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1 Introduction

Let g be the Lie algebra of a connected simple algebraic group G of adjoint type over an algebraically
closed field k. A grading on g is a decomposition

g =
⊕
i∈Z/m

gi

where m is an integer ≥ 0 and [gi, gj] ⊂ gi+j for all i, j. The summand g0 is a Lie subalgebra of g and
we let G0 denote the corresponding connected subgroup of G. The adjoint action of G on g restricts to
an action of G0 on each summand gi. We are interested in the invariant theory of this action, for which
there is no loss of generality if we assume that i = 1.

If m = 1 this is the invariant theory of the adjoint representation, first developed by Chevalley, who
showed that the restriction k[g]G → k[t]W of G-invariant polynomials on g to polynomials on a Cartan
subalgebra t invariant under the Weyl group W is an isomorphism. This and other aspects of Cheval-
ley’s theory were generalized to the case m = 2 by Kostant and Rallis [16]. Soon after, Vinberg [35]
showed that for any m ≥ 0 the invariant theory of the G0-action on g1 has similar parallels with the
adjoint representation of G on g. Vinberg worked over C, but in [19], Vinberg’s theory was extended
to fields of good odd positive characteristic not dividing m.

Some highlights of Vinberg theory are as follows. A Cartan subspace is a linear subspace c ⊂ g1

which is abelian as a Lie algebra, consists of semisimple elements, and is maximal with these two
properties. All Cartan subspaces are conjugate under G0. Hence the dimension of c is an invariant of
the grading, called the rank, which we denote in this introduction by r. The little Weyl group is the
subgroup Wc of GL(c) arising from the action of the normalizer of c in G0. The group Wc is finite and
is generated by semisimple transformations of c fixing a hyperplane and we have an isomorphism of
invariant polynomial rings

k[g1]G0 ∼−→ k[c]Wc ,

given by restriction. Finally k[g1]G0 ' k[f1, . . . , fr] is a polynomial algebra generated by r alge-
braically independent polynomials f1, . . . , fr whose degrees d1, . . . , dr are determined by the grading.
In particular the product of these degrees is the order of Wc.
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We have a dichotomy: either the rank r = 0, in which case g1 consists entirely of nilpotent elements
of g, or r > 0, in which case m > 0 and g1 contains semisimple elements of g. A basic problem is
to classify all gradings of rank r > 0 and to compute the little Weyl groups Wc in each case. Another
open question is Popov’s conjecture: g1 should contain a Kostant section: an affine subspace v of g1

with dim v = r, such that the restriction map k[g1]G0 −→ k[v] is an isomorphism.

The classification of positive-rank gradings and their little Weyl groups, along with verification of
Popov’s conjecture was given in [19] and [20] for gradings of Lie algebras of classical type and those
of types G2 and F4. In this paper we complete this work by proving analogous results for types E6, E7

and E8, using new methods which apply to the Lie algebras of general simple algebraic groups G.

The main idea is to compute Kac coordinates of lifts of automorphisms of the root system R of g, as
we shall now explain. Choosing a base in R and a pinning in g (defined in section 2.3), we may write
the automorphism groups Aut(R) and Aut(g) as semidirect products:

Aut(R) = W o Θ, Aut(g) = Go Θ,

where W is the Weyl group of R and Θ, the symmetry group of the Dynkin graph D(R) of R, is
identified with the group of automorphisms of g fixing the chosen pinning. To each ϑ ∈ Θ one
can associate an affine root system Ψ = Ψ(R, ϑ) consisting of affine functions on an affine space
A of dimension equal to the number of ϑ-orbits on the nodes of the diagram D(R). Kac’ original
construction of Ψ uses infinite dimensional Lie algebras and works over C; our approach constructs
Ψ directly from the pair (R, ϑ) and works over any algebraically closed field in which the order e
of ϑ is nonzero. The choice of pinning on g determines a rational structure on A and a basepoint
x0 ∈ A. Following an idea of Serre [26], we associate to each rational point x ∈ AQ an embedding
%x : µm ↪→ G of group schemes over k, where m is the denominator of x. If m is nonzero in k and
we choose a root of unity ζ ∈ k× of order m, then x determines an actual automorphism θx ∈ Gϑ of
order m. If x lies in the closure C of the fundamental alcove of A then the affine coordinates of x are
those defined by Kac (when k = C and ζ = e2πi/m); we call these normalized Kac coordinates, since
we also consider points x outside C having some affine coordinates negative. Any x ∈ AQ can be
moved into C via operations of the affine Weyl group W (Ψ), and this can be done effectively, using a
simple algorithm. See also [20], which gives a different way of extending Kac coordinates to positive
characteristic.

The half-sum of the positive co-roots is a vector ρ̌ belonging to the translation subgroup of A. In the
principal segment [x0, x0 + ρ̌] ⊂ A we are especially interested in the points

xm := x0 + 1
m
ρ̌ ∈ AQ,

where m is the order of an elliptic Z-regular automorphism σ ∈ Aut(R). Here σ is elliptic if σ has no
nonzero fixed-points in the reflection representation, and we say σ is Z-regular if the group generated
by σ acts freely onR. (This is almost equivalent to Springer’s notion of regularity, and for our purposes
it is the correct one. See section 3.)

Now assume that the characteristic of k is not a torsion prime for g.

Choose a Cartan subalgebra t of g, let T be the maximal torus of G centralizing t with normalizer N
in G and let Aut(g, t) be the subgroup of Aut(g) preserving t. The groups Aut(R) and Aut(g, t)/T
are isomorphic and we may canonically identifyW -conjugacy classes in Aut(R) withN/T -conjugacy
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classes in Aut(g, t)/T . Let σ ∈ Aut(R) be an elliptic Z-regular automorphism whose order m is
nonzero in k. Write σ = w · ϑ with w ∈ W and ϑ ∈ Θ. Then there is a unique G-conjugacy class
Cσ ⊂ Gϑ such that Cσ ∩ Aut(g, t) projects to the class of σ in Aut(R). Using results of Panyushev
in [23], we show that Cσ contains the automorphism θxm , where xm is the point on the principal
segment defined above. The (un-normalized) Kac coordinates of xm are all = 1 except one coordinate
is 1 + (m − hϑ)/e, where hϑ is the twisted Coxeter number of (R, ϑ). Translating by the affine Weyl
group we obtain the normalized Kac coordinates of the class Cσ ⊂ Gϑ. The automorphisms in Cσ have
positive rank equal to the multiplicity of the cyclotomic polynomial Φm in the characteristic polynomial
of σ. They are exactly the semisimple automorphisms of g for which G0 has stable orbits in g1, in the
sense of Geometric Invariant Theory.

Every G-conjugacy class of positive-rank automorphisms θ ∈ Aut(g) whose order is nonzero in k
contains a lift of a W -conjugacy class in Aut(R). For any particular group G we can tabulate the
Kac coordinates of such lifts; these are exactly the Kac coordinates of positive rank gradings. For
this purpose it is enough to consider only the lifts of certain classes in Aut(R), almost all of which
are elliptic and Z-regular in Aut(R′) for some root subsystem of R, whose Kac coordinates are easily
found, as above.

These tables are only preliminary because they contain some Kac diagrams more than once, reflecting
the fact that a given class in Aut(g) may contain lifts of several classes of σ ∈ Aut(R). However, each
class in Aut(g) has a “best” σ whose properties tell us about other aspects of the grading, for example
the little Weyl group W (c). Our final tables for E6, E7 and E8 list each positive rank Kac diagram once
and contain this additional data.

Besides its contributions to Vinberg theory per se, this paper was motivated by connections between
Vinberg theory and the structure and representation theory of a reductive group G over a p-adic field
F . The base field k above is then the residue field of a maximal unramified extension L of F . We
assume G splits over a tame extension E of L. Then the Galois group Gal(E/L) is cyclic and acts on
the root datum of G via a pinned automorphism ϑ. The grading corresponds to a point x in the Bruhat-
Tits building of G(L), the group G0 turns out to be the reductive quotient of the parahoric subgroup
G(L)x fixing x, and the summands gi are quotients in the Moy-Prasad filtration of G(L)x. As we will
show elsewhere, the classification of positive rank gradings leads to a classification of non-degenerate
K-types, a long outstanding problem in the representation theory of G(F ), and stable G0-orbits in the
dual of g1 give rise to supercuspidal representations of G(F ) attached to elliptic Z-regular elements
of the Weyl group. These generalize the “simple supercuspidal representations” constructed in [11],
which correspond to the Coxeter element.

After the first version of this paper was written, we learned from A. Elashvili that 25 years ago he, D.
Panyushev and E. Vinberg had also calculated, by completely different methods, all the positive rank
gradings and little Weyl groups in types E6,7,8 (for k = C) but they had never published their results.
We thank them for comparing their tables with ours. For other aspects of positive-rank gradings on
exceptional Lie algebras, see [9].
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2 Kac coordinates

Kac [12, chap. 8] showed how conjugacy classes of torsion automorphisms of simple Lie algebras g
(over C) can be parametrized by certain labelled affine Dynkin diagrams, called Kac coordinates. If
we choose a root of unity ζ ∈ C× of order m, then any automorphism θ ∈ g of order m gives a grading
g = ⊕i∈Z/m gi, where gi is the ζ i-eigenspace of θ. This grading depends on the choice of ζ and if we
replace C by another ground field k, we are forced to assume that m is invertible in k. As in [19], this
assumption will be required for our classification of positive-rank automorphisms.

However, at the level of classifying all torsion automorphisms, Serre has remarked (see [26]) that, at
least in the inner case, one can avoid the choice of ζ and restrictions on k by replacing an automorphism
θ of order m with an embedding µm ↪→ Aut(g)◦ of group schemes over k, where µm is the group
scheme of mth roots of unity.

In this section we give an elementary treatment of Kac coordinates in Serre’s more general setting, and
we extend his approach to embeddings µm ↪→ Aut(g). In the outer case, where the image of µm does
not lie in Aut(g)◦, we still find it necessary to assume the characteristic p of k does not divide the order
of the projection of µm to the component group of Aut(g). Our approach differs from [12] in that we
avoid infinite dimensional Lie algebras (cf. [24]).

We then discuss a family of examples, the principal embeddings of µm, which play an important role
in gradings of positive rank.

2.1 Based automorphisms and affine root systems

For background on finite and affine root systems see [6] and [21]. Let R be an irreducible reduced
finite root system spanning a real vector space V . The automorphism group of R is the subgroup of
GL(V ) preserving R:

Aut(R) = {σ ∈ GL(V ) : σ(R) = R}.
We say an automorphism σ ∈ Aut(R) is based if σ preserves a base of R. If we choose a base ∆ of R
then we have a splitting

Aut(R) = W o Θ,

where W is the Weyl group of R and Θ = {σ ∈ Aut(R) : σ(∆) = (∆)}. Since R is irreducible, the
group Θ is isomorphic to a symmetric group Sn for n = 1, 2 or 3.

In this section we will associate to any based automorphism ϑ ∈ Aut(R) an affine root system Ψ(R, ϑ)
whose isomorphism class will depend only on the order e of ϑ.

We first establish more notation to be used throughout the paper. Let X = ZR be the lattice in V
spanned by R and let X̌ = Hom(X,Z) be the dual lattice. We denote the canonical pairing between
X and X̌ by 〈λ, ω̌〉, for λ ∈ X and ω̌ ∈ X̌ .

Fix a base ∆ = {α1, . . . , α`} of R, where ` is the rank of R, and let Ř ⊂ X̌ be the co-root system
with base ∆̌ = {α̌1, . . . , α̌`}, where α̌i is the co-root corresponding to αi. The pairing 〈 , 〉 extends
linearly to the real vector spaces V = R ⊗X and V̌ := R ⊗ X̌ . Thus, a root α ∈ R can be regarded
as the linear functional v̌ 7→ 〈α, v̌〉 on V̌ , and by duality Aut(R) can be regarded as a subgroup of
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GL(V̌ ). In this viewpoint the Weyl group W is the subgroup of GL(V̌ ) generated by the reflections
sα : v̌ 7→ v̌ − 〈α, v̌〉α̌ for α ∈ R.

Let ρ̌ be one-half the sum of those co-roots α̌ ∈ Ř which are non-negative integral combinations of
elements of ∆̌. We also have

ρ̌ = ω̌1 + ω̌2 + · · ·+ ω̌`,

where {ω̌i} are the fundamental co-weights dual to ∆, that is, 〈αi, ω̌i〉 = 1 and 〈αi, ω̌j〉 = 0 if i 6= j.

Let V̌ ϑ = {v̌ ∈ V̌ : ϑ(v̌) = v̌} be the subspace of ϑ-fixed vectors in V̌ and let Rϑ = {α|V̌ ϑ : α ∈ R}
be the set of restrictions to V̌ ϑ of roots in R. By duality Θ permutes the fundamental co-weights {ω̌i},
so the vector ρ̌ lies in V̌ ϑ. And since 〈α, ρ̌〉 = 1 for all α ∈ ∆, it follows that no root vanishes on
V̌ ϑ. Moreover two roots α, α′ ∈ R have the same restriction to V̌ ϑ if and only if they lie in the same
〈ϑ〉-orbit in R. Hence we have

Rϑ = {βa : a ∈ R/ϑ},
where R/ϑ is the set of 〈ϑ〉-orbits in R and βa = α|V̌ ϑ for any α ∈ a.

For a ∈ R/ϑ, we define β̌a ∈ V̌ ϑ by

β̌a =

{ ∑
α∈a α̌ if 2βa /∈ Rϑ

2
∑

α∈a α̌ if 2βa ∈ Rϑ,
(1)

and we set Řϑ = {β̌a : a ∈ R/ϑ}. Then 〈βa, β̌a〉 = 2 and 〈βa, β̌b〉 ∈ Z for all a, b ∈ R/ϑ.

Note that 2βa /∈ Rϑ precisely when a consists of “orthogonal” roots; that is, when a = {γ1, . . . , γk}
with 〈γi, γ̌j〉 = 0 for i 6= j. In this case, the element

sa := sγ1sγ2 · · · sγk ∈ W

has order two, is independent of the order of the product and is centralized by ϑ. If 2βa ∈ Rϑ we have
a = {γ1, γ2} where γ1 + γ2 ∈ R. In this case we define sa = sγ1+γ2 , noting this sa is also centralized
by ϑ. A short calculation shows that

sa(βb) = βb − 〈βb, β̌a〉βa,

in all cases. On the other hand, if β ∈ b, then sa(βb) = sa(β)|V̌ ϑ , since sa is centralized by ϑ.
It follows that βb − 〈βb, β̌a〉βa ∈ Rϑ. These involutions sa, for a ∈ R/ϑ, generate the centralizer
W ϑ = {w ∈ W : ϑw = wϑ} [30, 2.3]. Thus, Rϑ is a root system (possibly non-reduced) whose Weyl
group is W ϑ. The rank `ϑ of Rϑ equals the number of ϑ-orbits in ∆.

Let Aϑ be an affine space for the vector space V̌ ϑ. We denote the action by (v, x) 7→ v + x for v ∈ V̌ ϑ

and x ∈ Aϑ and for x, y ∈ Aϑ we let y − x ∈ V̌ ϑ be the unique vector such that (y − x) + x = y.
For any affine function ψ : Aϑ → R we let ψ̇ : V̌ ϑ → R be the unique linear functional such that
ψ(x+ v) = ψ(x) + 〈ψ̇, v〉 for all v ∈ V̌ ϑ.

Choose a basepoint x0 ∈ Aϑ. For each linear functional λ : V̌ ϑ → R define an affine function
λ̃ : Aϑ → R by λ̃(x) = 〈λ, x−x0〉. In particular, each root βa ∈ Rϑ gives an affine function β̃a onAϑ.

For each orbit a ∈ R/ϑ, set ua = 1/|a|. If βa /∈ 2Rϑ, define

Ψa = {β̃a + nua : n ∈ Z}.
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If βa ∈ 2Rϑ, define
Ψa = {β̃a + (n+ 1

2
)ua : n ∈ Z}.

The resulting collection
Ψ(R, ϑ) :=

⋃
a∈R/ϑ

Ψa

of affine functions on Aϑ is a reduced, irreducible affine root system (in the sense of [21, 1.2]) and
x0 ∈ Aϑ is a special point for Ψ(R, ϑ).

An alcove inAϑ is a connected component of the open subset of points inA on which no affine function
in Ψ(R, ϑ) vanishes. There is a unique alcove C ⊂ Aϑ containing x0 in its closure and on which
β̃a > 0 for every ϑ-orbit a ⊂ ∆. The walls of C are hyperplanes ψi = 0, i = 0, 1, . . . , `ϑ = dimAϑ,
and {ψ0, ψ1, . . . , ψ`ϑ} is a base of the affine root system Ψ(R, ϑ). The point x0 lies in all but one of
these walls; we choose the numbering so that ψ0(x0) 6= 0. There are unique relatively prime positive
integers bi such that

∑
biψ̇i = 0. We have b0 = 1 and the affine function

∑`ϑ
i=0 biψi is constant, equal

to 1/e, where e = |ϑ|. The reflections ri about the hyperplanes ψi = 0 for i = 0, 1, . . . , `ϑ generate an
irreducible affine Coxeter group Waff(R, ϑ) which acts simply-transitively on alcoves in Aϑ.

If ϑ = 1 we recover the affine root system attached to R as in [6] and Waff(R) := Waff(R, 1) is the
affine Weyl group of R.

For an example with nontrivial ϑ, take R of type A2 and ϑ of order two. We have V̌ = {(x, y, z) ∈
R3 : x+ y + z = 0}, and

α1 = x− y, α2 = y − z, α̌1 = (1,−1, 0), α̌2 = (0, 1,−1), ρ̌ = (1, 0,−1).

The nontrivial automorphism ϑ ∈ Aut(R) permuting {α1, α2} acts on V̌ by ϑ(x, y, z) = (−z,−y,−x).
We identify V̌ ϑ = {(x, 0,−x) : x ∈ R} with R via projection onto the first component. The 〈ϑ〉-orbits
in the positive roots are a = {α1, α2} and b = {α1 + α2}, so βa = x and βb = 2x. If we identify
Aϑ = R and take x0 = 0, then

Ψa = {x+ n
2

: n ∈ Z}, Ψb = {2x+ n+ 1
2

: n ∈ Z}.

The alcove C is the open interval (0, 1
4
) in R. The walls of C are defined by the vanishing of the affine

roots
ψ0 = 1

2
− 2x, ψ1 = x

which satisfy the relation ψ0+2ψ1 = 1
2
, so b0 = 1 and b1 = 2. The groupWaff(R, ϑ) is infinite dihedral,

generated by the reflections of R about 0 and 1
4
.

We list the affine root systems for nontrivial ϑ in Table 1. As the structure of Ψ(R, ϑ) depends only
on R and the order e of ϑ, the pair (R, ϑ) is indicated by the symbol eR, called the type of (R, ϑ).
Information about Ψ(R, ϑ) is encoded in a twisted affine diagramD(eR) which is a graph with vertices
indexed by i ∈ {0, 1, . . . , `ϑ}, labelled by the integers bi. The number mij of bonds between vertices
i and j is determined as follows. Choose a W ϑ-invariant inner product ( , ) on V ϑ and suppose that
(ψ̇j, ψ̇j) ≥ (ψ̇i, ψ̇i). Then

mij =
(ψ̇j, ψ̇j)

(ψ̇i, ψ̇i)
.
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If mij > 1 we put an arrow pointing from vertex j to vertex i.

Removing the labels and arrows from the twisted affine diagram D(eR) gives the Coxeter diagram
D(eR)cox of Waff(R, ϑ) (except in type 2A2 the four bonds should be interpreted as r0r1 having infinite
order). Table 1 gives the twisted affine diagrams for e > 1 (their analogues for e = 1 being well-
known). For each type we also give the twisted Coxeter number, which is the sum

hϑ = e · (b0 + b1 + · · ·+ b`ϑ), (2)

whose importance will be seen later. The node i = 0 is indicated by •.

Table 1: Twisted Affine diagrams and twisted Coxeter numbers

eR D(eR) `ϑ hϑ
2A2

1• %92◦ 1 6

2A2n
1•=⇒2◦—-

2◦– · · · –2◦=⇒2◦ n 4n+ 2

2A2n−1

1◦—-
2◦– · · · –2◦⇐=

1◦—
-•

1

n 4n− 2

2Dn
1•⇐=

1◦—-
1◦– · · · –1◦=⇒1◦ n− 1 2n

3D4
1•—-

2◦W 1◦ 2 12

2E6
1•—-

2◦—-
3◦⇐=

2◦—-
1◦ 4 18

(3)

Remark: Let R be the set of pairs (R, e), where R is an irreducible reduced finite root system and
e is a divisor of |Θ|. Let Raff be the set of irreducible reduced affine root systems, as in [21], up
to isomorphism. Let D be the set of pairs (D, o), where D is the Coxeter diagram of an irreducible
affine Coxeter group and o is a choice of orientation of each multiple edge of D. The classification of
reduced irreducible affine root systems [21, 1.3] shows that the assignments (R, e) 7→ eR 7→ D(eR)
give bijections

R ∼−→ Raff
∼−→ D.

2.2 Torsion points, Kac coordinates and the normalization algorithm

Retain the notation of the previous section. Let AϑQ be the set of points in Aϑ on which the affine roots
in Ψ(R, ϑ) take rational values. The order of a point x ∈ AϑQ is the smallest positive integer m such
that ψ(x) ∈ 1

m
Z for every ψ ∈ Ψ(R, ϑ). In this case there are integers si such that ψi(x) = si/m, and

gcd(s0, . . . , s`ϑ) = 1. Moreover, since b0ψ0 + · · ·+ b`ϑψ`ϑ is constant, equal to 1/e, (recall that e is the
order of ϑ) it follows that

e ·
`ϑ∑
i=0

bisi = m.

