2�1Ndt

�Mc
−1 +

1

2
ln

1

�Ndt�

�25�

is the interlayer bias at N=0. Note that the gap 2�U� vanishes
only at N=2Ndt, i.e., n=2ndt, where

nt = nb = ndt. �26�

The gap remains nonzero at all other densities including
n=0, in disagreement with the claim made in Ref. 24 but in
agreement with the numerical results of Ref. 4. �A finite gap
at zero density has indeed been observed in quantum Hall
effect measurements3 of doped BLG.�

As mentioned in the beginning of this Comment, the
background positive charge density ndt does not have to re-
side directly on the top layer. Equation �23� remains un-
changed if some of this charge is located above the BLG, as
sketched in Fig. 1. For example, for a dual-gated BLG

ndt = ndt
0 +

ct

e2 �eVt − � + U� , �27�

where the first term is the fixed donor density on the top
layer and the second term is the �tunable� charge density on
the top gate. Parameter ct is the capacitance between the top
gate and the BLG per unit area. Similarly, the total density is
given by

n = ndt
0 + ndb

0 +
ct − cb

e2 U + �
a=t,b

ca

e2 �eVa − �� , �28�

where Vb is the voltage on the bottom gate. The chemical
potential � enters these equations because the measured
“voltages” Vb and Vt of the two gates are not simply the
electrostatic but instead the electrochemical potential differ-
ences between these gates and the BLG, cf. Refs. 17 and 27.
However for distant gates,

da � dm
�a

2�Mc�m
, a = t,b , �29�

one can in the first approximation neglect U and � compared
to eVb and eVt, leading to the simplified equations

2U =
eE0dm

1 +
�Mc

2
ln

2

N + 
N2 + �U/�1�2

, �30�
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FIG. 2. �Color online� BLG polarization �n− due to the com-
pletely filled valence bands in the Dirac approximation �Eq. �19��
�thin red line� and the tight-binding model �thick black line�. Pa-
rameter na=4
3 /3a2 is the atomic density.
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E0 �
2�e

�m
�ndb

0 − ndt
0 +

cbVb

e
−

ctVt

e
� , �31�

N =
n

n�

�
1

n�

�ndb
0 + ndb

0 +
ctVt

e
+

cbVb

e
� , �32�

which may be useful in experimental practice. Note however
that unavoidable disorder creates additional corrections to
these expressions,23 which can be as large as 30%.

In closing, we comment on exchange and correlations ef-
fects. Our Eq. �2� is in qualitative agreement with density-
functional theory �DFT� calculations,20,29 which include
some of these effects. On the other hand, spontaneous polar-

ization �n�0 and the corresponding gap generation have
been predicted to occur19,30–34 even in the absence of the
external electric field.35 Such a symmetry breaking can be
incorporated into either mean-field theory or the DFT by
introducing a suitable self-energy difference between the lay-
ers, which is a function of N and U. In fact, we already have
a similar parameter in our formalism—it is our Ndt. This
interesting problem warrants further study.
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