In particular, the order m is divisible by e. We call integer vector (s0, s1, . . . , s`ϑ) the (un-normalized)
Kac coordinates of x.
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The point x lies in C precisely when all si are non-negative; in this case we refer to the vector (si) as
normalized Kac coordinates. The action of the affine Weyl group Waff(R, ϑ) onAϑQ can be visualized
as an action on Kac coordinates, as follows. The reflection rj about the wall ψj = 0 sends the Kac
coordinates (si) to (s′i), where

s′i = si − 〈βi, β̌j〉sj.

Un-normalized Kac coordinates may have some sj < 0. If we apply rj and repeat this process by
selecting negative nodes and applying the corresponding reflections, we will eventually obtain normal-
ized Kac coordinates (s′i). Geometrically, this normalization algorithm amounts to moving a given
point x ∈ AΘ

Q into the fundamental alcove C by a sequence of reflections about walls, see [24, Sec.
3.2]. We have implemented the normalization algorithm on a computer and used it extensively to
construct the tables in sections 9 and 11.

The image of the projection e−1
∑e−1

i=0 ϑ
i : X̌ → V ϑ is a lattice Yϑ in V ϑ which is preserved by W ϑ.

The extended affine Weyl group
W̃aff(R, ϑ) := W ϑ o Yϑ

containsWaff(R, ϑ) as a normal subgroup of finite index and the quotient may be identified with a group
of symmetries of the oriented diagramD(eR). We regard two normalized Kac diagrams as equivalent if
one is obtained from the other by a symmetry of the oriented diagram D(eR) coming from W̃aff(R, ϑ).
For R = E6, E7, E8 and e = 1 these diagram symmetries are: rotation of order three, reflection of
order two and trivial, respectively. In type 2E6 these diagram symmetries are trivial (see table (3)).

2.3 µm-actions on Lie algebras

Let k be an algebraically closed field. All k-algebras are understood to be commutative with 1, and in
this section all group schemes are affine over k, and are regarded as representable functors from the
category of finitely generated k-algebras to the category of groups. We refer to [36] for more details
on affine group schemes.

Every finitely generated k-algebra A is a direct product of k-algebras A =
∏

ι∈I(A) Aι, where I(A)

indexes the connected components Spec(Aι) of Spec(A) and each Aι is a k-algebra with no non-trivial
idempotents. This decomposition is to be understood when we describe the A-valued points in various
group schemes below. Each finite (abstract) group Γ is regarded a constant group scheme, given by
Γ (A) =

∏
ι∈I(A) Γ (Aι), where Γ (Aι) = Γ . In other words, an element γ ∈ Γ (A) is a function

(ι 7→ γι) from I(A) to Γ .

Let µm denote the group scheme of mth roots of unity, whose A-valued points are given by

µm(A) = {a ∈ A : am = 1} =
∏
ι∈I(A)

µm(Aι).

If m is nonzero in k then µm(Aι) = µm(k) for every ι ∈ I(A), so µm is a constant group scheme and
we have

µm(A) =
∏
ι∈I(A)

µm(k).
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If m is zero in k then µm is not a constant group scheme.

A k-vector space V can be regarded as a k-scheme such that V (A) = A ⊗k V . To give a grading
V =

∑
i∈Z/mZ Vi as k-schemes is to give a morphism % : µm → GL(V ), where GL(V )(A) is the

automorphism group of the freeA-module V (A). Indeed, Z/m is canonically isomorphic to the Cartier
dual Hom(µm,Gm), so a morphism % : µm → GL(V ) gives a grading V (A) = ⊕i∈Z/mVi(A) where
Vi(A) = {v ∈ V (A) : %(ζ)v = ζ iv ∀ζ ∈ µm(A)}.

Now let R be an irreducible root system as before, with base ∆ and group of based automorphisms
Θ. Set X = ZR and X̌ = Hom(X,Z). Then (X,R, X̌, Ř) is the root datum of a connected simple
algebraic group scheme G over k of adjoint type. Let g be the Lie algebra of G and let T ⊂ B be a
maximal torus contained in a Borel subgroup of G. We identify R with the set of roots of T in g, and
∆ with the set of simple roots of T in the Lie algebra of B. Choose a root vector Ei for each simple
root αi ∈ ∆. The data (X,R, X̌, Ř, {Ei}) is called a pinning of G.

Fix an element ϑ ∈ Θ. Assume the order e of ϑ is nonzero in k, so that µe and 〈ϑ〉 are isomorphic
constant group schemes over k, and choose an isomorphism τ : µe → 〈ϑ〉.

By our choice of pinning (X,R, X̌, Ř, {Ei}), the group 〈ϑ〉 may also be regarded as a subgroup of
Aut(g) permuting the root vectorsEi in the same way ϑ permutes the roots αi, and we have a semidirect
product

Go 〈ϑ〉 ⊂ Aut(g),

where the cyclic group 〈ϑ〉 is now viewed as a constant subgroup scheme of automorphisms of g,
whose points in each k-algebra A consist of vectors (ϑnι) acting on g(A) =

∏
ι g(Aι), with ϑnι acting

on the factor g(Aι).

Now let m be a positive integer divisible by e (but m could be zero in k). Let m/e : µm → µe be the
morphism sending ζ ∈ µm(A) to ζm/e ∈ µe(A) for every k-algebra A.

Finally, for each rational point x ∈ AϑQ of order m we shall now define a morphism

%x : µm → T ϑ × 〈ϑ〉,

where T ϑ is the subscheme of ϑ-fixed points in T . We have x = 1
m
λ̌ + x0, for some λ̌ ∈ X̌ϑ. The

co-character λ̌ restricts to a morphism λ̌m : µm → T ϑ and we define %x on A-valued points by

%x(ζ) = λ̌m(ζ)× τ(ζm/e), for ζ ∈ µm(A).

Since
Hom(µm, T

ϑ) = X̌ϑ/mX̌ϑ ' 1
m
X̌ϑ/X̌ϑ,

we see that λ̌m corresponds precisely to an orbit of x under translation by X̌ϑ on AϑQ. The condition
that x has order m means that λ̌m does not factor through µd for any proper divisor d | m.

Let w̃ ∈ W̃aff(R, ϑ) have projection w ∈ W ϑ and denote the canonical action of W ϑ on T ϑ by w · t, for
t ∈ T ϑ(A). Then we have

%w̃·x(ζ) = w · %x(ζ)

for all ζ ∈ µm(A). One can check (cf. [24, section 3]) that two points x, y ∈ AϑQ of order m give
G-conjugate embeddings %x, %y : µm ↪→ T ϑ × ϑ if and only if x and y are conjugate under W̃aff(R, ϑ).
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The morphism %x is thus determined by the Kac coordinates (s0, s1, . . . , s`ϑ) of x and the G-conjugacy
class of %x is determined by the normalized Kac coordinates of the W̃aff(R, ϑ)-orbit of x.

2.4 Principal µm-actions

We continue with the notation of section 2.3. Recall that ρ̌ ∈ X̌ϑ is the sum of the fundamental
co-weights ω̌i. For every positive integer m divisible by e, we have a principal point

xm := x0 + 1
m
ρ̌ ∈ AϑQ

of order m. It corresponds to the principal embedding

%m = %xm : µm −→ T ϑ × 〈ϑ〉, given by %m(ζ) = ρ̌(ζ)× τ(ζm/e).

The Kac coordinates of xm and %m are given as follows. If 1 ≤ i ≤ `ϑ we have ψi = β̃i for some
βi ∈ Rϑ which is the restriction to V̌ Θ of a simple root αi ∈ ∆. Since 〈αi, ρ̌〉 = 1, it follows that
〈ψ, xm〉 = 1/m so si = 1, and we have

m = e ·
`ϑ∑
i=0

bisi = es0 + e ·
`ϑ∑
i=1

bi = es0 + hϑ − e,

where hϑ = e ·
∑`ϑ

i=0 bi is the twisted Coxeter number of Rϑ (see (2)). Hence the remaining Kac-
coordinate of the principal point xm is

s0 = 1 +
m− hϑ

e
.

This is negative if m < hϑ − e, in which case we can apply the normalization algorithm of section 2.2
to obtain the normalized Kac coordinates of xm. Examples are found in the tables of section 8.1.

We will be especially interested in the points xm where m is the order of an elliptic Z-regular auto-
morphism in Wϑ (defined in the next section). The twisted Coxeter number hϑ is one of these special
values of m, corresponding to s0 = 1 (cf. section 8 below).

3 Z-regular automorphisms of root systems

We continue with the notation of section 2.1: R is an irreducible finite reduced root system with a
chosen base ∆ and automorphism group Aut(R) = W o Θ, where W is the Weyl group of R and Θ
is the subgroup of Aut(R) preserving ∆.

Definition 3.1 An automorphism σ ∈ Aut(R) is Z-regular if the group generated by σ acts freely on
R.
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This is nearly equivalent to Springer’s notion of a regularity (over C) [29]. In this section we will
reconcile our definition with that of Springer.

Let X = ZR be the root lattice of R and let X̌ = Hom(X,Z) be the co-weight lattice. We say that
a vector v̌ ∈ k ⊗ X̌ is k-regular if 〈α, v̌〉 6= 0 for every α ∈ R. We say also that an automorphism
σ ∈ Aut(R) is k-regular if σ has a k-regular eigenvector in k ⊗ X̌ . Taking k = C we recover
Springer’s definition of regularity [29].

At first glance it appears that σ could be k-regular for some fields k but not others. This is why we
have defined regularity over Z, as in Def. 3.1. Of course the definition of Z-regularity seems quite
different from that of k-regularity. An argument due to Kostant for the Coxeter element (cf. [14, Cor.
8.2]) shows that a k-regular automorphism is Z-regular (see [29, Prop. 4.10]). The converse is almost
true but requires an additional condition. We will prove:

Proposition 3.2 An automorphism σ ∈ Aut(R) is Z-regular if and only if for every algebraically
closed field k in which the order m of σ is nonzero there is k-regular eigenvector for σ in k⊗ X̌ whose
eigenvalue has order m.

Suppose σ = wϑ where w ∈ W and ϑ ∈ Θ is a based automorphism of order e. If σ has order m
and has a k-regular eigenvalue λ of order d, then m = lcm(d, e). Indeed, it is clear that m is divisible
by n := lcm(d, e). Conversely, we have λn = 1 so σn fixes a regular vector, but σn ∈ W , so in fact
σn = 1 and m | n. Hence the notions of Z-regularity and k-regularity coincide precisely when e | d. In
particular they coincide if ϑ = 1, that is, if σ ∈ W . However, if ϑ has order e > 1 and we take σ = ϑ,
then σ fixes the k-regular vector ρ̌ so σ is k-regular (if e 6= 0 in k). However σ fixes the highest root, so
σ is not Z-regular. And if ζ ∈ k× has order e there are no k-regular vectors in the ζ-eigenspace of σ.

The proof of Prop. 3.2 will be given after some preliminary lemmas.

Lemma 3.3 An automorphism σ ∈ Aut(R) is based if and only if no root of R vanishes on X̌σ.

Proof: Assume that σ ∈ Aut(R) preserves a base ∆′ ⊂ R. Then σ preserves the set R+ of roots in
R which are non-negative integral linear combinations of roots in ∆′. The vector

∑
β∈R+ β̌ belongs to

X̌σ and no root vanishes on it.

Conversely, let v̌ ∈ X̌σ be a vector on which no root in R vanishes. Then v defines a chamber C in the
real vector space R⊗X , namely,

C = {λ ∈ R⊗X : 〈λ, v̌〉 > 0}.

As σ fixes v̌, the chamber C is preserved σ, so σ permutes the walls of C. The set of roots α for which
ker α̌ is a wall of C is therefore a base of R preserved by σ. �

Next, we say that σ ∈ Aut(R) is primitive if σ preserves no proper root subsystem of R.

Lemma 3.4 If σ ∈ Aut(R) is primitive, then its characteristic polynomial on V is irreducible over
Q. That is, we have det(tIV − σ|V ) = Φm(t), where m is the order of σ and Φm(t) ∈ Z[t] is the
cyclotomic polynomial whose roots are the primitive mth roots of unity.
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Proof: In this proof we change notation slightly and let V = Q ⊗ X denote the rational span of X
and let Q be an algebraic closure of Q.

For α ∈ R, let Vα ⊂ V be the rational span of the σ-orbit of α. Since Vα is spanned by roots, it follows
from [6, VI.1] that R ∩ Vα is a root subsystem of R. As it is preserved by the primitive automorphism
σ, we must have R ⊂ Vα, so Vα = V . Hence the map Q[t] → V given by sending f(t) 7→ f(σ)α
is surjective, and its kernel is the ideal in Q[t] generated by the minimal polynomial M(t) of σ on V .
Hence degM(t) = dimV so we have M(t) = det(tIV − σ|V ).

We must show that M(t) is irreducible over Q. If not, then M(t) is divisible by Φd(t) for some proper
divisor d | m. This means σ has an eigenvalue of order d on Q ⊗ V , implying that σd has nonzero
fixed-point space X̌σd . The set of roots vanishing on X̌σd is a root subsystem not equal to the whole of
R, and therefore is empty, again using the primitivity of σ.

By Lemma 3.3, σd is a nontrivial automorphism preserving a base ∆′ of R. As in the proof of that
lemma, the sum of the positive roots for ∆′ is a nonzero Q-regular vector in V fixed by σd. Hence
the nontrivial subgroup 〈σd〉 has trivial intersection with W . If σ ∈ W this is a contradiction and the
lemma is proved in this case.

Assume that σ /∈ W . Since R is irreducible and we have shown that the projection Aut(R) → Θ is
injective on 〈σd〉, it follows that σd has order e ∈ {2, 3}. We must also have (e, d) = 1 and m = ed.
As e is determined by the projection of σ to Θ, it follows that d is the unique proper divisor of m
such that Φd(t) divides M(t). Since the roots of M(t) are mth roots of unity (because σm = 1) and
are distinct (since σ is diagonalizable on Q ⊗ V ) and M(t) 6= Φd(t) by assumption, it follows that
M(t) = Φm(t) · Φd(t).

If e = 2 then −σ ∈ W is also primitive, with reducible minimal polynomial M(−t) = Φm(−t) ·
Φd(−t), contradicting the case of the lemma previously proved. If e = 3, then Φ has type D4, so
m = 3d and

4 = degM = φ(3d) + φ(d) = φ(d)[φ(3) + 1] = 3φ(d),

which is also impossible. The lemma is now proved in all cases. �

Now let σ ∈ Aut(R) be a Z-regular automorphism of order m. Recall from Def. 3.1 that this means
the group 〈σ〉 generated by σ acts freely on R. For each α ∈ R, let Vα ⊂ Q⊗X denote the Q-span of
the 〈σ〉-orbit of α and let Mα(t) be the minimal polynomial of σ on Vα.

Lemma 3.5 If σ is Z-regular of order m then Φm(t) divides Mα(t) in Z[t], for all α ∈ R.

Proof: Let ζ ∈ Q× be a root of unity of order m and let α ∈ R. It suffices to show that ζ is an
eigenvalue of σ in Q⊗Vα. Let R′ be a minimal (nonempty) σ-stable root subsystem of R∩Vα, and let

R′ = R′0 ∪R′1 ∪ · · · ∪R′k−1

be the decomposition of R′ into irreducible components. These are permuted transitively by σ; we
index them so that σiR′0 = R′i for i ∈ Z/k. The stabilizer of R′0 in 〈σ〉 is generated by σk. Correspond-
ingly, the rational span V ′ of R′ is a direct sum

V ′ = V ′0 ⊕ V ′1 ⊕ · · · ⊕ V ′k−1 ⊂ Vα
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where V ′i is the rational span of R′i.

Suppose that η := ζk is an eigenvalue of τ := σk in Q⊗ V ′0 , afforded by the vector v ∈ Q⊗ V ′0 . Let S
and T denote the group algebras over Q of 〈σ〉 and 〈τ〉, respectively, and let Qη be the T -module with
underlying vector space Q on which τ acts as multiplication by η. There is a unique map of S-modules

f : S ⊗T Qη −→ V ′

such that f(1 ⊗ 1) = v ∈ V ′0 . As f(σi ⊗ 1) = σiv ∈ Q ⊗ V ′i , and the spaces V ′0 , V
′

1 , . . . , V
′
k−1 are

linearly independent, it follows that f is injective. Frobenius reciprocity implies that ζ appears as an
eigenvalue of σ in Q⊗ V ′, hence also in Q⊗ Vα.

It therefore suffices to prove that η appears as an eigenvalue of τ on Q⊗ V ′0 . Since σ acts freely on R,
it follows that τ acts freely on R′0 and has order n := m/k on R′0. We claim that τ is primitive on R′0.
For if R′′ ⊂ R′0 is a root subsystem preserved by τ then R′′ ∪ σR′′ ∪ · · · ∪ σk−1R′′ is a root subsystem
preserved by σ which must equal R′ (by minimality), so that R′′ = R′0. Hence τ is indeed primitive
on R′0. By Lemma 3.4 the characteristic polynomial of τ on V ′0 is the cyclotomic polynomial Φn(t),
which has the root ζm/n = ζk = η. Therefore η appears as an eigenvalue of τ on Q⊗V ′0 , as desired. �

We are now ready to prove Prop. 3.2. Let k be an algebraically closed field and set Vk := k ⊗ X ,
V̌k := k ⊗ X̌ . Recall that a k-regular vector v̌ ∈ V̌k is one for which 〈α, v̌〉 6= 0 for all α ∈ R.

For completeness we recall the proof of the easy direction of Prop. 3.2 (cf. [29, 4.10]). Assume that
σ ∈ Aut(R) is k-regular, and let v̌ ∈ V̌k be a k-regular eigenvector of σ with eigenvalue ζ ∈ k× of
order m equal to the order of σ. Suppose σdα = α for some α ∈ R. Then

0 6= 〈α, v̌〉 = 〈σdα, v̌〉 = 〈α, σ−dv̌〉 = ζ−d〈α, v̌〉.

It follows that ζd = 1. Since σ and ζ have the same order, it follows that σd = 1. Hence 〈σ〉 acts freely
on R, so σ is Z-regular.

Assume now that σ is Z-regular, so that 〈σ〉 acts freely on R. Let Φ̄m(t) denote the image, under the
map Z[t]→ k[t] induced by the canonical map Z→ k, of the cyclotomic polynomial Φm(t). Since m
is nonzero in k, it follows that all roots of Φ̄m(t) in k have order m. Let ζ ∈ k× be one of them.

Let α ∈ R and let Xα be the subgroup of X generated by the 〈σ〉-orbit of α. Then Xα is a lattice in
Vα = Q⊗Xα and Φm(t) divides the characteristic polynomial det(tI − σ|Xα) in Z[t], by Lemma 3.5.
Hence Φ̄m(t) divides det(tI − σ|k⊗Xα) in k[t]. In particular ζ−1 is an eigenvalue of σ on k ⊗Xα.

The operator Pζ ∈ End(Vk) given by

Pζ = 1 + ζσ + ζ2σ2 + · · ·+ ζm−1σm−1

preserves k ⊗ Xα and Pζ(k ⊗ Xα) is the ζ−1-eigenspace of σ in k ⊗ Xα. As Xα is spanned by roots
σiα and Pζ(σiα) = σ−iPζ(α), it follows that Pζ(α) 6= 0.

As α ∈ R was arbitrary, we have that Pζ(α) 6= 0 for all α ∈ R. Since k is infinite, there exists v̌ ∈ V̌k
such that 〈Pζ(α), v̌〉 6= 0 for all α ∈ R.

The dual projection

P̌ζ = 1 + ζ−1σ + ζ−2σ2 + · · ·+ ζ1−mσm−1 ∈ End(V̌k)
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satisfies
〈α, P̌ζ(v̌)〉 = 〈Pζ(α), v̌〉 6= 0,

for all α ∈ R. Therefore P̌ζ(v̌) is a k-regular eigenvector of σ in V̌k whose eigenvalue ζ has order m.
This completes the proof of Prop. 3.2. �

4 Positive rank gradings

Let g be the Lie algebra of a connected simple algebraic group G of adjoint type over an algebraically
closed field k whose characteristic is not a torsion prime for G. Then G = Aut(g)◦ is the identity
component of Aut(g). We fix a Cartan subalgebra t of g with corresponding maximal torus T = CG(t)
and let R be the set of roots of t of g. Let N = NG(T ) be the normalizer of T , so that W = N/T is
the Weyl group of R.

From now on we only consider gradings g = ⊕i∈Z/m gi whose period m is nonzero in k. By choosing
an mth root of unity in k×, we get an automorphism θ ∈ Aut(g) of order m, such that θ acts on gi by
the scalar ζ i.

In this section we show how all such gradings of positive rank may be effectively found by computing
lifts to Aut(g) of automorphisms σ ∈ Aut(R).

4.1 A canonical Cartan subalgebra

Given any Cartan subalgebra s of g with centralizer S = CG(s), let

Aut(g, s) = {θ ∈ Aut(g) : θ(s) = s}.

We have an isomorphism (obtained by conjugating s to our fixed Cartan subalgebra t)

Aut(g, s)/S ' Aut(R)

which is unique up to conjugacy in Aut(R). Thus any element of Aut(g, s) gives a well-defined
conjugacy class in Aut(R). However, an automorphism θ ∈ Aut(g) may normalize various Cartan
subalgebras s, giving rise to various classes in Aut(R). We will define a canonical θ-stable Cartan
subalgebra, which will allow us associate to θ a well-defined conjugacy class in Aut(R).

For each θ ∈ Aut(g) whose order is nonzero in k we define a canonical θ-stable Cartan subalgebra s of
g as follows. Let c ⊂ g1 be a Cartan subspace. The centralizer m = zg(c) is a θ-stable Levi subalgebra
of g and we have m = ⊕mi where mi = m∩gi. Choose a Cartan subalgebra s0 of m0. Then s0 contains
regular elements of m [19, Lemma 1.3], so the centralizer

s := zm(s0)

is a θ-stable Cartan subalgebra of m, and s is also a Cartan subalgebra of g. We have s ∩ g0 = s0 (so
our notation is consistent) and s ∩ g1 = c. Since G0 is transitive on Cartan subspaces in g1 [19, Thm.
2.5] and CG0(c)

◦ is transitive on Cartan subalgebras of its Lie algebra m0, the Cartan subalgebra s is
unique up to G0-conjugacy.
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4.2 A relation between Aut(g) and Aut(R)

For θ ∈ Aut(g) and σ ∈ Aut(R) we write
θ ` σ

if the following two conditions are fulfilled:

• θ and σ have the same order;

• θ is G-conjugate to an automorphism θ′ ∈ Aut(g, t) such that θ′|t = σ.

Assume that θ ` σ and that the common order m of θ and σ is nonzero in k. Choose a root of unity
ζ ∈ k× of order m, giving a grading g = ⊕i∈Z/m gi. Recall that rank(θ) is the dimension of a Cartan
subspace c ⊂ g1 for θ. Likewise, for σ ∈ Aut(R), let rank(σ) be the multiplicity of ζ as a root
of the characteristic polynomial of σ on V . Since t consists of semisimple elements, it follows that
rank(θ) ≥ rank(σ).

Proposition 4.1 Let θ ∈ Aut(g) be an automorphism of positive rank whose order m is nonzero in k.
Then

rank(θ) = max{rank(σ) : θ ` σ}.

Proof: It suffices to show that there exists σ ∈ Aut(g, t) such that θ ` σ and rank(θ) = rank(σ).

Replacing θ by a G-conjugate, we may assume that t is the canonical Cartan subalgebra for θ (section
4.1) so that θ ∈ Aut(g, t), and c = t1 is a Cartan subspace contained in t. Then c is the ζ-eigenspace
of σ := θ|t ∈ Aut(R). Since θ has order m, it follows that the order of σ divides m. But σ has an
eigenvalue of order m, so the order of σ is exactly m. We therefore have θ ` σ and rank(θ) = dim c =
rank(σ). �

Given σ ∈ Aut(R) let Kac(σ) denote the set of normalized Kac diagrams of automorphisms θ ∈
Aut(g, t) for which θ ` σ. Since there are only finitely many Kac diagrams of a given order, each set
Kac(σ) is finite. From Prop. 4.1 it follows that the Kac coordinates of all positive rank automorphisms
of g are contained in the union ⋃

σ∈Aut(R)/∼

Kac(σ), (4)

taken over representatives of the W -conjugacy classes in Aut(R). Moreover rank(θ) is the maximal
rank(σ) for which the Kac coordinates of θ appear in Kac(σ).

4.3 Inner automorphisms

If θ ∈ G = Aut(g)◦ is inner then its Kac diagram will belong to Kac(w) for some w ∈ W . In this
section we refine the union (4) to reduce the number of classes of w to consider, and we show how to
compute Kac(w) directly from w, for these classes.
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A subset J ⊂ {1, . . . , `} is irreducible if the root system RJ spanned by {αj : j ∈ J} is irreducible.
Two subsets J, J ′ are orthogonal if RJ and RJ ′ are orthogonal.

An element w ∈ W is m-admissible if w has order m and w can be expressed as a product

w = w1w2 · · ·wd, (5)

where eachwi is contained inWJi for irreducible mutually orthogonal subsets J1, . . . , Jd of {1, 2, . . . , `}
and on the reflection representation of WJi each wi has an eigenvalue of order m but no eigenvalue
equal to 1 (so wi is elliptic in WJi). We call (5) an admissible factorization of w. Note that each wi
also has order m, that rank(w) =

∑
i rank(wi), and rank(wi) > 0 for 1 ≤ i ≤ d.

Let Gi be the Levi subgroup of G containing T and the roots from Ji, and let G′i be the derived group
of Gi. Each wi ∈ WJi has a lift ẇi ∈ G′i ∩ N and all such lifts are conjugate by T ∩ Gi, hence the
normalized Kac-coordinates of Ad(ẇi) in Ad(G′i) are well-defined.

Given an m-admissible element w = w1 · · ·wd as in (5), let Kac(w)un be the set of un-normalized Kac
coordinates (s0, s1, . . . , s`) such that

• For j ∈ Ji the coordinate sj is the corresponding normalized Kac coordinate of wi in G′i.

• For i ∈ {0, 1, . . . , `} − J , the coordinate si ranges over a set of representatives for Z/m.

•
∑`

i=0 aisi = m.

If w is any automorphism of T we set (1− w)T := {t · w(t)−1 : t ∈ T}.

Lemma 4.2 If w is m-admissible, then Kac(w) is the set of Kac diagrams obtained by applying the
normalization algorithm of section 2.2 to the elements of Kac(w)un.

Proof: Each Kac diagram in Kac(w)un is that of a lift of w in N of order m. Hence the normalization
of this diagram lies in Kac(w). Conversely, suppose (si) are normalized Kac coordinates lying in
Kac(w). By definition, there is an inner automorphism θ ` w (notation of section 4.2) of order m with
these normalized Kac-coordinates, and we may assume that θ = Ad(n) for some n ∈ N , a lift of w.
Then

n = ẇ1ẇ2 · · · ẇd · t
where each ẇi is a lift of wi and t ∈ T . Let Z be the maximal torus in the center of G′1 ·G′2 · · ·G′d · T .
Then T = Z · (1− w)T , so we may conjugate n by T to arrange that t ∈ Z. Next, we conjugate each
ẇi in G′i to an element ti ∈ T ∩G′i, thus conjugating n to

n′ = t1 · t2 · · · td · t ∈ T.

Since n′ has order m there exists λ̌ ∈ X̌ such that n′ = λ̌(ζ). As in section 2.2, the point x =
x0 + 1

m
λ̌ ∈ AQ has order m and the simple affine roots ψi take values ψi(x) = s′i/m, where s′i are the

Kac coordinates of n′ and
∑`

i=0 ais
′
i = m. If j ∈ Ji then s′j is a Kac coordinate of the G′i-conjugate ẇi

of ti, and if i ∈ {0, 1, . . . , `}− J we have αi(n′) = ζs
′
i , so the class of s′i in Z/m is determined. Hence

the Kac coordinates (s′i) lie in Kac(w)un and their normalization is (si). �
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Proposition 4.3 Let θ ∈ Aut(g)◦ be an inner automorphism of orderm nonzero in k with rank(θ) > 0.
Then there exists an m-admissible element w ∈ W such that θ ` w, and the rank of θ is given by

rank(θ) = max{rank(w) : θ ` w},

where the maximum is taken over all W -conjugacy classes of m-admissible elements w ∈ W such that
θ ` w.

Proof: We may assume that t is the canonical Cartan subalgebra for θ, so that θ = Ad(n) for some
n ∈ N . The element w = nT ∈ N/T = W has order m and θ ` w. Recall that the canonical Cartan
subalgebra has the property that t1 is a Cartan subspace for θ. Hence rank(θ) = rank(w) > 0 .

Assume first that t0 = 0, that is, w is elliptic. Then w is m-admissible and its admissible factorization
(5) is w = w1, with d = 1, so the proposition is proved in this case.

Assume now that t0 6= 0. Let R0 be the set of roots in R vanishing on t0. Since R0 is the root system of
a Levi subgroup of G, there is a basis ∆ = {α1, α2, . . . , α`} of R such that ∆0 := ∆ ∩R0 is a basis of
R0. We have ∆0 = {αj : j ∈ J} for some subset J ⊂ {1, 2, · · · , `}. Decomposing R0 into irreducible
root systems Ri

0, we have corresponding decompositions

R0 = R1
0 ∪R2

0 ∪ · · · ∪Rn
0 ,

∆0 = ∆1
0 ∪∆2

0 ∪ · · · ∪∆n
0 ,

J = J1 ∪ J2 ∪ · · · ∪ Jn,
WJ = WJ1 ×WJ2 × · · · ×WJn ,

w = w1 · w2 · · · · wn.

By construction, w is elliptic in WJ and has an eigenvalue of order m on the reflection representation
of WJ . Therefore, each wi is elliptic in WJi and has eigenvalues of order dividing m. And since
rank(w) > 0 there is some number d ≥ 1 of wi’s having an eigenvalue of order exactly m. Let the
factors be numbered so that wi has an eigenvalue of order m for i ≤ d, and wi has no eigenvalue of
order m for i > d. The element

w′ = w1w2 · · ·wd
is m-admissible.

As before, let Gi be the Levi subgroup of G containing T and the root subgroups from Ji, and let G′i
be the derived subgroup of Gi. The derived group of CG(t0) is a commuting product G′1 ·G′2 · · ·G′n.

Each wi has a lift ẇi ∈ N ∩G′i; such a lift is unique up to conjugacy by T ∩G′i and we have

θ = ẇ1ẇ2 · · · ẇn · t

for some t ∈ T . For i > d we conjugate ẇi in G′i to an element ti ∈ T , obtaining a conjugate θ′ of θ
having the form

θ′ = ẇ1ẇ2 · · · ẇd · t′.

Therefore θ ` w′ and w′ is m-admissible of the same rank as θ. The proposition is proved. �
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5 Principal and stable gradings

Retain the set-up of section 4. Let B be a Borel subgroup of G = Aut(g)◦ containing our fixed
maximal torus T . The algebraic group G has root datum (X,R, X̌, Ř), where X = X∗(T ) (resp.
X̌ = X∗(T )) are the lattices of weights (resp. co-weights) of T , and R (resp. Ř) are the sets of roots
(resp. co-roots) of T in G. The base ∆ of R is the set of simple roots of T in B. As before, we choose
a pinning (X,R, X̌, Ř, {Ei}), where Ei ∈ g is a root vector for the simple root αi ∈ ∆. This choice
gives an isomorphism from Aut(R,∆) to the group Θ = {ϑ ∈ Aut(g, t) : ϑ{Ei} = {Ei} } of pinned
automorphisms, and we have a splitting

Aut(g) = Go Θ.

5.1 Principal gradings

For each positive integer m and pinned automorphism ϑ ∈ Aut(R,∆), we have a principal grading
g = ⊕i∈Z/m gi given (as in section 2.4) by the point xm := 1

m
ρ̌ + x0 (Recall that ρ̌ is the sum of the

fundamental co-weights dual to the simple roots αi ∈ ∆.) The normalized Kac diagram of xm may be
obtained via the algorithm described in section 2.4. (These Kac diagrams may also be found in [8].)

Note that g1 contains the regular nilpotent element E := E1 +E2 + · · ·+E` associated to our pinning.
If m is nonzero in k and we choose a root of unity ζ ∈ k× of order m, then gi is the ζ i-eigenspace for
the automorphism

θm := ρ̌(ζ)ϑ.

Note that the ζ-eigenspace g1 for θm contains the regular nilpotent element E := E1 + E2 + · · · + E`
associated to our pinning. Conversely if θ = λ̌(ζ)ϑ is an automorphism of order m whose g1 contains
a regular nilpotent element then θ is principal. If the characteristic p of k is zero or sufficiently large,

the element ρ̌(ζ) is the image of
[
ζ 0
0 1

]
under the principal embedding PGL2 ↪→ G associated by

the Jacobson-Morozov theorem to E. Elsewhere in the literature a principal automorphism is called
“N -regular”.

The first aim of this section is to show that lifts to Aut(g) of Z-regular elliptic automorphisms σ ∈
Aut(R) are principal. (Recall that an automorphism σ ∈ Aut(R) is called elliptic if Xσ = 0.)

More precisely, let σ = wϑ ∈ Wϑ be an elliptic Z-regular automorphism of R (Def. 3.1). Let n ∈ N
be a lift of w. Since σ is elliptic the fixed-point group T σ is finite, so the coset nTϑ ⊂ Gϑ consists of a
single T -orbit under conjugation. It follows that the G-conjugacy class Cσ of nϑ in Gϑ depends only
on σ. In this section we will prove the following.

Proposition 5.1 Assume σ ∈ Wϑ is elliptic and Z-regular and that the order m of σ is nonzero in k.
Then the conjugacy class Cσ contains ρ̌(ζ)ϑ for every ζ ∈ k× of order m.

The second aim of this section is to characterize the principal gradings which arise from elliptic Z-
regular automorphisms of R in terms of stability (see section 5.3).
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5.2 Conjugacy results

If σ is an automorphism of an abelian group A, we set

(1− σ)A := {a · σ(a)−1 : a ∈ A}.

Let Nϑ,W ϑ denote the fixed-point subgroups of ϑ in N,W respectively, and let Nϑ = {n ∈ N :
ϑ(n) ≡ n mod T}. It is known (see [33]) that Nϑ = Nϑ · T . This group acts on the coset Tϑ by
conjugation. Meanwhile the fixed-point group W ϑ acts on the quotient torus

Tϑ = T/(1− ϑ)T

whose character and cocharacter groups X∗(Tϑ) = Xϑ and X∗(Tϑ) = X̌/(1− ϑ)X̌ are the invariants
and coinvariants of ϑ in X and X̌ , respectively.

We now recall some conjugacy results from [4] and [24] which are stated over C but whose proofs are
unchanged if C is replaced by any algebraically closed field k. First, we have [4, 6.4]:

Lemma 5.2 The natural projection ν : T → Tϑ induces a bijection

Tϑ/Nϑ −→ Tϑ/W
ϑ,

sending tϑ mod Nϑ 7→ ν(t) mod W ϑ.

From [24, Lemma 3.2] each semisimple element gϑ ∈ Gϑ is G-conjugate to an element of tϑ with
t ∈ T ϑ. Now [4, 6.5] shows that sending gϑ to the class of ν(t) modulo W ϑ gives a bijection between
the set of semisimple G-conjugacy classes in Gϑ and the orbit space Tϑ/W ϑ.

Now the affine variety Tϑ/W ϑ has a canonical Z-form, namely the ring Z[Xϑ]W
ϑ of W ϑ-invariants in

the integral group ring of the character group Xϑ of Tϑ. Indeed, let Xϑ
+ be the set of dominant weights

in Xϑ and for each λ ∈ Xϑ
+, let ηλ be the sum in Z[Xϑ] over the W ϑ-orbit of λ, and let ηkλ be the same

sum in the group ring k[Xϑ]. Then {ηλ : λ ∈ Xϑ
+} and {ηkλ : λ ∈ Xϑ

+} are bases of Z[Xϑ]W
ϑ and

k[Xϑ]W
ϑ respectively, and {1 ⊗ ηλ : λ ∈ Xϑ

+} is a k-basis of k ⊗Z (Z[Xϑ]W
ϑ
). It follows that the

canonical mapping Z[Xϑ]W
ϑ −→ k[Xϑ]W

ϑ induces an isomorphism

k ⊗Z (Z[Xϑ]W
ϑ

)
∼−→ k[Xϑ]W

ϑ

. (6)

The torus Tϑ is a maximal torus in a connected reductive group Gϑ with Weyl group W ϑ, so Z[Xϑ]W
ϑ

has another Z-basis, {χλ : λ ∈ Xϑ
+}, where

χλ =
∑
µ∈Xϑ

mµ
λµ,

and mµ
λ is the multiplicity of the weight µ in the irreducible representation of highest weight λ of the

complex group with the same root datum as Gϑ. Therefore k[Xϑ]W
ϑ has another k-basis, {χkλ : λ ∈

Xϑ
+}, where χkλ ∈ k[Xϑ]W

ϑ is the image of 1⊗ χλ under the isomorphism (6).
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We now regard G as a Chevalley group scheme over Z, writing G(A) for the group of A-valued points
in a commutative ring A. The group heretofore denoted by G is now G(k). Likewise T and N are now
group schemes over Z.

Let λ ∈ Xϑ
+ and let V be the irreducible representation of G(C) of highest weight λ. Since ϑλ = λ

it follows that V extends uniquely to a representation of G(C) · 〈ϑ〉 such that ϑ acts trivially on the
highest weight space V (λ).

Choose a G(Z)-stable lattice M in V such that M ∩ V (µ) spans each weight space V (µ) in V and
ϑM = M . For example, we could take M to be the admissible Z-form of V constructed by Kostant
in [15]. We get a representation of G(k) · 〈ϑ〉 on Vk := k ⊗M which may be reducible and which
depends on M . However, since M contains a basis of V , the traces on Vk of elements of G(k) · 〈ϑ〉 are
independent of the choice of M .

Let A = Z[ζ] ⊂ C be the cyclotomic ring generated by a root of unity ζ ∈ C× of order m. Assume
that k is algebraically closed and m is nonzero in k. Choose ζk ∈ k× a root of unity of order m. We
have ring homomorphisms

C ι←↩ A π−→ k,

where ι is the inclusion and π(ζ) = ζk. We use the same letters to denote maps on groups of points,
e.g.,

G(C)
ι←↩ G(A)

π−→ G(k),

and similarly for T and N .

Lemma 5.3 Let s, t ∈ T (k)ϑ be elements of order m such that tr(sϑ, Vk) = tr(tϑ, Vk) for all irre-
ducible representations V of G(C) whose highest weight belongs to Xϑ

+. Then sϑ and tϑ are G(k)-
conjugate.

Proof: Let V ′ be the representation of Gϑ(C) with the same highest weight as V . And choose a lattice
M ′ ⊂ V ′ analogous to M above. Since s has order m there is a co-weight ω̌ ∈ X̌ such that

s = ω̌(ζk) = πω̌(ζ).

For each µ ∈ Xϑ let M(µ) = M ∩ V (µ) and likewise set M ′(µ) = M ′ ∩ V ′(µ). We have

tr(sϑ, Vk) =
∑
µ∈Xϑ

µ(s) · tr(ϑ, k ⊗M(µ)) =
∑
µ∈Xϑ

ζ
〈µ,ω̌〉
k · π (tr(ϑ,M(µ)))

= π

∑
µ∈Xϑ

ζ〈µ,ω̌〉 · tr(ϑ,M(µ))

 .

By a result of Jantzen (see for example [17]) we have∑
µ∈Xϑ

ζ〈µ,ω̌〉 · tr(ϑ,M(µ)) =
∑
µ∈Xϑ

ζ〈µ,ω̌〉 · dimM ′(µ).
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It follows that

tr(sϑ, Vk) = π

∑
µ∈Xϑ

ζ〈µ,ω̌〉 · dimM ′(µ)

 = tr(ν(s), V ′k).

Applying this identity to tϑ as well, we find that

tr(ν(s), V ′k) = tr(ν(t), V ′k).

Therefore χkλ(ν(s)) = χkλ(ν(t)) for every λ ∈ Xϑ
+. Since these χkλ are a basis of k[Xϑ]W

ϑ , it follows
from [31, Cor. 6.6] that ν(s) ≡ ν(t) mod W ϑ. By Lemma 5.2 we have that sϑ and tϑ are G(k)-
conjugate, as claimed. �

Now suppose g ∈ G(Z) and gϑ is semisimple of order m. Let s ∈ T (C)ϑ and t ∈ T (k)ϑ be such that
ι(g)ϑ is G(C)-conjugate to sϑ and π(g)ϑ is G(k)-conjugate to tϑ.

Lemma 5.4 In the situation just described, we have s ∈ T (A) and π(s)ϑ is G(k)-conjugate to tϑ.

Proof: As above we have s = ω̌(ζ) for some co-weight ω̌ ∈ X̌ . It follows that s ∈ T (A). Moreover,
gϑ preserves the lattice M , so we have

tr(ι(g)ϑ,M) = tr(sϑ, V ) =
∑
µ∈Xϑ

ζ〈µ,ω̌〉 · tr(ϑ,M(µ)).

Applying π to both sides we get

π (tr(ι(g)ϑ,M)) =
∑
µ∈Xϑ

ζ
〈µ,ω̌〉
k · tr(ϑ, Vk(µ)) = tr(π(s)ϑ, Vk). (7)

On the other hand, we can first apply π : G(A)→ G(k) and then take traces. This gives

π (tr(ι(g)ϑ,M)) = tr(π(g)ϑ, Vk) = tr(tϑ, Vk). (8)

Comparing the expressions (7) and (8) and using Lemma 5.3 we see that π(s)ϑ and tϑ are G(k)-
conjugate as claimed. �

We are ready to prove Prop. 5.1. Recall that wϑ ∈ Wϑ is an elliptic Z-regular automorphism of R
whose order m is nonzero in the algebraically closed field k. Let ζ ∈ k× be a root of unity of order
m. Recall that ρ̌ is the sum of the fundamental co-weights arising from our chosen pinning. We have
ρ̌ ∈ X̌ϑ and ρ̌(ζ) ∈ T (k)ϑ. We now prove Prop. 5.1 in the following form.

Proposition 5.5 For any lift n ∈ N(k) of w, the element nϑ ∈ G(k)ϑ is G(k)-conjugate to ρ̌(ζ)ϑ.

Proof: Assume first that k has characteristic zero. In this case the proof relies on [23, Thm. 3.3] and
is similar to the proof of [23, Thm. 4.2 (iii)]. The automorphism τ := ρ̌(ζ)ϑ ∈ Aut(g) has order m
and gives a grading g = ⊕i∈Z/m g′i, where g′i is the ζ i-eigenspace of τ . The sum E =

∑`
i=1 Ei of

the simple root vectors in our pinning belongs to g′1. By [23, Thm. 3.3(v)], the dimension of a Cartan
subspace c ⊂ g′1 may be computed as follows. Let f1, . . . , f` ∈ k[t] be homogeneous generators for
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the algebra of W -invariant polynomials on t. Assume, as we may, that each fi is an eigenvector for ϑ,
with eigenvalue denoted εi, and set di = deg fi. The integer

a(m,ϑ) := |{i : 1 ≤ i ≤ `, εiζ
di = 1}|

depends only on m and ϑ, and we have

dim c = a(m,ϑ).

Let s be a canonical Cartan subalgebra for τ (section 4.1). There exists g ∈ G such that t = Ad(g)s,
and we set θ′ = gτg−1. Since θ′ normalizes t and belongs to Gϑ we have θ′ ∈ Nϑ. Let w′ϑ ∈ Wϑ be
the projection of θ′. Then Ad(g)c is the ζ-eigenspace t(w′ϑ, ζ) of w′ϑ in t, so

dim t(w′ϑ, ζ) = a(m,ϑ).

Since wϑ is Z-regular and therefore k-regular (by Prop. 3.2), it follows from [29, Prop. 3.6] that we
also have dim t(wϑ, ζ) = a(m,ϑ), and therefore

dim t(wϑ, ζ) = dim t(w′ϑ, ζ).

By [29, Thm. 6.4 (iv)] the elements wϑ,w′ϑ ∈ Wϑ are conjugate under W . It follows that nϑ is
N -conjugate to an element of Tθ′. As w′ϑ is also elliptic, it follows that nϑ is actually conjugate to θ′,
and hence to τ = ρ̌(ζ)ϑ, as claimed.

Now assume that k has positive characteristic not dividing m. Let A be the cyclotomic subring of C
generated by z = e2πi/m and let π : A→ k be the ring homomorphism mapping z 7→ ζ . By ellipticity,
all lifts of wϑ to N(k)ϑ are T (k)-conjugate, so we may choose our lift to be of the form π(n) with
n ∈ N(Z). From the characteristic zero case just proved, we have that ι(n)ϑ is G(C)-conjugate to
ρ̌(z)ϑ. By Lemma 5.4 it follows that π(n)ϑ is G(k)-conjugate to ρ̌(ζ)ϑ, as claimed. �

5.3 Stable gradings

Let H be a connected reductive k-group acting on a k-vector space V . A vector v ∈ V is called
H-stable (in the sense of Geometric Invariant Theory, see [22]) if the H-orbit of v is closed and the
stabilizer of v in H is finite. The second condition means that the stabilizer Hv is a finite algebraic
group: it has only finitely many points over the algebraically closed field k.

Recall we are assuming the characteristic of k is not a torsion prime for G and that the period m of
the grading g = ⊕i∈Z/mgi is nonzero in k. We have chosen a root of unity ζ ∈ k× of order m, and
θ ∈ Aut(g) is the automorphism of order m whose ζ i-eigenspace is gi.

We say the grading g = ⊕i∈Z/m gi (or the automorphism θ) is stable if there areG0-stable vectors in g1.
In this section we will show that stable gradings are closely related to elliptic Z-regular automorphisms
of the root system R.

Lemma 5.6 A vector v ∈ g1 is stable if and only if v is a regular semisimple element of g and the
action of θ on the Cartan subalgebra centralizing v is elliptic.
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Proof: Vinberg showed ([35, Prop. 3]) that the G0-orbit of v is closed in g1 if and only if v is
semisimple in g. His proof works also in positive characteristic (see [19, 2.12-3]). If v is semisimple
its centralizer CG(v) is connected (since p is not a torsion prime, by [34, Thm. 3.14]) and reductive
with semisimple derived subgroup H [5, 13.19, 14.2]. As v is an eigenvector for θ we have θ(H) = H .
If v is stable then Hθ is finite. Let π : Hsc → H be the simply-connected covering of H . We lift θ to an
automorphism of Hsc, denoting it again by θ. Now Hθ

sc is connected [33, chap. 8] so π(Hθ
sc) ⊂

(
Hθ
)◦

is trivial. Since kerπ is finite, we must have Hθ
sc = 1. This implies that Hsc = 1. For otherwise, by

[33, chap. 8], there would be a maximal torus T ′ contained in a Borel subgroup B′ of Hsc such that
θ(T ′) = T ′ and θ(B′) = B′, and Hθ

sc would have rank equal to the number of θ-orbits on the set of
simple roots of T ′ in B′. Therefore Hsc = 1, so H = 1 and CG(v) is a torus. This means that v is
regular in g. The reverse implication is clear. �

Prop. 5.1 and Lemma 5.6 have the following corollaries.

Corollary 5.7 Let θ ∈ Gϑ have order m nonzero in k. The following are equivalent.

1. The grading on g given by θ is stable;

2. The action of θ on its canonical Cartan subalgebra induces an elliptic Z-regular automorphism
of R;

3. θ is principal and m is the order of an elliptic Z-regular element of Wϑ.

Corollary 5.8 The map sending a stable automorphism θ ∈ Aut(g) to the automorphism ofR induced
by the action of θ on its canonical Cartan subalgebra gives a bijection between theG-conjugacy classes
of stable automorphisms of g and the W -conjugacy classes of elliptic Z-regular automorphisms of R.

6 Affine-pinned automorphisms

In this section we construct certain automorphisms of g arising from symmetries of the affine Dynkin
diagram. These will be used to study outer automorphisms of E6.

Assume g is a simple Lie algebra over C with adjoint group G = Aut(g)◦. Let N, T be the normalizer
and centralizer of a Cartan subalgebra t of g and let W = N/T . Let R be the set of roots of T in g
and choose a base ∆ = {α1, . . . , α`} of R. Let α0 be the lowest root of R with respect to ∆ and set
Π = {αi : i ∈ I}, where I = {0, 1, . . . , `}. The subgroup of W preserving Π,

WΠ = {w ∈ W : wΠ = Π}

is isomorphic to the fundamental group of G. Each element w ∈ WΠ determines a permutation σ of I
such that

w · αi = ασ(i).

Choose a Chevalley lattice gZ ⊂ g spanned by a lattice in t and root vectors for T . An affine pinning
is a set Π̃ = {E0, E1, · · · , E`} consisting of nonzero root vectors Ei ∈ gαi ∩ g(Z) for each i ∈ I . Let
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N(Z) be the stabilizer of g(Z) in N , and consider the subgroup

NΠ̃ = {n ∈ N(Z) : nΠ̃ = Π̃}.

Lemma 6.1 Let Π̃ be an affine pinning. Then the projection N → W restricts to an isomorphism
f : NΠ̃

∼−→ WΠ.

Proof: It is clear that f(NΠ̃) ⊂ WΠ. An element in ker f lies in T and fixes each root vector Ei, hence
lies in the center of G, which is trivial since G is adjoint. Hence f is injective.

Let w ∈ WΠ. Since the projection N → W is surjective on N(Z) [32, Lemma 22], there is a lift n′ of
w such that n′ ∈ N(Z). For each i ∈ I we have n′ · Ei = ciEσ(i), for some ci = ±1.

Let ω̌1, . . . , ω̌` ∈ X∗(T ) be the fundamental coweights of T dual to α1, . . . , α`. The element t =∏`
i=1 ω̌i(ci) lies in T (Z) and the new lift n = n′t of w satisfies n · Ei = Eσ(i) for 1 ≤ i ≤ `.

Let d be the order of w. Then σd = 1 so nd fixes Ei for each 1 ≤ i ≤ `. Hence nd ∈ T and belongs to
the kernel of each simple root αi. Since G is adjoint, it follows that nd = 1.

Let i = σ(0). It follows from [6, VI.2.2] that σj(0) 6= 0 for 1 ≤ j < d. By what has been proved, we
have

n−1 · Ei = nd−1 · Ei = Eσd−1(i) = Eσ−1(i) = E0.

It follows that n · E0 = Ei, so n is a lift of w in NΠ̃. �

Now let k be an algebraically closed field of characteristic not equal to two, and view G as a group
scheme over Z, via the lattice gZ. Take w ∈ WΠ of order two. Again from [6, VI.2.2] there exists a
unique minuscule coweight ω̌j such that wω̌j = −ω̌j . Since 2 6= 0 in k, the natural map T (Z)→ T (k)
is injective, which implies that the map N(Z)→ N(k) is injective. We now let n be the image in N(k)
of the unique lift of w in NΠ̃.

Proposition 6.2 There exists an affine pinning Π̃ such that n is G(k)-conjugate to ω̌j(−1). The Kac
coordinates of Ad(n) are given by:

si =

{
1 for i ∈ {0, j}
0 for i /∈ {0, j}.

These labels give the unique w-invariant Kac-diagram of order two having s0 6= 0.

Proof: By [7, Lemma 5] there are mutually orthogonal roots γ1, . . . , γm ∈ R with corresponding
reflections r1, . . . , rm ∈ W , such that

w = r1r2 · · · rm. (9)

Since ω̌j is minuscule we have 〈α, ω̌j〉 ∈ {−1, 0, 1} for each α ∈ R. The positive roots made negative
by w are those for which 〈α, ω̌j〉 6= 0. Since wγi = −γi for each i, we may choose the sign of each γi
so that 〈γi, ω̌j〉 = 1. And since

−ω̌j = w · ω̌j = ω̌j −
m∑
i=1

〈γi, ω̌j〉γ̌i,
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it then follows that
γ̌1 + γ̌2 + · · ·+ γ̌m = 2ω̌j. (10)

For each i = 1, . . . ,m there exists a morphism ϕi : SL2 → G over Z whose restriction to the diagonal
subgroup is given by

ϕi

([
t 0
0 t−1

])
= γ̌i(t)

and such that ϕi

([
0 −1
1 0

])
∈ N(Z) and is a representative of ri.

Since the roots γi are mutually orthogonal, the images of these homomorphisms ϕi commute with one
another. Hence we have a Z-morphism

ϕ : SL2 → G, given by ϕ

([
a b
c d

])
=

m∏
i=1

ϕi

([
a b
c d

])
.

By equation (9) the element

n := ϕ

([
0 −1
1 0

])
(11)

belongs to N(Z) and represents w. Equation (10) implies that

ϕ

([
t 0
0 t−1

])
= ω̌j(t)

2,

which in turn implies that n has order two. Since the matrices
[
0 −1
1 0

]
and

[√
−1 0
0 −

√
−1

]
are

conjugate in SL2, it follows that n is conjugate to ω̌j(−1) in G, and that Ad(n) has the asserted Kac-
coordinates.

We construct an affine pinning stable under n as follows. Choose representatives αi of the w-orbits in
Π, and choose arbitrary nonzero root vectors Ei ∈ g(Z) for these roots. Let σ be the permutation of
I induced by w. If w · αi 6= αi, let Eσ(i) = n · Ei. Since n has order two, we have n · Eσ(i) = Ei.
If w · αi = αi then αi is orthogonal to each of the roots γ1, . . . , γm, since the latter are negated by
w. It follows that the image of each homomorphism ϕ1, . . . , ϕm centralizes the root space gαi , so any
nonzero vector Ei ∈ gαs ∩ g(Z) is fixed by n. The collection Π̃ = {Ei} of vectors thus defined is an
affine pinning stable under n. �

The following lemma will also be useful.

Lemma 6.3 Let S = (T n)◦ be the identity component of the subgroup of T centralized by n. Then S
is centralized by the entire group ϕ(SL2).

Proof: Since 2ω̌j is a simple co-weight in ϕ(SL2) and ω̌j is minuscule, we have that 〈α, 2ω̌j〉 ∈
{−2, 0, 2} for every root α ∈ R. Hence ϕ(SL2) acts on g as a sum of copies of the trivial and adjoint
representations. Applying the element[

1 0
−t 1

]
·
[
0 −1/t
t 0

]
=

[
1 −1/t
0 1

]
·
[
1 0
t 1

]
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to a vector in the zero weight space and comparing components in the −2 weight space, we find (since
the characteristic of k is not two) that any vector in g invariant under the normalizer of 2ω̌j(k

×) in
ϕ(SL2) is invariant under all of ϕ(SL2). Since the Lie algebra of S consists of such vectors, the lemma
is proved.

�

7 Little Weyl groups

Let θ be an automorphism of g whose order m is invertible in k. Choose a root of unity ζ ∈ k× of
order m and let g = ⊕i∈Z/m gi be the grading of g into ζ i-eigenspaces of θ. Choose a Cartan subspace
c in g1 and assume the rank r = dim c is positive. The little Weyl group is defined as

W (c, θ) = NG0(c)/ZG0(c),

where G0 = (Gθ)◦ is the connected subgroup of G with Lie algebra g0. When it is necessary to specify
G in the little Weyl group we will write WG(c, θ).

It is clear from the definition that W (c, θ) acts faithfully on c. From [35] and [19], it is known that
the action of W (c, θ) on c is generated by transformations fixing a hyperplane in c, that the restriction
map k[g1]G0 → k[c]W (c,θ) is an isomorphism, and that this ring is a polynomial ring with homogeneous
generators f1, . . . , fr, such that

|W (c, θ)| =
r∏
i=1

deg(fi).

7.1 Upper bounds on the little Weyl group

Recall we have fixed a Cartan subalgebra t in g, with normalizer and centralizer N and T in G and we
have identified W = N/T .

Replacing θ by a G-conjugate if necessary, we may assume t is the canonical Cartan subalgebra for θ
(see 4.1). In particular c is the ζ-eigenspace of θ in t. Then θ normalizes N and T in Aut(g), giving an
action of θ on W ; let W θ = {y ∈ W : θ(y) = y} be the fixed point subgroup of θ in W .

Elements in W θ commute with the action of θ on t, so W θ acts on the eigenspace c. Let

W θ
1 := W θ/CW (c)θ (12)

be the quotient acting faithfully on c. Since t is a Cartan subalgebra in the Levi subalgebra m = zg(c),
it follows that every element of W (c, θ) has a representative in N and that W (c, θ) may be viewed as a
subgroup of W θ

1 . Thus, we have an embedding

W (c, θ) ↪→ W θ
1 .

Note that W (c, θ) is more subtle than W θ
1 . For it can happen that two automorphisms θ and θ′ of the

same order agree on t andW , so they have the same Cartan subspace c andW θ
1 = W θ′

1 , but nevertheless
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W (θ, c) 6= W (θ′, c) (e.g. cases 4a and 4b in E6; these examples are also used in [23, 4.5] to illustrate
other subtleties).

A still coarser group, depending only on c and not on θ is

W (c) := NW (c)/CW (c).

As subgroups of GL(c), we have containments

W (c, θ) ⊂ W θ
1 ⊂ W (c).

Under certain circumstances one or both of these containments is an equality.

Lemma 7.1 Suppose c contains a regular element of g. Then

W θ
1 = W θ = W (c).

Proof: By regularity it is clear that W θ
1 = W θ and that W (c) = NW (c). And any y ∈ NW (c)

commutes with the scalar action of θ on c so the commutator [y, θ] is trivial in W , again by regularity.

�

Panyushev [23, Thm. 4.7] has shown that both containments above are equalities if θ is principal:

Proposition 7.2 (Panyushev) If θ is principal then W (c, θ) = W θ
1 = W (c).

We note that Panyushev works in characteristic zero, but his geometric proof works equally well in
good characteristic p - m, using the invariant theoretic results of [19].

Corollary 7.3 If θ is principal and the restriction of θ to t induces a Z-regular automorphism of R
then W (c, θ) = W θ.

Proof: By Prop. 3.2, Z-regularity implies k-regularity, so W (c) = W θ
1 is just W θ. �

This sharpens the first result in this direction, which was proved in Vinberg’s original work [35, Prop.
19]:

Corollary 7.4 (Vinberg) If θ gives a stable grading on g then W (c, θ) = W θ.

7.2 Little Weyl groups for inner gradings

Assume now that θ is inner, and let the restriction of θ to t be given by the element w ∈ W . In this
section we give upper and lower bounds for W (c, θ) depending only on w, under certain conditions;
these will suffice to compute almost all little Weyl groups in type En. The fixed-point group

W θ = CW (w),

is now the centralizer of w in W , which acts on the ζ-eigenspace c of w in t. The quotient by the kernel
of this action is the group W θ

1 . Simple upper and lower bounds for W (c, θ) can be obtained as follows.

29



Lemma 7.5 If U is any subgroup of CW (w) acting trivially on c then we have the inequalities

m ≤ |W (c, θ)| ≤ |CW (w)|
|U |

.

Proof: Since θ is semisimple it lies in the identity component G0 of its centralizer in G. Hence the
cyclic group 〈θ〉 embeds in W (c, θ), whence the lower bound. The upper bound follows from (12). �

Information about CW (w), including its order, is given in [7]. Using the tables therein, one can often
find a fairly large subgroup U ⊂ CW (w) as in Lemma 7.5.

Example 1: In type E8 there are eight cases (namely 12b through 12i in the tables below) where w is
a Coxeter element in W (E6). From [7] we have |CW (w)| = 144. Hence the centralizer is given by

CW (w) = 〈w〉 × 〈−w6〉 ×W (A2),

where A2 is orthogonal to the E6. Since c lives in the E6 Levi subalgebra and w6 acts by −1 on c, the
inequalities of Lemma 7.5 become equalities for U = 〈−w6〉 ×W (A2). Hence W (c, θ) ' µ12 in these
eight cases.

Example 2: In type E8 there are four cases (6h through 6k) where w is a Coxeter element in W (D4).
Let ∆4 = {β1, . . . , β4} be a base of the corresponding root subsystem of type D4. The subgroup of
W (E8) permuting ∆4 is a symmetric group S3. We may choose the Coxeter elementw to be centralized
by this S3, and c is a line in the span of the co-root vectors {dβ̌i(1)}. The roots of E8 orthogonal to
∆4 form another system of type D4, hence there is a subgroup W2 ' W (D4) fixing each root in ∆4

and therefore acting trivially on c. Since S3 normalizes ∆4 it also normalizes W2. From [7] we have
|CW (w)| = 6·6·192, so the inequalities of Lemma 7.5 hold for U ' S3nW (D4). HenceW (c, θ) ' µ6

in these four cases.

Example 3: In type E7 there are two cases (9a and 9b) where w is the square of a Coxeter element and
we have CW (w) = 〈−w〉 ' µ18. Since w is Z-regular, Lemma 7.5 only gives the inequalities

9 ≤ |W (c, θ)| ≤ 18.

In fact, we have W (c, θ) ' µ18 and µ9 in cases 9a and 9b, respectively. This shows that, in general,
W (c, θ) depends on θ, and not just on w. We will return to this example after sharpening our lower
bound, as follows.

For any subset J ⊂ {1, . . . , `} let RJ be the root subsystem generated by {αj : j ∈ J}, let WJ be
Weyl group of RJ and let gJ be the subalgebra of g generated by the root spaces gα for α ∈ RJ . If the
action of θ on t is given by an element w ∈ WJ then θ induces an automorphism θJ of gJ .

Lemma 7.6 Suppose θ normalizes the Cartan subalgebra t and has image w ∈ WJ for some subset
J ⊂ {1, . . . , `} such that the following conditions hold.

1. θ is conjugate to an automorphism θ′ = Ad(t) where t ∈ T satisfies αj(t) = ζ for all j ∈ J;

2. The rank of w on t is equal to the rank of θ;
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3. The principal automorphisms of gJ of order m have rank equal to the rank of θ.

4. w is Z-regular in WJ ;

Then there is an embedding CWJ
(w) ↪→ W (c, θ).

Proof: Condition 1 means there is g ∈ G such that the automorphism

θ′ = gθg−1 = Ad(t),

where t ∈ T satisfies αj(t) = ζ for all j ∈ J . We have t = ρ̌J(ζ)z where ρ̌J is half the sum of the
positive co-roots of RJ (with respect to ∆J ) and z ∈ kerαj for all j ∈ J .

Condition 2 means that the eigenspace c := t(w, ζ) is a Cartan subspace for θ. Note that c ⊂ gJ . Let
cJ be a Cartan subspace for the automorphism

θ′J := θ′|gJ = Ad(ρ̌J(ζ)) ∈ GJ ,

where GJ = Aut(gJ)◦.

As θ′J is principal of order m, we have dim cJ = dim c, by condition 3.

Now c′ := Ad(g)c is a Cartan subspace for θ′ in g(θ′, ζ), and the latter subspace contains gJ(θ′J , ζ),
which in turn contains cJ . Thus c′ and cJ are two Cartan subspaces in g(θ′, ζ), so there is h ∈ Gθ′ such
that Ad(hg)c = Ad(h)c′ = cJ [19, Thm. 2.5]. Conjugation by hg gives an isomorphism

WG(c, θ)
∼−→ WG(cJ , θ

′).

Since the latter group contains WGJ (cJ , θ
′
J), we have an embedding

WGJ (cJ , θ
′
J) ↪→ WG(c, θ).

Let tJ = t ∩ gJ and let t′J be a θ′J -stable Cartan subalgebra of gJ containing cJ . Then there is b ∈ GJ

such that Ad(b)t′J ⊂ tJ , so bθ′Jb
−1 normalizes tJ and c′J := Ad(b)cJ is a Cartan subspace for bθ′Jb

−1

contained in tJ . Let w′ ∈ WJ be the element induced by bθ′Jb
−1. We now have two elements w,w′ ∈

WJ having equidimensional ζ-eigenspaces c and c′J in tJ .

The one-parameter subgroups of GJ which centralize tJ form a lattice giving a Z-form X̌J of tJ . Let A
be the cyclotomic subring of C generated by z = e2pii/m and let π : A→ k be the ring homomorphism
sending z 7→ ζ . Since the map π : µm(C×) → µm(k×) is an isomorphism, it follows that the z-
eigenspaces of w and w′ in X̌J ⊗ C have the same dimension.

Now w is k-regular on tJ = k ⊗ X̌J , by condition 4. Hence w is C-regular on C ⊗ X̌J , by Prop.
3.2. By [29, 6.4], the elements w and w′ are conjugate in WJ , so w′ is k-regular on tJ . Hence the
principal automorphism bθ′Jb

−1 of gJ has regular vectors in Ad(b)cJ , so the principal automorphism θ′J
has regular vectors in cJ . It now follows from Cor. 7.3 that WGJ (cJ , θ

′
J) ' CWJ

(w′) ' CWJ
(w). �

Remarks: 1. In practice, condition 1 means the normalized Kac diagram of θ can be conjugated under
the affine Weyl groupWaff(R) to a (usually un-normalized) Kac diagram with 1 on each node for j ∈ J .
We will see that condition 1 is verified as a byproduct of the normalization algorithm.
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2. The element w is usually elliptic in WJ . When this holds, condition 3 is implied by conditions 2 and
4, as follows from Prop. 5.5.

3. Recall that the order of CWJ
(w) is the product of those degrees of WJ which are divisible by the

order m of w. Thus the lower bound in Prop. 7.6 is completely explicit.

Example 3 revisited: Recall that G has type E7 and w is the square of a Coxeter element. We give
the normalized Kac diagram for each θ, the un-normalized diagram for each θ′, whose subdiagram of
1’s determines J .

No. θ θ′ J

9a
0 1 0 1 0 1 1

0
−8 1 1 1 1 1 1

1 E7

9b
1 0 1 0 0 1 1

1
−7 1 1 1 1 1 0

1 E6

Lemma 7.6 shows that 9a has little Weyl group W (c, θ) ' µ18, but does not decide case 9b, which we
treat using invariant theory (see section 10).

7.3 Stable isotropy groups

Assume that θ ∈ Aut(g) gives a stable grading g = ⊕i∈Z/m gi. By definition there is a regular
semisimple element v ∈ g1 whose isotropy subgroup in G0 is finite. Fix a Cartan subspace c ⊂ g1 and
let S be the unique maximal torus in G centralizing c. In the proof of Lemma 5.6 we saw that CG(v)
is a torus, so we must have CG(v) = S. It follows that all stable vectors in c have the same isotropy
group in G0, equal to

S0 := S ∩G0.

We now give a more explicit description of S0.

First, S0 is contained in the fixed-point subgroup Sθ, which is finite of order

|Sθ| = det(1− θ|X∗(S)).

Let N(S) be the normalizer of S in G. Then N(S)θ meets all components of Gθ, and it follows from
Cor. 7.4 that the inclusion Sθ ↪→ Gθ induces an isomorphism

Sθ/S0 ' Gθ/G0.

This quotient depends only on the image ϑ of θ in the component group of Aut(g). To see this, let

Gsc
π−→ G

be the simply-connected covering of G and set Z = ker π. Then θ and ϑ lift to automorphisms of Gsc

which we again denote by θ and ϑ. Since Gθ
sc is connected and θ = ϑ on Z, we have an exact sequence

1 −→ Zϑ −→ Gθ
sc −→ G0 −→ 1,

which restricts to an exact sequence

1 −→ Zϑ −→ Sθsc −→ S0 −→ 1,
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where Ssc = π−1(S). Since
|Sθ| = |Sθsc|,

it follows that we have another exact sequence

1 −→ S0 −→ Sθ −→ Z/(1− ϑ)Z −→ 1.

On the other hand, Z/(1 − ϑ)Z is isomorphic to the subgroup Ωϑ ⊂ W̃aff(R, ϑ) stabilizing the alcove
C. The group Ωϑ acts as symmetries of the twisted affine Dynkin diagram D(eR). These groups are
well-known if e = 1; for e > 1, Ωϑ is the full symmetry group of D(eR) and has order 1 or 2. It
follows that if θ is stable then the isotropy group S0 fits into an exact sequence

1 −→ S0 −→ Sθ −→ Ωϑ −→ 1. (13)

The groups S0 are tabulated for exceptional groups in Sect. 8.1.

7.4 Stable orbits and elliptic curves

Certain remarkable stable gradings have appeared in recent work of Barghava and Shankar on the
average rank of elliptic curves ([1], [2]). These gradings have periods m = 2, 3, 4, 5 and are of types
2A2,

3D4,
2E6, E8 respectively, as tabulated below. Here d stands for the natural representation of SLd.

m Kac coord. W (c, θ) degrees G0 g1

2 1 %9 0 SL2(Z/2) 2, 3 SL2 /µ2 Sym4(2)

3 0 0W 1 SL2(Z/3) 4, 6 SL3 /µ3 Sym3(3)

4 0 0 0⇐ 1 0 µ2 × SL2(Z/4) 8, 12 (SL2× SL4)/µ4 2� Sym2(4)

5
0 0 0 1 0 0 0 0

0
µ5 × SL2(Z/5) 20, 30 (SL5× SL5)/µ5 5� Λ25

For each m = 2, 3, 4, 5 the isotropy subgroup S0 is isomorphic to µm × µm and the little Weyl group
W (c, θ) is isomorphic to the group Wm with presentation

Wm = 〈s, t : sm = tm = 1, sts = tst〉.

(Note that Wm is infinite for m > 5.) The exact sequence

1 −→ S0 −→ NG0(c) −→ W (c, θ) −→ 1
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gives a homomorphism W (c, θ) → Aut(S0) = GL2(Z/mZ) with image SL2(Z/mZ) and split kernel
〈θe〉 ' µm/e, as tabulated above (see also [25]).

In each case the number |R| of roots is equal to m · (m−1) · (12/b), where b = 4, 3, 2, 1 is the maximal
number of bonds between two nodes in the twisted affine diagram D(eR). We have dimG0 = |R|/m
and the degrees d1 < d2 have the property that 3d1 = 2d2 = |R|/(m − 1). Let I, J ∈ k[c]W (c,θ) be
homogeneous generators of degrees d1, d2. The discriminant on t (product of all the roots in R) has
restriction to c given by Dm−1 (up to nonzero scalar), where D = −4I3 − 27J2. The stable vectors
v ∈ c are those where D(v) 6= 0, and each stable vector v corresponds to an elliptic curve Ev with
equation

y2 = x3 + I(v) · x+ J(v)

whose m-torsion group Ev[m] is isomorphic (as an algebraic group over k) to S0. For more informa-
tion, along with some generalizations to hyperelliptic curves, see [10].

8 Classification of stable gradings

Let θ ∈ Gϑ be an automorphism of g whose order m is invertible in k, associated to the grading
g = ⊕i∈Z/m gi. After conjugating θ by an element of G we may assume that t is the canonical Cartan
subalgebra of θ. Then θ|t = wϑ, for some w ∈ W . In section 5 we have seen that θ is stable if and only
ifwϑ is an elliptic Z-regular automorphism ofR , in which case θ isG-conjugate to ρ̌(ζ)ϑ for some/any
root of unity ζ ∈ k× of order m. Moreover, the G-conjugacy class of θ is completely determined by
its order m. The values of m which can arise are the orders of elliptic Z-regular automorphisms of R
in Wϑ; these are classified in [29].

For example, the elliptic Z-regular elements in Wϑ of maximal order are the ϑ-Coxeter elements,
whose order is the ϑ-Coxeter number

hϑ = e · (b1 + b2 + · · ·+ b`ϑ)

(see (2)). These form a single W -conjugacy class in Wϑ, representatives of which include elements of
the form wϑ, where w is the product, in any order, of one reflection ri taken from each of the ϑ-orbits
on simple reflections.

For any algebraically closed field k in which hϑ is invertible and any ζ ∈ k× of order hϑ, the automor-
phism

θcox = Ad(ρ̌(ζ))ϑ ∈ Aut(g)

is stable of order hϑ and acts on its canonical Cartan subalgebra via a ϑ-Coxeter element. The Kac
coordinates of θcox have si = 1 for all i ∈ {0, . . . , `ϑ} and are already normalized.

For m < hϑ the automorphism ρ̌(ζ)ϑ corresponds to a point in AϑQ with un-normalized coordinates
si = 1 for i 6= 0 and s0 = 1 + (m− hϑ)/e (see 2.4). Here we must apply the normalization algorithm
to obtain normalized Kac coordinates. By (13) these normalized Kac diagrams will be invariant under
the symmetry group of the diagram D(eR). The resulting classification of the stable gradings in all
types is tabulated for exceptional Lie algebras in section 8.1 and for classical Lie algebras in section
8.2.
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8.1 Stable gradings of exceptional Lie algebras

Here we tabulate the stable gradings for exceptional Lie algebras, along with the corresponding elliptic
Z-regular element wϑ ∈ Wϑ and the isotropy group S0 (see section 7.3). The column labelled A will
be explained in section 8.3.

Table 2: The stable gradings for E6

m un-normalized normalized w S0 A

12 = hϑ
1 1 1 1 1

1

1

1 1 1 1 1

1

1

E6 1 E6

9
1 1 1 1 1

1

−2

1 1 0 1 1

1

1

E6(a1) 1 E6(a1)

6
1 1 1 1 1

1

−5

1 0 1 0 1

0

1

E6(a2) 1 E6(a3)

3
1 1 1 1 1

1

−8

0 0 1 0 0

0

0

3A2 µ3 × µ3 −

Table 3: The stable gradings for 2E6

m un-normalized normalized wϑ S0

18 = hϑ 111⇐11 111⇐11 −E6(a1) 1

12 −211⇐11 110⇐11 −E6 1

6 −511⇐11 100⇐10 −(3A2) 1

4 −611⇐11 000⇐10 −D4(a1) µ4 × µ4

2 −711⇐11 000⇐01 −1 µ6
2

Table 4: The stable gradings for E7

m un-normalized normalized w S0 A

18 = hϑ
1 1 1 1 1 1 1

1

1 1 1 1 1 1 1

1
E7 1 E7

14
−3 1 1 1 1 1 1

1

1 1 1 0 1 1 1

1
E7(a1) 1 E7(a1)

6
−11 1 1 1 1 1 1

1

1 0 0 1 0 0 1

0
E7(a4) 1 E7(a5)

2
−15 1 1 1 1 1 1

1

0 0 0 0 0 0 0

1
7A1 µ6

2 −
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Table 5: The stable gradings for E8

m un-normalized normalized w S0 A

30 = hϑ
1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1

1
E8 1 E8

24
1 1 1 1 1 1 1−5

1

1 1 0 1 1 1 1 1

1
E8(a1) 1 E8(a1)

20
1 1 1 1 1 1 1−9

1

1 1 0 1 0 1 1 1

1
E8(a2) 1 E8(a2)

15
1 1 1 1 1 1 1−14

1

1 0 1 0 1 0 1 1

0
E8(a5) 1 E8(a4)

12
1 1 1 1 1 1 1−17

1

1 0 1 0 0 1 0 1

0
E8(a3) 1 E8(a5)

10
1 1 1 1 1 1 1−19

1

0 0 1 0 0 1 0 1

0
E8(a6) = −2A4 1 E8(a6)

8
1 1 1 1 1 1 1−21

1

0 0 1 0 0 0 1 0

0
D8(a3) µ2 × µ2 −

6
1 1 1 1 1 1 1−23

1

0 0 0 1 0 0 0 1

0
E8(a8) = −4A2 1 E8(a7)

5
1 1 1 1 1 1 1−24

1

0 0 0 1 0 0 0 0

0
2A4 µ5 × µ5 −

4
1 1 1 1 1 1 1−25

1

0 0 0 0 1 0 0 0

0
2D4(a1) µ4

2 −

3
1 1 1 1 1 1 1−26

1

0 0 0 0 0 0 0 0

1
4A2 µ4

3 −

2
1 1 1 1 1 1 1−27

1

1 0 0 0 0 0 0 0

0
8A1 = −1 µ8

2 −

Table 6: The stable gradings for F4

m un-normalized normalized w S0 A

12 = hϑ 111⇒11 111⇒11 F4 1 F4

8 −311⇒11 111⇒01 B4 µ2 F4(a1)

6 −511⇒11 101⇒01 F4(a1) 1 F4(a2)

4 −711⇒11 101⇒00 D4(a1) µ2 × µ2 F4(a3)

3 −811⇒11 001⇒00 A2 + Ã2 µ3 × µ3 −
2 −911⇒11 010⇒00 4A1 µ4

2 −

Table 7: The stable gradings for G2

m un-normalized normalized w S0 A

6 = hϑ 1 1V 1 1 1V 1 G2 1 G2

3 −2 1V 1 1 1V 0 A2 µ3 G2(a1)

2 −3 1V 1 0 1V 0 A1 + Ã1 µ2 × µ2 −
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Table 8: The stable gradings for 3D4

m un-normalized normalized wϑ ∈ W (F4) S0

12 = hϑ 1 1W 1 1 1W 1 F4 1

6 −1 1W 1 1 0W 1 F4(a1) 1

3 −2 1W 1 0 0W 1 A2 + Ã2 µ3 × µ3

8.2 Stable gradings of classical Lie algebras

Here we tabulate the stable gradings of classical Lie algebras. For inner typeAn the only stable grading
is the Coxeter one, so we omit this case.

8.2.1 Type 2A`

The stable gradings in type 2A` correspond to divisors of ` and `+1, each having odd quotient d = m/2.
Conjugacy classes in the symmetric group are denoted by their partitions. For example, [d2k+1] consists
of the products of 2k + 1 disjoint d-cycles.

Table 9: The stable gradings for 2A2

m = 2d Kac diagram wϑ S0

6 = hϑ 1 %9 1 −1× [3] 1

2 1 %9 0 −[13] µ2 × µ2

Table 10: The stable gradings for 2A2n, n ≥ 2

m = 2d Kac diagram wϑ S0

2(2n+ 1) = hϑ 1⇒ 1 1 · · · 1 1 ⇒ 1 −1× [2n+ 1] 1

2 1⇒ 0 0 0 · · · 0 0 ⇒ 0 −1× [12n+1] µ2n
2

2(2n+1)
2k+1

, k > 0 1⇒ 0 · · · 0︸ ︷︷ ︸
A2k

1 0 · · · 0︸ ︷︷ ︸
A2k

1 · · · 1 0 · · · 0︸ ︷︷ ︸
A2k

⇒ 1 −1× [d2k+1] µ2k
2

2n
k
, 1 < n

k
odd 1⇒ 0 · · · 0︸ ︷︷ ︸

A2k−1

1 0 · · · 0︸ ︷︷ ︸
A2k−1

1 · · · 1 0 · · · 0⇒ 0︸ ︷︷ ︸
Bk

−1× [d2k, 1] µ2k
2
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Table 11: The stable gradings for 2A2n−1, n ≥ 3

m Kac diagram wϑ S0

2(2n− 1) = hϑ
1

1 1 1 1 1 · · · 1 1⇐ 1
−1× [2n− 1] 1

2n (n odd)
1

1 0 1 0 1 · · · 1 0⇐ 1
−1× [n2] 1

2(2n−1)
2k+1

, k > 0

0

0 0 · · · 0︸ ︷︷ ︸
Dk+1

1 0 · · · 0︸ ︷︷ ︸
A2k

1 · · · 1 0 · · · 0︸ ︷︷ ︸
A2k

⇐ 1 −1× [d2k+1, 1] µ2k
2

2n
k
, 1 < n

k
odd

0

0 0 · · · 0︸ ︷︷ ︸
Dk

1 0 · · · 0︸ ︷︷ ︸
A2k−1

1 · · · 1 0 · · · 0︸ ︷︷ ︸
A2k−1

⇐ 1 −1× [d2k] µ2k−2
2
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8.2.2 Types Bn, Cn

The stable gradings for type Bn and Cn correspond to divisors k of n, with period m = 2n/k. The
corresponding class in W (Bn) = W (Cn), denoted kBn/k, consists of the kth powers of a Coxeter
element.

Table 12: The stable gradings for type Bn

k = 2n
m

Kac diagram w S0

1
1

1 1 1 1 1 · · · 1 1⇒ 1
Bn 1

2
n even

1

1 0 1 0 1 · · · 0 1⇒ 0
2Bn/2 µ2

k > 2
k even

0

0 0 · · · 0︸ ︷︷ ︸
Dk/2

1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 · · · 1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 0 · · · 0 ⇒ 0︸ ︷︷ ︸
Bk/2

kBn/k µk−1
2

k > 1
k odd

0

0 0 · · · 0︸ ︷︷ ︸
D(k+1)/2

1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 · · · 1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 0 · · · 0 ⇒ 0︸ ︷︷ ︸
B(k−1)/2

kBn/k µk−1
2

Table 13: The stable gradings for type Cn

k = 2n
m

Kac diagram w S0

1 1⇒ 1 1 · · · 1 1⇐ 1 Bn 1

k > 1 1⇒ 0 · · · 0︸ ︷︷ ︸
Ak−1

1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 · · · 1 0 · · · 0︸ ︷︷ ︸
Ak−1

⇐ 1 kBn/k µk−1
2
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8.2.3 Types Dn and 2Dn (n ≥ 4)

The stable gradings for type Dn correspond to even divisors k of n and odd divisors ` of n − 1. The
stable gradings for type 2Dn correspond to odd divisors ` of n and even divisors k of n− 1.

Table 14: The stable gradings for type Dn, n ≥ 4

m Kac diagram w S0

2n− 2 = hϑ
1 1

1 1 1 · · · 1 1 1
B1 +Bn−1 1

n (if n is even)
1 1

1 0 1 0 1 · · · 0 1 0 1
2Bn/2 1

2n
k

2 < k even
0 0

0 0 · · · 0︸ ︷︷ ︸
Dk/2

1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 · · · 1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 0 · · · 0 0︸ ︷︷ ︸
Dk/2

kBn/k µk−2
2

2n−2
`

1 < ` odd
0 0

0 0 · · · 0︸ ︷︷ ︸
D(`+1)/2

1 0 · · · 0︸ ︷︷ ︸
A`−1

1 · · · 1 0 · · · 0︸ ︷︷ ︸
A`−1

1 0 · · · 0 0︸ ︷︷ ︸
D(`+1)/2

B1 + `B(n−1)/` µ`−1
2

Table 15: The stable gradings for type 2Dn, n ≥ 3

m Kac diagram w S0

2n = hϑ 1⇐ 1 1 · · · 1 1⇒ 1 Bn 1

n− 1 (if n is odd) 0⇐ 1 0 1 0 · · · 1 0 1⇒ 0 B1 + 2Bn/2 µ2 × µ2

2n
`

2 < ` odd 0⇐ 0 · · · 0︸ ︷︷ ︸
B(`−1)/2

1 0 · · · 0︸ ︷︷ ︸
A`−1

1 · · · 1 0 · · · 0︸ ︷︷ ︸
A`−1

1 0 · · · 0⇒ 0︸ ︷︷ ︸
B(`−1)/2

`Bn/` µ`−1
2

2n−2
k

1 < k even 0⇐ 0 · · · 0︸ ︷︷ ︸
Bk/2

1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 · · · 1 0 · · · 0︸ ︷︷ ︸
Ak−1

1 0 · · · 0⇒ 0︸ ︷︷ ︸
Bk/2

B1 + kB(n−1)/k µk2
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8.3 Distinguished nilpotent elements and stable gradings

Kac coordinates of stable gradings are of two kinds, according as s0 = 0 or s0 = 1. Expanding on
section 9 of [29], we show here that all stable gradings with s0 = 1 in exceptional Lie algebras are
related to distinguished nilpotent elements. For simplicity, we assume in this section only that k has
characteristic zero.

Let A be a distinguished nilpotent element in g. That is, the connected centralizer CG(A)◦ is unipotent.
There is a homomorphism λ̌ : k× → G, such that Ad(λ̌(t))A = tA for all t ∈ k∗. This gives a grading

g =
a⊕

j=−a

g(j),

where g(j) = {x ∈ g : λ(t)x = tj ·x ∀t ∈ k×} and a = max{j : g(j) 6= 0}. Since A is distinguished
the linear map ad(A) : g(0)→ g(1) is a bijection.

Set m = a + 1, assume this is nonzero in k, and choose a root of unity ζ ∈ k× of order m. The inner
automorphism θA := Ad(λ̌(ζ)) ∈ Aut(g)◦ has order m, giving rise to a Z/m-grading

g =
⊕
i∈Z/m

gi,

where gi is the ζ i-eigenspace of θA in g. We have

gi =
∑
−a≤j≤a

j≡i mod m

g(j),

so that
g0 = g(0) and g1 = g(−a)⊕ g(1).

Choose a maximal torus T in a Borel subgroupB ofG such that λ̌ ∈ X∗(T ) and 〈α, λ̌〉 ≥ 0 for all roots
α of T in B. For each of the simple roots α1, . . . , α` we have 〈αi, λ̌〉 ∈ {0, 1}. We set si = 〈αi, λ̌〉,
and also put s0 = 1. Since g(−a) contains the lowest root space, it follows that (s0, s1, . . . , s`) are the
normalized Kac-coordinates of θA.

Proposition 8.1 The following are equivalent.

1. There exists M ∈ g(−a) such that M + A is regular semisimple.

2. There exists M ∈ g(−a) such that M + A is semisimple.

3. The automorphism θA is stable.

Proof: Implication 1⇒ 2 is obvious.

We prove 2 ⇒ 3. Since A is distinguished, the centralizer CG0(A) is finite. Since G0 preserves each
summand g(j), we have CG0(M +A) ⊂ CG0(A). Hence CG0(M +A) is also finite, so the G0-orbit of
M + A in g1 is stable.
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The implication 3 ⇒ 1 is proved in [29, 9.5]. We give Springer’s argument here for completeness.
Let F be a G-invariant polynomial on g such that F (x) 6= 0 if and only if x is regular semisimple.
For example, we can choose F corresponding, under the Chevalley isomorphism k[t]G

∼→ k[t]W , to
the product of the roots. Now assuming that 3 holds, there are vectors Z ∈ g(−a) and Y0 ∈ g(1)
such that Z + Y0 is semisimple and has finite stabilizer in G0. The centralizer m = z(Z + Y0) is then
reductive, with mθ = 0, so m is a Cartan subalgebra of g and Z + Y0 is in fact regular semisimple.
Hence the polynomial FZ on g(1) given by FZ(Y ) := F (Z + Y ) does not vanish identically. Since
A is distinguished, the orbit Ad(G0)A is dense in g(1), so there is g ∈ G0 such that FZ(Ad(g)A) =
F (Ad(g)−1Z + A) 6= 0. It follows that Ad(g)−1Z + A is regular semisimple so 1 holds. �

We say that a distinguished nilpotent element A ∈ g is S-distinguished if the equivalent conditions of
Prop. 8.1 hold.

A non-example: It can happen that g(−a) + g(1) contains semisimple elements, but none have the
form M + A with M ∈ g(−a). For example, suppose g = sp6 and A has Jordan blocks (4, 2). The
automorphism θA has Kac coordinates

1⇒ 1 0⇐ 1

and has rank equal to 1. It corresponds to w ∈ W (C3) of type C2×C1, which is not Z-regular, so A is
not S-distinguished.

Proposition 8.2 Assume that g is of exceptional type and that θ ∈ Aut(g)◦ is a stable inner automor-
phism whose Kac coordinates satisfy s0 = 1. Then θ = θA where A is an S-distinguished nilpotent
element in g.

Proof: In the tables of section 8.1 we have listed, for each θ with s0 = 1, the conjugacy class of a
nilpotent element A such that θA has the normalized Kac coordinates of θ. �

Remark 1: For n even there is a unique S-distinguished non-regular nilpotent class in so2n which
is also S-distinguished in so2n+1, having Jordan partitions [2n + 1, 2n − 1] and [2n + 1, 2n − 1, 1],
respectively. ForA in these classes θA has order n. In these and the exceptional cases, the mapA 7→ θA
is a bijection from the set of S-distinguished nilpotent G-orbits in g to the set of inner gradings on g
with s0 = 1. However, Prop. 8.1 is false for Cn, n ≥ 2.

Remark 2: If A is S-distinguished then z(M + A) is a canonical Cartan subalgebra for θA on which
θA acts by an element of the conjugacy class in W associated to A via the Kazhdan-Lusztig map
[13]. This follows from the argument in [13, 9.11], and confirms two entries in [28, Table 1] (for
A = E8(a6), E8(a7)), listed there as conjectural.

Remark 3: There are exactly three cases where g0 is a maximal proper Levi subalgebra in g. These
occur in G2, F4 and E8, for a = 2, 3, 5 respectively, where CG0(A) is a symmetric group S3, S4, S5.
These groups act irreducibly on the subspaces g(−a) of dimensions 1, 2, 4, in which the stabilizers of a
vector in general position are the isotropy groups S0 = µ3,µ2 ×µ2, 1. These are the maximal abelian
normal subgroups of CG0(A).
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9 Positive rank gradings for type E6,7,8 (inner case)

Assume now that g has type En, for n = 6, 7, 8. From Prop. 4.3 we have the following algorithm to
find all inner automorphisms of g having positive rank. For each m ≥ 1 list the W -conjugacy classes
of m-admissible elements in W . For a representative w of each class, form the list Kac(w)un and apply
the normalization algorithm to each element of Kac(w)un, discarding duplicate results, to obtain the
list Kac(w) of normalized Kac coordinates. Then by Prop. 4.3, the union of the lists Kac(w) over all
conjugacy-classes of m-admissible w gives all positive rank inner automorphisms of order m.

To find the Kac(w)un when each wi is Z-regular, we can use Prop. 5.1 to find the Kac coordinates
of each wi, which lead to those of w via the normalization algorithm. It turns out that we obtain all
positive rank gradings from those m-admissible w for which each factor wi is not only elliptic but also
Z-regular in WJi . However, we do not have an a priori proof of this fact, so we must also compute Kac
coordinates of lifts in the small number of cases where not all wi are Z-regular.

These non-regular cases are handled as follows. By induction, we assume w = wi lies in no proper
reflection subgroup and we consider the powers of w. To illustrate the method, take the nonregular
element w = E8(a7) = −A2E6 of order 12. First list the 32 normalized Kac coordinates (si) with
si ∈ {0, 1} and s0 + 2s1 + 3s2 + 4s3 + 6s4 + 5s5 + 4s6 + 3s7 + 2s8 = 12. We have w2 and w3 in the
classesA2E6(a2) and 2A2 +2A1 whose lifts have Kac coordinates 0 0 0 0 0 1 0 0

1 and 0 1 0 0 0 0 0 0
0 , re-

spectively. Only one of the 32 elements on the list satisfies these two conditions, namely 0 1 0 1 0 0 1 1
0 .

Therefore this is the Kac diagram for the lift of w in the class E8(a7).

9.1 A preliminary list of Kac coordinates for positive rank gradings of inner
type

For each possible order m we list the m-admissible elements in W (E6,7,8), the rank r = rank(w).
and the form of the un-normalized Kac-coordinates of the lifts of w In the column Kac(w)un, each ∗
is an independent variable integer ranging over a set of representatives of Z/m such that the order is
always m. For each vector of ∗-values we apply the normalization algorithm to obtain the normalized
Kac coordinates Kac(w) in the last column. The sets Kac(w) are not disjoint. In a second set of
tables (section 9.2), we will select, for each θ appearing in ∪w Kac(w), a w of maximal rank for which
Kac(w) contains θ.

We use Carter’s notation for conjugacy classes in W , augmented as follows. If X is a conjugacy class
and−1 ∈ W then−X = {−w : w ∈ X}. This makes some classes easier to understand; for example,
E8(a7) = −A2E6.
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Table 16: Kac(w)un and Kac(w) for m-admissible w in W (E6)

m w r Kac(w)un Kac(w)

12 E6 1
1 1 1 1 1

1
1

1 1 1 1 1
1
1

9 E6(a1) 1
1 1 0 1 1

1
1

1 1 0 1 1
1
1

8 D5 1
∗ 1 1 1 ∗

1
1

1 1 0 1 1
1
0

1 0 1 0 1
1
1

6 E6(a2) 2
1 0 1 0 1

0
1

1 0 1 0 1
0
1

6 A5 1
1 1 1 1 1

∗
∗

1 0 1 0 1
0
1

0 1 0 1 0
1
0

6 D4 1
∗ 1 1 1 ∗

1
∗

0 0 1 0 0
1
1

1 0 0 1 1
1
0

1 1 0 0 1
1
0

1 0 1 0 1
0
1

5 A4 1
1 1 1 1 ∗

∗
∗

0 1 0 1 0
0
1

1 0 1 0 1
0
0

1 0 0 0 1
1
1

4 D4(a1) 2
∗ 1 0 1 ∗

1
∗

0 0 1 0 0
0
1

1 0 0 0 1
1
0

4 A3 1
∗ 1 1 1 ∗

∗
∗

0 0 1 0 1
0
0

0 1 0 1 0
0
0

1 0 0 1 1
0
0

1 1 0 0 1
0
0

1 0 0 1 0
0
1

3 3A2 3
1 1 ∗ 1 1

1
1

0 0 1 0 0
0
0

3 2A2 2
1 1 ∗ 1 1

∗
∗

0 0 1 0 0
0
0

1 0 0 0 1
0
1

3 A2 1
∗ ∗ 1 ∗ ∗

1
∗

0 0 0 0 0
1
1

0 0 1 0 0
0
0

0 1 0 0 1
0
0

1 0 0 1 0
0
0

1 0 0 0 1
0
1

2 4A1 4
1 ∗ 1 ∗ 1

∗
1

0 0 0 0 0
1
0

2 3A1 3
1 ∗ 1 ∗ 1

∗
∗

0 0 0 0 0
1
0

2 2A1 2
∗ ∗ 1 ∗ ∗

∗
1

0 0 0 0 0
1
0

1 0 0 0 1
0
0

2 A1 1
∗ ∗ 1 ∗ ∗

∗
∗

0 0 0 0 0
1
0

1 0 0 0 1
0
0
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Table 17: Kac(w)un and Kac(w) for m-admissible w in W (E7)

m w r Kac(w)un Kac(w)

18 E7 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1 1
1

14 E7(a1) 1 1 1 1 0 1 1 1
1

1 1 1 0 1 1 1
1

12 E7(a2) 1 1 1 0 1 0 1 1
1

1 1 0 1 0 1 1
1

12 E6 1 ∗ 1 1 1 1 1 ∗
1

1 0 1 0 1 1 1
1

0 1 0 1 1 1 1
0

1 1 0 1 0 1 1
1

10 D6 1 ∗ ∗ 1 1 1 1 1
1

0 1 0 1 0 1 0
1

1 0 1 0 1 0 1
1

1 1 0 1 0 1 1
0

9 E6(a1) 1 ∗ 1 1 0 1 1 ∗
1

0 1 0 1 0 1 1
0

1 0 1 0 0 1 1
1

8 D5 1 ∗ ∗ 1 1 1 1 ∗
1

0 0 1 0 0 1 1
1

0 1 0 0 1 1 1
0

0 1 0 1 0 1 0
0

0 1 0 0 1 0 1
1

1 0 0 1 0 1 1
0

1 0 1 0 1 0 1
0

1 0 0 1 0 0 1
1

1 1 0 0 0 1 1
1

8 D6(a1) 1 ∗ ∗ 1 0 1 1 1
1

0 1 0 0 1 0 1
1

1 0 0 1 0 1 1
0

8 A7 1 1 1 1 1 1 1 1
∗

0 1 0 1 0 1 0
0

7 A6 1 ∗ 1 1 1 1 1 1
∗

0 1 0 1 0 0 1
0

6 E7(a4) 3 1 0 0 1 0 0 1
0

1 0 0 1 0 0 1
0

6 D6(a2) 2 ∗ ∗ 1 0 1 0 1
1

0 1 0 0 0 1 0
1

1 0 0 1 0 0 1
0

6 E6(a2) 2 ∗ 1 0 1 0 1 ∗
0

0 1 0 0 1 0 1
0

1 0 0 1 0 0 1
0

6 D4 1 ∗ ∗ 1 1 1 ∗ ∗
1

1 0 0 0 1 0 0
1

0 0 0 0 1 1 1
0

0 0 1 0 0 1 1
0

0 0 0 1 0 0 0
1

0 0 1 0 0 0 1
1

0 1 0 0 1 0 1
0

0 1 0 0 0 1 0
1

1 0 0 1 0 0 1
0

1 0 0 0 0 1 1
1

6 A′′5 1 ∗ 1 1 1 1 1 ∗
∗

0 0 0 1 0 1 0
0

0 1 0 0 1 0 1
0

0 1 0 0 0 1 0
1

1 0 0 1 0 0 1
0

6 A′5 1 1 1 1 1 ∗ ∗ ∗
1

0 0 1 0 1 0 0
0

0 1 0 0 0 1 0
1

1 0 0 1 0 0 1
0

1 1 0 0 0 1 1
0

5 A4 1 ∗ ∗ 1 1 1 1 ∗
∗

0 0 0 1 0 0 1
0

0 0 1 0 0 1 0
0

0 1 0 0 0 1 1
0

0 1 0 0 0 0 1
1

1 0 0 0 1 0 1
0

4 2A3 2 1 1 1 ∗ 1 1 1
∗

0 0 0 1 0 0 0
0

0 1 0 0 0 1 0
0

4 D4(a1) 2 ∗ ∗ 1 0 1 ∗ ∗
1

0 0 0 0 1 0 1
0

0 0 0 1 0 0 0
0

0 0 1 0 0 0 1
0

0 1 0 0 0 1 0
0

1 0 0 0 0 0 1
1

4 A3 1 ∗ ∗ 1 1 1 ∗ ∗
∗

0 0 0 0 1 0 1
0

0 0 0 1 0 0 0
0

0 0 1 0 0 0 1
0

0 0 0 0 0 1 0
1

0 1 0 0 0 1 0
0

1 0 0 0 0 1 1
0

1 0 0 0 0 0 1
1

3 3A2 3 1 1 ∗ 1 ∗ 1 1
1

0 0 0 0 1 0 0
0

3 2A2 2 1 1 ∗ 1 ∗ ∗ ∗
1

0 0 0 0 1 0 0
0

0 1 0 0 0 0 1
0

3 A2 1 ∗ ∗ ∗ 1 ∗ ∗ ∗
1

0 0 0 0 0 1 1
0

0 0 0 0 1 0 0
0

0 0 0 0 0 0 1
1

0 1 0 0 0 0 1
0

2 7A1 7 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0
1

2 6A1 6 ∗ ∗ 0 0 1 0 0
0

0 0 0 0 0 0 0
1

2 5A1 5 1 ∗ 1 ∗ 1 ∗ 1
1

0 0 0 0 0 0 0
1

2 4A′1 4 1 ∗ 1 ∗ 1 ∗ ∗
1

0 0 0 0 0 0 0
1

2 4A′′1 4 ∗ ∗ 0 1 0 ∗ ∗
0

0 0 0 0 0 0 0
1

0 0 0 0 0 1 0
0

2 3A′1 3 1 ∗ 1 ∗ ∗ ∗ ∗
1

0 0 0 0 0 0 0
1

1 0 0 0 0 0 1
0

2 3A′′1 3 1 ∗ ∗ ∗ 1 ∗ ∗
1

0 0 0 0 0 0 0
1

0 0 0 0 0 1 0
0

2 2A1 2 ∗ ∗ 1 ∗ 1 ∗ ∗
∗

0 0 0 0 0 0 0
1

0 0 0 0 0 1 0
0

1 0 0 0 0 0 1
0

2 A1 1 ∗ ∗ ∗ ∗ 1 ∗ ∗
∗

0 0 0 0 0 0 0
1

0 0 0 0 0 1 0
0

1 0 0 0 0 0 1
0
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Table 18: Kac(w)un and Kac(w) for m-admissible w in W (E8)

m w r Kac(w)un Kac(w)

30 E8 1 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 1
1

24 E8(a1) 1 1 1 0 1 1 1 1 1
1

1 1 0 1 1 1 1 1
1

20 E8(a2) 1 1 1 0 1 0 1 1 1
1

1 1 0 1 0 1 1 1
1

18 E8(a4) 1 0 1 0 1 0 1 1 1
1

0 1 0 1 0 1 1 1
1

18 E7 1 1 1 1 1 1 1 ∗ ∗
1

1 1 1 0 1 0 1 0
0

0 1 0 1 0 1 1 1
1

1 0 1 0 1 1 1 1
0

1 0 1 0 1 0 1 1
1

1 1 0 1 0 1 0 1
1

15 E8(a5) 1 1 0 1 0 1 0 1 1
0

1 0 1 0 1 0 1 1
0

14 E7(a1) 1 1 1 0 1 1 1 ∗ ∗
1

1 0 1 0 1 0 1 0
0

0 1 0 0 1 0 1 1
1

1 0 1 0 0 1 1 1
0

1 0 0 1 0 1 0 1
1

14 D8 1 ∗ 1 1 1 1 1 1 1
1

1 0 1 0 1 0 1 0
0

12 E8(a3) 2 1 0 1 0 0 1 0 1
0

1 0 1 0 0 1 0 1
0

12 E8(a7) 1 0 1 0 1 0 0 1 1
0

0 1 0 1 0 0 1 1
0

12 E7(a2) 1 1 0 1 0 1 1 ∗ ∗
1

1 1 0 0 1 0 1 0
0

0 1 0 1 0 0 1 1
0

1 0 1 0 0 1 0 1
0

1 0 0 0 1 0 1 1
1

12 D8(a1) 1 1 0 1 0 0 1 0 1
0

1 0 1 0 0 1 0 1
0

12 D7 1 ∗ 1 1 1 1 1 1 ∗
1

0 0 1 0 1 0 1 0
0

1 0 1 0 0 1 0 1
0

12 E6 1 1 1 1 1 1 ∗ ∗ ∗
1

0 0 1 0 0 1 0 0
1

1 1 0 0 1 0 1 0
0

1 0 0 1 0 0 1 0
1

0 0 1 0 0 1 1 1
0

0 1 0 1 0 0 1 1
0

0 1 0 0 1 0 0 1
1

1 0 0 0 1 1 1 1
0

1 0 1 0 0 1 0 1
0

1 0 0 0 1 0 1 1
1

10 E8(a6) 2 0 0 1 0 0 1 0 1
0

0 0 1 0 0 1 0 1
0

10 D6 1 ∗ 1 1 1 1 1 ∗ ∗
1

0 1 0 0 1 0 1 0
0

1 0 1 0 0 0 1 0
0

1 1 0 0 1 0 0 0
0

0 0 1 0 0 1 0 1
0

1 0 0 1 0 0 1 1
0

1 0 0 0 1 0 0 1
1

9 E6(a1) 1 1 1 0 1 1 ∗ ∗ ∗
1

0 0 1 0 0 1 0 0
0

1 0 0 1 0 0 1 0
0

0 0 1 0 0 0 1 1
0

0 1 0 0 1 0 0 1
0

1 0 0 0 1 0 1 1
0

1 0 0 0 0 1 0 1
1

9 A8 1 1 1 1 1 1 1 1 1
∗

0 0 1 0 0 1 0 0
0

8 D8(a3) 2 0 0 1 0 0 0 1 0
0

0 0 1 0 0 0 1 0
0

8 D6(a1) 1 ∗ 1 0 1 1 1 ∗ ∗
1

0 0 1 0 0 0 1 0
0

1 0 0 0 0 1 0 0
1

0 0 0 1 0 0 1 1
0

0 1 0 0 0 1 0 1
0

1 0 0 1 0 0 0 1
0

8 D5 1 ∗ 1 1 1 1 ∗ ∗ ∗
1

0 0 1 0 0 0 1 0
0

0 1 0 0 1 0 0 0
0

1 0 0 0 1 0 1 0
0

1 1 0 0 0 0 1 0
0

1 0 0 0 0 1 0 0
1

0 0 0 1 0 0 1 1
0

0 1 0 0 0 1 0 1
0

0 0 0 0 1 0 0 1
1

1 0 0 0 0 1 1 1
0

1 0 0 1 0 0 0 1
0

1 0 0 0 0 0 1 1
1

8 A′7 1 ∗ ∗ 1 1 1 1 1 1
1

0 0 1 0 0 0 1 0
0

0 1 0 0 1 0 0 0
0

1 0 0 0 1 0 1 0
0 .

8 A′′7 1 1 1 1 1 1 1 1 ∗
∗

0 0 1 0 0 0 1 0
0

7 A6 1 1 1 1 1 1 1 ∗ ∗
∗

0 0 0 1 0 0 1 0
0

0 1 0 0 0 1 0 0
0

0 0 1 0 0 0 0 1
0

1 0 0 0 1 0 0 1
0
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Table 18 continued: Kac(w)un and Kac(w) for m-admissible w in W (E8)

m w r Kac(w)un Kac(w)

6 E8(a8) 4 0 0 0 1 0 0 0 1
0

0 0 0 1 0 0 0 1
0

6 E7(a4) 3 0 0 1 0 0 1 ∗ ∗
0

0 1 0 0 0 0 1 0
0

0 0 0 1 0 0 0 1
0

6 E6(a2) 2 1 0 1 0 1 ∗ ∗ ∗
0

0 1 0 0 0 0 1 0
0

0 0 0 0 0 1 0 0
1

0 0 0 1 0 0 0 1
0

1 0 0 0 0 1 0 1
0

6 D6(a2) 2 ∗ 1 0 1 0 1 ∗ ∗
1

0 1 0 0 0 0 1 0
0

1 0 0 0 1 0 0 0
0

0 0 0 1 0 0 0 1
0

6 D4 1 ∗ 1 1 1 ∗ ∗ ∗ ∗
1

0 1 0 0 0 0 1 0
0

0 0 0 0 0 1 0 0
1

1 0 0 0 1 0 0 0
0

1 1 0 0 0 0 0 0
0

0 0 0 0 0 1 1 1
0

0 0 0 1 0 0 0 1
0

0 0 0 0 0 0 1 1
1

1 0 0 0 0 1 0 1
0

1 0 0 0 0 0 0 1
1

6 A5 1 1 1 1 1 1 ∗ ∗ ∗
∗

0 0 0 0 1 0 1 0
0

0 0 1 0 0 0 0 0
0

0 1 0 0 0 0 1 0
0

0 0 0 0 0 1 0 0
1

1 0 0 0 1 0 0 0
0

0 0 0 1 0 0 0 1
0

1 0 0 0 0 1 0 1
0

5 2A4 2 1 1 1 ∗ 1 1 1 1
1

0 0 0 1 0 0 0 0
0

5 A4 1 1 1 1 1 ∗ ∗ ∗ ∗
∗

0 0 0 1 0 0 0 0
0

0 0 0 0 0 0 1 0
1

1 0 0 0 0 1 0 0
0

0 0 0 0 1 0 0 1
0

0 1 0 0 0 0 0 1
0

1 0 0 0 0 0 1 1
0

4 2D4(a1) 4 ∗ 1 0 1 ∗ 1 0 1
1

0 0 0 0 1 0 0 0
0

0 0 0 0 0 0 0 1
1

4 D4(a1) 2 ∗ 1 0 1 ∗ ∗ ∗ ∗
1

0 0 0 0 1 0 0 0
0

0 1 0 0 0 0 0 0
0

1 0 0 0 0 0 1 0
0

0 0 0 0 0 1 0 1
0

0 0 0 0 0 0 0 1
1

4 2A′3 2 1 1 ∗ 1 1 1 ∗ ∗
∗

0 0 0 0 1 0 0 0
0

0 1 0 0 0 0 0 0
0

1 0 0 0 0 0 1 0
0

0 0 0 0 0 0 0 1
1

4 2A′′3 2 1 1 1 ∗ 1 1 1 ∗
∗

0 0 0 0 1 0 0 0
0

4 A3 1 1 1 1 ∗ ∗ ∗ ∗ ∗
∗

0 0 0 0 1 0 0 0
0

0 1 0 0 0 0 0 0
0

1 0 0 0 0 0 1 0
0

0 0 0 0 0 1 0 1
0

0 0 0 0 0 0 0 1
1

3 4A2 4 1 1 ∗ 1 1 ∗ 1 1
1

0 0 0 0 0 0 0 0
1

3 3A2 3 1 1 ∗ 1 1 ∗ 1 1
∗

0 0 0 0 0 1 0 0
0

0 0 0 0 0 0 0 0
1

3 2A2 2 1 1 ∗ 1 1 ∗ ∗ ∗
∗

0 0 0 0 0 1 0 0
0

0 0 0 0 0 0 0 0
1

1 0 0 0 0 0 0 1
0

3 A2 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗
∗

0 0 0 0 0 1 0 0
0

0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 1 1
0

1 0 0 0 0 0 0 1
0

2 8A1 7 1 0 0 0 0 0 0 0
0

1 0 0 0 0 0 0 0
0

2 7A1 7 0 0 0 0 0 0 ∗ ∗
1

1 0 0 0 0 0 0 0
0

2 6A1 6 ∗ 0 0 1 0 0 ∗ ∗
0

1 0 0 0 0 0 0 0
0

2 5A1 5 1 ∗ ∗ 1 ∗ 1 ∗ 1
1

1 0 0 0 0 0 0 0
0

2 4A′1 4 ∗ 1 ∗ 1 ∗ 1 ∗ ∗
1

1 0 0 0 0 0 0 0
0

2 4A′′1 4 ∗ 0 1 0 ∗ ∗ ∗ ∗
0

0 0 0 0 0 0 1 0
0

1 0 0 0 0 0 0 0
0

2 3A1 3 ∗ 1 ∗ 1 ∗ ∗ ∗ ∗
1

0 0 0 0 0 0 1 0
0

1 0 0 0 0 0 0 0
0

2 2A1 2 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗
1

0 0 0 0 0 0 1 0
0

1 0 0 0 0 0 0 0
0

2 A1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1

0 0 0 0 0 0 1 0
0

1 0 0 0 0 0 0 0
0
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9.2 Tables of positive rank gradings for E6, E7 and E8

The previous lists contain the Kac coordinates of all positive rank gradings, usually with multiple
occurrences. We now discard those in each Kac(w) which appear in some Kac(w′) with rank(w′) >
rank(w). The remaining elements of Kac(w) are then the Kac coordinates of automorphisms θ of
order m with rank(θ) = rank(w). For each grading θ there still may be more than one w with
rank(θ) = rank(w). It turns out that every θ of positive rank is contained in Kac(w)un for some m-
admissible w which is a Z-regular element in the Weyl group Levi of a Levi subgroup Lθ and θ is a
principal inner automorphism of the Lie algebra of Lθ. This Levi subgroup corresponds to the subset
J of Lemma 7.6 and is indicated in the right most column of the tables below. For example, in E7 the
Kac diagrams

8a : 1 0 0 1 0 1 1
0 and 8b : 0 1 0 0 1 0 1

1

occur in Kac(w) for w of types D6(a1) and D5. Since D6(a1) is not regular in any Levi subgroup of
W (E7) and w = D5 is regular in the D5 Levi subgroup, we choose w = D5, discard w = D6(a1), and
set Lθ = D5.

Since θ is principal on the Lie algebra of Lθ, there is a conjugate θ′ of θ whose un-normalized Kac
diagram has a 1 on each node of J (cf. Lemma 7.6). There may be more than one such J , corresponding
to various conjugates θ′, and we just pick one of them.

In the tables we try to write w in a form which exhibits its regularity in the Weyl group WJ . For
example, in E6 the gradings 4a, 4b have w = D4(a1). 1 In case 4a, which is stable, we give the alternate
expression w = E3

6 to make it clear that w is Z-regular in W (E6). In case 4b there is no Waff(R)-
conjugate of θ with 1’s on the E6 subdiagram. However, w = D2

5 is the square of a Coxeter element in
WD5 , hence is Z-regular in WD5 .

The rows in our tables are ordered by decreasing m. The positive rank inner gradings of a given order
m are named ma,mb,mc, . . . , where ma is the unique principal grading of order m. The principal
grading ma has maximal rank and minimal dimension of g0 among all gradings of order m. The
remaining rows of order m are grouped according to w and Lθ, ordered in each group by increasing
dimension of g0.

The little Weyl groups W (c, θ) are also given, along with their degrees. These are either cyclic or given
by their notation in [27]. We explain their computation in section 10.

1cf. Panyushev, Example 4.5.
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Table 19: The gradings of positive rank in type E6 (inner case)

No. Kac diagram w W (c, θ) degrees θ′ Lθ

12a
1 1 1 1 1

1
1

E6 µ12 12
1 1 1 1 1

1
1

E6

9a
1 1 0 1 1

1
1

E6(a1) µ9 9
1 1 1 1 1

1
−2

E6

8a
1 0 1 0 1

1
1

D5 µ8 8
1 1 1 1 1

1
−3

E6

8b
1 1 0 1 1

1
0

D5 µ8 8
1 1 1 1 0

1
−6

D5

6a
1 0 1 0 1

0
1

E6(a2) G5 6, 12
1 1 1 1 1

1
−5

E6

6b, 6b
′

1 1 0 0 1
1
0

1 0 0 1 1
1
0

D4 µ6 6
0 1 1 1 1

1
−4

D4

6c
0 0 1 0 0

1
1

D4 µ6 6
0 1 1 1 0

1
−3

D4

6d
0 1 0 1 0

1
0

A5 µ6 6
1 1 1 1 1

0
−3

A5

5a
1 0 1 0 1

0
0

A4 µ5 5
1 1 1 1 1

1
−6

A5

5b
0 1 0 1 0

0
1

A4 µ5 5
1 1 1 1 1

2
−8

A5

5c
1 0 0 0 1

1
1

A4 µ5 5
1 1 1 1 1

3
−10

A5

4a
0 0 1 0 0

0
1

D4(a1) = E3
6 G8 8, 12

1 1 1 1 1
1
−7

E6

4b
1 0 0 0 1

1
0

D4(a1) = D2
5 G(4, 1, 2) 4, 8

0 1 1 1 1
1
−6

D5

4c
0 1 0 1 0

0
0

A3 µ4 4
2 0 1 1 1

1
−6

A4

4d, 4d
′

1 1 0 0 1
0
0

1 0 0 1 1
0
0

A3 µ4 4
0 1 1 1 1

0
−4

A4

3a
0 0 1 0 0

0
0

3A2 G25 6, 9, 12
1 1 1 1 1

1
−8

E6

3b
1 0 0 0 1

0
1

2A2 = A2
5 G(3, 1, 2) 3, 6

1 1 1 1 1
0
−6

A5

3c
0 0 0 0 0

1
1

A2 = D2
4 µ6 6

0 1 1 1 0
1
−6

D4

3d, 3d
′

1 0 0 1 0
0
0

0 1 0 0 1
0
0

A2 = D2
4 µ6 6

0 1 1 1 1
1
−7

D4

2a
0 0 0 0 0

1
0

4A1 = E6
6 W (F4) 2, 6, 8, 12

1 1 1 1 1
1
−9

E6

2b
1 0 0 0 1

0
0

2A1 = A2
3 W (B2) 2, 4

0 1 1 1 1
0
−6

A3

1a
0 0 0 0 0

0
1

e W (E6) 2, 5, 6, 8, 9, 12
0 0 0 0 0

0
1

∅
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Table 20: The gradings of positive rank in type E7

No. Kac diagram w W (c, θ) degrees θ′ Lθ

18a
1 1 1 1 1 1 1

1 E7 µ18 18 1 1 1 1 1 1 1
1 E7

14a
1 1 1 0 1 1 1

1 E7(a1) = −A6 µ14 14 −3 1 1 1 1 1 1
1 E7

12a
1 1 1 0 1 0 1

1 E6 µ12 12 −5 1 1 1 1 1 1
1 E7

12b
1 1 0 1 0 1 1

1 E7(a2) = −E6 µ12 12 −6 1 1 1 1 1 2
1 E6

12c
0 1 0 1 1 1 1

0 E6 µ12 12 −4 1 1 1 1 1 0
1 E6

10a
1 0 1 0 1 0 1

1 D6 µ10 10 −7 1 1 1 1 1 1
1 D6

10b
1 1 0 1 0 1 1

0 D6 µ10 10 −9 2 1 1 1 1 1
1 D6

10c
0 1 0 1 0 1 0

1 D6 µ10 10 −5 0 1 1 1 1 1
1 D6

9a
0 1 0 1 0 1 1

0 E6(a1) = E2
7 µ18 18 −8 1 1 1 1 1 1

1 E7

9b
1 0 1 0 0 1 1

1 E6(a1) µ9 9 −7 1 1 1 1 1 0
1 E6

8a
1 0 0 1 0 1 1

0 D5 µ8 8 −9 1 1 1 1 1 1
1 D5

8b
0 1 0 0 1 0 1

1 D5 µ8 8 −11 2 1 1 1 1 1
1 D5

8c
0 1 0 1 0 1 0

0 D5 µ8 8 −12 0 1 1 1 1 6
1 D5

8d
1 0 1 0 1 0 1

0 D5 µ8 8 −10 1 1 1 1 1 2
1 D5

8e
1 1 0 0 0 1 1

1 D5 µ8 8 −8 0 1 1 1 1 2
1 D5

8f
1 0 0 1 0 0 1

1 D5 µ8 8 −12 1 1 1 1 1 4
1 D5

8g
0 0 1 0 0 1 1

1 D5 µ8 8 −6 0 1 1 1 1 0
1 D5

8h
0 1 0 0 1 1 1

0 D5 µ8 8 −8 1 1 1 1 1 0
1 D5

7a
0 1 0 1 0 0 1

0 A6 = E7(a1)2 µ14 14 −10 1 1 1 1 1 1
1 E7

6a
1 0 0 1 0 0 1

0 E7(a4) = E3
7 = −3A2 G26 6, 12, 18 −11 1 1 1 1 1 1

1 E7

6b
0 1 0 0 1 0 1

0 E6(a2) = E2
6 G5 6, 12 −10 1 1 1 1 1 0

1 E6

6c
0 1 0 0 0 1 0

1 D6(a2) G(6, 2, 2) 6, 6 −9 0 1 1 1 1 1
1 D6

6d
1 0 0 0 0 1 1

1 D4 µ6 6 −12 0 1 1 1 1 2
1 D4

6e
0 0 1 0 0 0 1

1 D4 µ6 6 −10 0 1 1 1 1 2
1 D4

6f
0 0 1 0 0 1 1

0 D4 µ6 6 −13 0 1 1 1 1 5
1 D4

6g
0 0 0 1 0 0 0

1 D4 µ6 6 −9 0 1 1 1 0 3
1 D4

6h
0 0 0 0 1 1 1

0 D4 µ6 6 −6 0 1 1 1 0 0
1 D4

6i
0 0 1 0 1 0 0

0 A′5 µ6 6 −10 2 0 1 1 1 1
1 A′5

6j
0 0 0 1 0 1 0

0 A′′5 µ6 6 −9 1 1 1 1 1 1
0 A′′5

6k
1 1 0 0 0 1 1

0 A′5 µ6 6 −6 0 0 1 1 1 1
1 A′5
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Table 20 continued: The gradings of positive rank in type E7

No. Kac diagram w W (c, θ) degrees θ′ Lθ

5a
0 0 0 1 0 0 1

0 A4 = D2
6 µ10 10 −12 1 1 1 1 1 1

1 D6

5b
0 0 1 0 0 1 0

0 A4 = D2
6 µ10 10 −14 2 1 1 1 1 1

1 D6

5c
0 1 0 0 0 1 1

0 A4 = D2
6 µ10 10 −10 0 1 1 1 1 1

1 D6

5d
1 0 0 0 1 0 1

0 A4 µ5 5 −11 1 1 1 1 1 0
0 A4

5e
0 1 0 0 0 0 1

1 A4 µ5 5 −11 1 1 1 1 0 2
1 A4

4a
0 0 1 0 0 0 1

0 D4(a1) = E3
6 G8 8, 12 −13 1 1 1 1 1 1

1 E6

4b
0 0 0 1 0 0 0

0 D4(a1) = E3
6 G8 8, 12 −14 1 1 1 1 1 2

1 E6

4c
0 0 0 0 1 0 1

0 D4(a1) = E3
6 G8 8, 12 −12 1 1 1 1 1 0

1 E6

4d
0 1 0 0 0 1 0

0 D4(a1) G(4, 1, 2) 4, 8 −12 0 1 1 1 1 2
1 D5

4e
1 0 0 0 0 0 1

1 D4(a1) G(4, 1, 2) 4, 8 −12 1 1 1 1 0 2
1 D5

4f
0 0 0 0 0 1 0

1 A3 µ4 4 −9 1 1 1 0 0 2
1 A4

4g
1 0 0 0 0 1 1

0 A3 µ4 4 −7 1 1 1 0 0 0
1 A4

3a
0 0 0 0 1 0 0

0 3A2 = E6
7 G26 6, 12, 18 −14 1 1 1 1 1 1

1 E7

3b
0 1 0 0 0 0 1

0 2A2 G(6, 2, 2) 6, 6 −12 0 1 1 1 1 1
1 D6

3c
0 0 0 0 0 0 1

1 A2 = D2
4 µ6 6 −13 0 1 1 1 1 2

1 D4

3d
0 0 0 0 0 1 1

0 A2 = D2
4 µ6 6 −9 0 1 1 1 0 0

1 D4

2a
0 0 0 0 0 0 0

1 7A1 W (E7) 2, 6, 8, 10, 12, 14, 18 −15 1 1 1 1 1 1
1 E7

2b
0 0 0 0 0 1 0

0 4A′′1 W (F4) 2, 6, 8, 12 −14 1 1 1 1 1 0
1 E6

2c
1 0 0 0 0 0 1

0 3A′1 W (B3) 2, 4, 6 −10 0 1 1 1 1 1
0 A′5

1a
1 0 0 0 0 0 0

0 e W (E7) 2, 6, 8, 10, 12, 14, 18 1 0 0 0 0 0 0
0 E7
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Table 21: The gradings of positive rank in type E8

No. Kac diagram w W (c, θ) degrees θ′ Lθ

30a
1 1 1 1 1 1 1 1

1 E8 µ30 30 1 1 1 1 1 1 1 1
1 E8

24a
1 1 0 1 1 1 1 1

1 E8(a1) µ24 24 1 1 1 1 1 1 1−5
1 E8

20a
1 1 0 1 0 1 1 1

1 E8(a2) µ20 20 1 1 1 1 1 1 1−9
1 E8

18a
1 1 0 1 0 1 0 1

1 E7 µ18 18 1 1 1 1 1 1 1−11
1 E7

18b
1 0 1 0 1 0 1 1

1 E7 µ18 18 1 1 1 1 1 1 2−13
1 E7

18c
1 0 1 0 1 1 1 1

0 E7 µ18 18 1 1 1 1 1 1 4−17
1 E7

18d
0 1 0 1 0 1 1 1

1 E7 µ18 18 1 1 1 1 1 1 3−15
1 E7

18e
1 1 1 0 1 0 1 0

0 E7 µ18 18 1 1 1 1 1 1 0−9
1 E7

15a
1 0 1 0 1 0 1 1

0 E8(a5) µ30 30 1 1 1 1 1 1 1−14
1 E8

14a
1 0 1 0 0 1 1 1

0 E7(a1) µ14 14 1 1 1 1 1 1 1−15
1 E7

14b
1 0 0 1 0 1 0 1

1 E7(a1) µ14 14 1 1 1 1 1 1 3−19
1 E7

14c
0 1 0 0 1 0 1 1

1 E7(a1) µ14 14 1 1 1 1 1 1 2−17
1 E7

14d
1 0 1 0 1 0 1 0

0 E7(a1) µ14 14 1 1 1 1 1 1 4−21
1 E7

12a
1 0 1 0 0 1 0 1

0 E8(a3) G10 12, 24 1 1 1 1 1 1 1−17
1 E8

12b
1 0 0 0 1 0 1 1

1 E6 µ12 12 1 1 1 1 1 1 0−15
1 E6

12c
0 1 0 0 1 0 0 1

1 E6 µ12 12 1 1 1 1 1 1 3−21
1 E6

12d
0 1 0 1 0 0 1 1

0 E6 µ12 12 1 1 1 1 1 0 2−16
1 E6

12e
0 0 1 0 0 1 1 1

0 E6 µ12 12 1 1 1 1 1 0 1−14
1 E6

12f
1 0 0 1 0 0 1 0

1 E6 µ12 12 1 1 1 1 1 1 2−19
1 E6

12g
1 1 0 0 1 0 1 0

0 E6 µ12 12 1 1 1 1 1 0 6−24
1 E6

12h
0 0 1 0 0 1 0 0

1 E6 µ12 12 1 1 1 1 1 0 4−20
1 E6

12i
1 0 0 0 1 1 1 1

0 E6 µ12 12 1 1 1 1 1 0 0−12
1 E6

12j
0 0 1 0 1 0 1 0

0 D7 µ12 12 0 1 1 1 1 1 1−15
1 D7

10a
0 0 1 0 0 1 0 1

0 E8(a6) = −2A4 G16 20, 30 1 1 1 1 1 1 1−19
1 E8

10b
1 0 0 0 1 0 0 1

1 D6 µ10 10 1 1 1 1 1 1 0−17
1 D6

10c
1 0 0 1 0 0 1 1

0 D6 µ10 10 2 1 1 1 1 1 1−21
1 D6

10d
1 0 1 0 0 0 1 0

0 D6 µ10 10 0 1 1 1 1 1 1−17
1 D6

10e
0 1 0 0 1 0 1 0

0 D6 µ10 10 0 1 1 1 1 1 2−19
1 D6

10f
1 1 0 0 1 0 0 0

0 D6 µ10 10 0 1 1 1 1 1 0−15
1 D6

52



Table 21 continued: The gradings of positive rank in type E8

No. Kac diagram w W (c, θ) degrees θ′ Lθ

9a
0 0 1 0 0 0 1 1

0 E6(a1) = E2
7 µ18 18 1 1 1 1 1 1 1−20

1 E7

9b
0 1 0 0 1 0 0 1

0 E6(a1) = E2
7 µ18 18 1 1 1 1 1 1 2−22

1 E7

9c
1 0 0 1 0 0 1 0

0 E6(a1) = E2
7 µ18 18 1 1 1 1 1 1 4−26

1 E7

9d
0 0 1 0 0 1 0 0

0 E6(a1) = E2
7 µ18 18 1 1 1 1 1 1 3−24

1 E7

9e
1 0 0 0 1 0 1 1

0 E6(a1) = E2
7 µ18 18 1 1 1 1 1 1 0−18

1 E7

9f
1 0 0 0 0 1 0 1

1 E6(a1) µ9 9 1 1 1 1 1 0 0−15
1 E6

8a
0 0 1 0 0 0 1 0

0 D8(a3) G9 8, 24 1 1 1 1 1 1 1−21
1 E8

8b
1 0 0 1 0 0 0 1

0 D5 µ8 8 1 1 1 1 1 1 2−23
1 D5

8c
0 1 0 0 0 1 0 1

0 D5 µ8 8 1 1 1 1 1 1 0−19
1 D5

8d
0 1 0 0 1 0 0 0

0 D5 µ8 8 1 1 1 1 0 2 2−22
1 D5

8e
0 0 0 0 1 0 0 1

1 D5 µ8 8 1 1 1 1 1 0 2−20
1 D5

8f
0 0 0 1 0 0 1 1

0 D5 µ8 8 1 1 1 1 1 1 6−31
1 D5

8g
1 0 0 0 0 1 0 0

1 D5 µ8 8 1 1 1 1 1 0 3−22
1 D5

8h
1 0 0 0 1 0 1 0

0 D5 µ8 8 1 1 1 1 0 0 0−12
1 D5

8i
1 0 0 0 0 0 1 1

1 D5 µ8 8 0 1 1 1 1 0 0−14
1 D5

8j
1 1 0 0 0 0 1 0

0 D5 µ8 8 1 1 1 1 1 0 4−24
1 D5

8k
1 0 0 0 0 1 1 1

0 D5 µ8 8 1 1 1 1 1 0 0−16
1 D5

7a
0 0 0 1 0 0 1 0

0 A6 = E7(a1)2 µ14 14 1 1 1 1 1 1 1−22
1 E7

7b
0 0 1 0 0 0 0 1

0 A6 = E7(a1)2 µ14 14 1 1 1 1 1 1 3−26
1 E7

7c
0 1 0 0 0 1 0 0

0 A6 = E7(a1)2 µ14 14 1 1 1 1 1 1 2−24
1 E7

7d
1 0 0 0 1 0 0 1

0 A6 = E7(a1)2 µ14 14 1 1 1 1 1 1 4−28
1 E7

6a
0 0 0 1 0 0 0 1

0 E8(a8) = −4A2 G32 12, 18, 24, 30 1 1 1 1 1 1 1−23
1 E8

6b
0 1 0 0 0 0 1 0

0 E7(a4) = E3
7 G26 6, 12, 18 1 1 1 1 1 1 0−21

1 E7

6c
1 0 0 0 1 0 0 0

0 D6(a2) G(6, 1, 2) 6, 12 0 1 1 1 1 1 1−21
1 D7

6d
0 0 0 0 0 1 0 0

1 E6(a2) G5 6, 12 1 1 1 1 1 0 2−22
1 E6

6e
1 0 0 0 0 1 0 1

0 E6(a2) G5 6, 12 1 1 1 1 1 0 0−18
1 E6

6f
0 0 1 0 0 0 0 0

0 A5 µ6 6 1 1 1 1 1 1 2−22
0 A5

6g
0 0 0 0 1 0 1 0

0 A5 µ6 6 1 1 1 1 1 1 0−18
0 A5

6h
1 0 0 0 0 0 0 1

1 D4 µ6 6 1 1 1 1 0 0 2−18
1 D4

6i
0 0 0 0 0 0 1 1

1 D4 µ6 6 1 1 1 1 2 1 0−25
1 D4

6j
0 0 0 0 0 1 1 1

0 D4 µ6 6 0 1 1 1 0 0 0−12
1 D4

6k
1 1 0 0 0 0 0 0

0 D4 µ6 6 0 1 1 1 0 0 3−18
1 D4
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Table 21 continued: The gradings of positive rank in type E8

No. Kac diagram w W (c, θ) degrees θ′ Lθ

5a
0 0 0 1 0 0 0 0

0 2A4 = E6
8 G16 20, 30 1 1 1 1 1 1 1−24

1 E8

5b
0 1 0 0 0 0 0 1

0 A4 µ10 10 1 1 1 1 1 1 0−22
1 D6

5c
0 0 0 0 0 0 1 0

1 A4 µ10 10 2 1 1 1 1 1 1−26
1 D6

5d
0 0 0 0 1 0 0 1

0 A4 µ10 10 1 1 1 1 1 1 4−30
1 D6

5e
1 0 0 0 0 1 0 0

0 A4 µ10 10 0 1 1 1 1 1 2−24
1 D6

5f
1 0 0 0 0 0 1 1

0 A4 µ10 10 0 1 1 1 1 1 0−20
1 D6

4a
0 0 0 0 1 0 0 0

0 2D4(a1) G31 8, 12, 20, 24 1 1 1 1 1 1 1−25
1 E8

4b
0 0 0 0 0 0 0 1

1 D4(a1) = E3
6 G8 8, 12 1 1 1 1 1 1 2−27

1 E6

4c
0 1 0 0 0 0 0 0

0 D4(a1) = E3
6 G8 8, 12 1 1 1 1 1 0 2−24

1 E6

4d
0 0 0 0 0 1 0 1

0 D4(a1) = E3
6 G8 8, 12 1 1 1 1 1 0 0−20

1 E6

4e
1 0 0 0 0 0 1 0

0 D4(a1) = D2
5 G(4, 1, 2) 4, 8 1 1 1 1 0 0 0−16

1 D5

3a
0 0 0 0 0 0 0 0

1 4A2 = E10
8 G32 12, 18, 24, 30 1 1 1 1 1 1 1−26

1 E8

3b
0 0 0 0 0 1 0 0

0 3A2 = E6
7 G26 6, 12, 18 1 1 1 1 1 1 0−24

1 E7

3c
1 0 0 0 0 0 0 1

0 2A2 = D4
7 G(6, 1, 2) 6, 12 0 1 1 1 1 1 1−24

1 D7

3d
0 0 0 0 0 0 1 1

0 A2 = D2
4 µ6 6 0 1 1 1 0 0 0−15

1 D4

2a
1 0 0 0 0 0 0 0

0 8A1 = −1 W (E8) 2, 8, 12, 14, 18, 20, 24, 30 1 1 1 1 1 1 1−27
1 E8

2b
0 0 0 0 0 0 1 0

0 4A′′1 = E6
6 W (F4) 2, 6, 8, 12 1 1 1 1 1 0 0−22

1 E6

1a
0 0 0 0 0 0 0 1

0 1 W (E8) 2, 8, 12, 14, 18, 20, 24, 30 0 0 0 0 0 0 0 1
0 E8

10 Little Weyl groups for inner type E and Kostant sections

In this section we compute the little Weyl groups W (c, θ) and their degrees when θ is inner of positive
rank in type E. As a byproduct we show that every positive rank inner automorphism is principal in a
Levi subgroup. This leads to a verification of Popov’s conjecture on the existence of Kostant sections,
and gives a characterization of the orders of positive-rank automorphisms.

10.1 The Levi subgroup Lθ

In tables 19-21 above we have indicated a Levi subgroupLθ whose corresponding subset J ⊂ {1, . . . , `}
satisfies the conditions of Lemma 7.6, giving an embedding

CWJ
(w) ↪→ W (c, θ). (14)

In each case, the embedding (14) turns out to be an isomorphism. It follows that the degrees of W (c, θ)
are those degrees of WJ which are divisible by m.
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We verify that (14) is an isomorphism as follows. Let UJ ⊂ W be the subgroup acting trivially on the
span of the roots αj for j ∈ J and set cJ(w) = |CW (w)|/|UJ |. Lemma 7.5 shows that |W (c, θ)| divides
cJ(w). The subgroup UJ can be found in the tables of [7] (it is denoted there by W2). In all but eight
cases we find that

|CWJ
(w)| = cJ(w),

showing that CWJ
(w) = W (c, θ).

We list the exceptional cases for which |CWJ
(w)| < cJ(w). We write |CWJ

(w)| as the product of
degrees divisible by m.

G no. w J |CWJ
(w)| cJ(w)

E6 4b D4(a1) D5 4 · 8 8 · 12

E7 9b E6(a1) E6 9 18

E7 5d, 5e A4 A4 5 10

E7 4d, 4e D4(a1) D5 4 · 8 8 · 12

E8 9f E6(a1) E6 9 18

E8 4e D4(a1) D5 4 · 8 8 · 12

To show thatW (c, θ) = CWJ
(w) in all of these cases as well, it suffices to show thatG0 has an invariant

polynomial of degree d = 4, 9, 5, 4, 9, 4 for the respective rows. If k has characteristic zero this can be
done using the computer algebra system LiE to find the dimension of theG0-invariants in Symd(g∗1). In
fact we did this for all of the positive rank cases in exceptional groups, as a confirmation of our tables.
If k has positive characteristic p (not dividing m) the desired invariant is provided by the following
result which is apparently standard, but we could not find a reference.

Lemma 10.1 Let ρ : H → GL(V ) be a rational representation of a reductive algebraic group H
over the ring Z[ζ], where ζ ∈ Q is a primitive mth-root of unity. Assume that H(Q) has a nonzero
invariant vector in V (Q) with multiplicity one. Then H(k) has a nonzero invariant in V (k) for any
algebraically-closed field k of characteristic p not dividing m.

Proof: Let W (k) be the ring of Witt vectors of k, let K be the quotient field of W (k) and let L be
an algebraic closure of K. Our assumption implies, via complete reducibility, that dimL V (L)H(L) =

dimQ V (Q)H(Q) = 1. Let f ∈ V (L) be a generator of V (L)H(L). The line L · f is preserved by
Gal(L/K), so Hilbert’s theorem 90 implies that L · f ∩ V (K) is nonzero. We may therefore assume
that f ∈ V (K). Clearing denominators, we may further assume that f ∈ V (W (k)) and is nonzero
modulo the maximal ideal M of W (k). The reduction of f modulo M gives a nonzero invariant of
H(k) in V (k). �

As illustrated in the following examples, we can often compute the desired invariant by hand.
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10.1.1 Example: E6 no. 4b

We label the affine diagram of E6 and write the Kac diagram of θ respectively as as shown:

1 2 3 4 5
6
0

0 1 0 0 1
0
1

.

We view g1 as a representation of SL2× SL4×T2, where T2 is the two dimensional torus whose cochar-
acter group has basis {ω̌2, ω̌5}, where ω̌i are the fundamental co-weights of E6. Each node i labelled 1
in the Kac diagram gives a summand Vi of g∗1 whose highest weight is the fundamental weight on each
node adjacent to i and with central character αi restricted to T2. Thus, we have

g∗1 ' (2� 6) ⊕ (1� 4̌) ⊕ (1� 4)
ω̌2 = 1 −2 0
ω̌5 = 0 −1 1

Here 2 and 4 are the standard representations of SL2 and SL4, 4̌ is the dual of 4 and 6 = Λ24. It
follows that the symmetric algebra of g∗1 can have G0-invariants only in tri-degrees (2k, k, k). To find
the expected invariant of degree four, we must find an SL2× SL4-invariant in the summand for k = 1:

Sym2(2� 6)⊗ (1� 4̌)⊗ (1� 4) = Sym2(2� 6)⊗ (1� End(4)).

Since m = 4 we have p 6= 2, so End(4) = 1 ⊕ sl4. Since 2 and 6 are self-dual, affording alternating
and symmetric forms, respectively, our invariant must be given by an SL2× SL4-equivariant mapping
Sym2(2� 6)→ 1⊗ sl4. Indeed, wedging in both factors gives a map

Sym2(2� 6) −→ Λ22� Λ26 = 1� so6 ' 1� sl4,

exhibiting the desired invariant of degree four.

10.1.2 Example: E7 no. 5d

The Kac diagram is
0 1 0 0 0 0 1

1

with Gsc
0 = SL2× SL5 and

g∗1 = (2� 5)⊕ (1� 5̌)⊕ (1� Λ25).

The center ofG0 has invariants in tri-degrees (2k, k, 2k), leading us to seek an SL5-equivariant mapping

5⊗ Sym2(Λ25̌) −→ Sym2(2� 5)SL2 .

LetU and V be k-vector spaces of dimensions 2 and arbitrary n <∞, respectively. Let P2(Hom(V, U))
be the space of degree two-polynomials on Hom(V, U), with the natural SL(V )×SL(U)-action. Then
we have a nonzero (hence injective) mapping

ϕ : Λ2(V ) −→ P2(Hom(V, U))SL(U), ω 7→ ϕω,
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given by ϕω(f) = f∗(ω), where f∗ : Λ2(V ) → Λ2(U) ' k is the map induced by f . One checks that
dimP2(Hom(V, U))SL(U) =

(
n
2

)
, so that ϕ is an isomorphism of SL(V )-modules

Λ2(V ) ' P2(Hom(V, U))SL(U). (15)

Returning to our task, we now must find an SL5-equivariant mapping

5⊗ Sym2(Λ25̌) −→ Λ25.

The contraction mapping
5⊗ Λ25̌ −→ 5̌, v ⊗ ω 7→ cv(ω),

where cv(λ ∧ µ) = 〈λ, v〉µ− 〈µ, v)λ, extends to a mapping

5⊗ Sym2(Λ25̌) −→ Λ35̌, v ⊗ (ω · η) 7→ cv(ω) ∧ η + cv(η) ∧ ω.

Since Λ35̌ ' Λ25 as SL5-modules, we have the desired invariant.

10.1.3 Example: E7 no. 4d

The Kac diagram is
1 0 0 0 0 0 1

1

and Gsc
0 = SL6 with g1 = 6⊕ 6̌⊕ Λ36. The action of the center leads us to seek an SL6-invariant in

6⊗ 6̌⊗ Sym2(Λ36).

If V is a k-vector space of even dimension 2m, we have a nonzero SL(V )-equivariant mapping

ϕ : End(V ) −→ P2(ΛmV ), A 7→ ϕA,

given by ϕA(ω) = ω ∧ A∗ω. Since the SL(V )-module ΛmV is self-dual this may be viewed as a
nonzero mapping End(V )→ Sym2(ΛmV ). Taking m = 3 gives the desired invariant.

10.1.4 Example: E7 no. 4e

The Kac diagram is
0 1 0 0 0 1 0

0

with Gsc
0 = H1 × Spin8×H2, where H1 ' H2 ' SL2, and g∗1 = (2 � 8 � 1) ⊕ (1 � 8′ � 2), where

8 and 8′ are non-isomorphic eight dimensional irreducible representations of Spin8. The action of the
center leads us to seek an invariant in

Sym2(2� 8� 1)⊗ Sym2(1� 8′ � 2).

Since every representation in sight is self-dual, we require a Spin8-equivariant mapping from the H1-
coinvariants to the H2-invariants:

Sym2(2� 8� 1)H1 −→ Sym2(1� 8′ � 2)H2 .
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Since m = 4, the characteristic of k is not two, so for a k-vector space V of arbitrary finite dimension
n the symmetric square

Sym2(V ⊗ 2) = Sym2(2⊕n) = n · Sym2(2)⊕
(
n

2

)
(2⊗ 2)

is completely reducible as an SL2-module. Hence the canonical map

Sym2(V ⊗ 2)SL2 −→ Sym2(V ⊗ 2)SL2 , (16)

from the invariants to the coinvariants, is an isomorphism of SL(V )-modules. From (15), both modules
are isomorphic to Λ2V .

Returning to our task, we now require a Spin8-equivariant mapping

Λ28→ Λ28′.

But both of these exterior squares are isomorphic to the adjoint representation of Spin8, whence the
desired invariant.

10.1.5 Example: E8 no. 4e

The Kac diagram is
1 0 0 0 0 0 1 0

0

with Gsc
0 = Spin(12)× SL2 and

g∗1 = (32� 1)⊕ (12� 2),

where 32 is one of the half-spin representations of Spin12, which is symplectic since 6 ≡ 2 mod 4.
The action of the center of G0 leads us to seek an invariant in

Sym2(32� 1)⊗ Sym2(12� 2).

We must therefore find a Spin12× SL2-equivariant mapping

Sym2(12� 2) −→ Sym2(32� 1).

From (15) and (16) this is equivalent to a Spin12-equivariant mapping

Λ212 −→ Sym2(32).

But Λ212 ' so12 and Sym2(32) ' sp32. The desired mapping so12 → sp32 is simply the representa-
tion of so12 on the symplectic half-spin representation 32.
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10.2 A remark on saturation

Let
W ∗(c, θ) := NGθ(c)/CGθ(c).

Clearly W (c, θ) ⊂ W ∗(c, θ) ⊂ W θ
1 (see (12)). We say that θ is saturated if W (c, θ) = W ∗(c, θ).

(For the adjoint group G this is equivalent to the definition given in section 5 of [35].) Clearly θ is
saturated if Gϑ = G0. As remarked in section 7.3 this holds whenever the group Ωϑ(x) is trivial. In
particular, saturation holds in types G2,

3D4, F4, E8,
2E6, where Ωϑ itself is trivial. It is known ([35],

[19]) that all gradings on classical Lie algebras are saturated except for certain outer automorphisms of
order divisible by 4 in type Dn. It remains to consider only those inner automorphisms of E6 and E7

where the Kac diagram is invariant under the symmetries of the affine Dynkin diagram and we have
W (θ, c) 6= W θ

1 . The latter implies that |CWJ
(w)| < cJ(w). The only cases not thus eliminated are

4d and 4e in type E7. But in these two cases we have cJ(w)/|W (θ, c)| = 3, while [Gθ : G0] = 2, so
saturation holds in these cases as well. We conclude that all gradings on exceptional Lie algebras are
saturated.

10.3 Kostant sections and the Levi subgroup Lθ

A Kostant section 2 for the grading g = ⊕i∈Z/m gi is an affine subspace v ⊂ g1 such that the em-
bedding v ↪→ g1 induces an isomorphism of affine varieties v

∼−→ g1//G0, or equivalently, if the
restriction map k[g1]G0 −→ k[v] is bijective.

Recall that we have fixed a pinning (X,R, X̌, Ř, {Ei}) in G, which determines the co-character ρ̌ ∈
X∗(T ) and principal nilpotent element E =

∑
Ei, such that ρ̌(t) · E = tE. From [23, Thm.3.5] and

[19, Prop.5.2] we have the following existence result for Kostant sections.

Theorem 10.2 Assume the characteristic of k is not a torsion prime for G, that m nonzero in k. Then
the grading g = ⊕i∈Z/m gi associated to the principal automorphism θm = ρ̌(ζ)ϑ has a Kostant section
E + u, where u is any vector space complement to [g0, E] in g1 such that u is stable under ρ̌(k×).

We have seen that for each positive-rank torsion inner automorphism in type E6,7,8 there exists a subset
J ⊆ {1, 2, . . . , `} such that W (c, θ) = CWJ

(w). This can also be checked for the classical groups and
types F4, G2. Thus, we have a case-by-case proof of the following theorem.

Theorem 10.3 Let θ be an inner automorphism of g whose order m is nonzero in k and let c be
a Cartan subspace of g1. Then there exists a θ-stable Levi subgroup L = Lθ whose Lie algebra l
contains c in its derived subalgebra, such that the following hold:

1. θ|l = Ad(ρ̌L(ζ)).

2In the literature, this is also called a ”Kostant-Weierstrass” or ”KW” section because in the case of the non-pinned outer
triality automorphism of so8 such a section is equivalent to the Weierstrass-normal form of a nonsingular homogeneous
cubic polynomial in three variables.
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2. The inclusion of little Weyl groups WL(c, θ) ↪→ W (c, θ) is a bijection. In particular, the degrees
of W (c, θ) are precisely the degrees of WL which are divisible by m.

3. The restriction map k[g1]G0 −→ k[l1]L0 is a bijection.

In view of Thm. 10.2, we conclude:

Corollary 10.4 Every positive-rank torsion inner automorphism in type E6,7,8 has a Kostant section
contained in the Levi subalgebra l of the previous theorem.

We also observe:

Corollary 10.5 A positive integer m is the order of a torsion inner automorphism of positive rank
precisely if m is the order of a Z-regular element in the Weyl group of a Levi subgroup of G.

11 Outer gradings of positive rank in type E6

We realize the outer pinned automorphism of E6 as the restriction of an affine pinned automorphism
of E7, as in section 6.

11.1 Root systems of type E7 and 2E6

Let (Y,R, Y̌ , Ř) be a root datum of adjoint type E7 and fix a base ∆ = {α1, . . . , α7} ⊂ R with lowest
root α0, according to the numbering

0 1 2 3 5 6 7
4 . (17)

The set Π := {α0} ∪ ∆ has stabilizer WΠ = {1, ϑ} of order two, where ϑ = r1r2r3 is a prod-
uct of reflections about mutually orthogonal roots γ1, γ2, γ3 in which the coefficients of simple roots
{α1, . . . , α7} are given by

γ1 = 0 1 2 2 2 1
1 , γ2 = 1 1 2 2 1 1

1 , γ3 = 1 2 2 1 1 1
1 .

The sum
γ̌1 + γ̌2 + γ̌3 = 2µ̌,

where µ̌ = ω̌7 is the nontrivial minuscule co-weight.

Regard the vector space V = R ⊗ Y̌ as an affine space with 0 as basepoint. Each linear functional
λ : V → R is then regarded as an affine function on V vanishing at 0, we have the affine root system

Φ = {α + n : α ∈ R, n ∈ Z}

with basis {φ0, φ1, . . . , φ7} where φ0 = 1 + α0, φ1 = α1, . . . , φ7 = α7 satisfy the relation

φ0 + 2φ1 + 3φ2 + 4φ3 + 2φ4 + 3φ5 + 2φ6 + φ7 = 1. (18)
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A point x ∈ VQ of order m has Kac diagram

s0 s1 s2 s3 s5 s6 s7

s4
, (19)

where si/m = φi(x).

The affine transformation ϑ̃ : V → V given by

ϑ̃(x) = µ̌+ ϑ · x

permutes the simple affine roots {φ0, . . . , φ7} according to the nontrivial symmetry of the affine dia-
gram of E7. The fixed-point space of ϑ̃ in V is given by

Aϑ := V ϑ + 1
2
µ̌,

which is an affine space under the vector space V ϑ = R ⊗ Y̌ϑ, with basepoint 1
2
µ̌. The rational points

in Aϑ are precisely those points x ∈ VQ whose Kac diagram has the symmetric form

s0 s1 s2 s3 s2 s1 s0

s4
, (20)

in which case equation (18) implies that

s0 + 2s1 + 3s2 + 2s3 + s4 = m/2, (21)

where m is the order of x.

The automorphism ϑ permutes the roots α1, . . . , α6 which generate a root subsystem R′ of type E6.
The co-weight lattice X̌ = Hom(ZR′,Z) has dual basis {ω̌1, . . . , ω̌6} and we have

X̌ϑ = Y̌ ϑ.

Hence Aϑ is also an affine space under R⊗ X̌ϑ and we may construct the affine root system Ψ(R′, ϑ)
as in section 2.1, using the point x0 = 1

2
µ̌. We have `ϑ = 4 and Ψ(R′, ϑ) has basis ψ0, . . . , ψ4, where

ψi = αi|Aϑ for 1 ≤ i ≤ 4 and

ψ0 + 2ψ1 + 3ψ2 + 2ψ3 + ψ4 = 1/2. (22)

A rational point x ∈ AϑQ with E7 Kac-diagram (20) has 2E6 Kac-diagram

s0 s1 s2 ⇐ s3 s4.

This is clear for s1, . . . , s4 since ψi is the restriction of φi, and follows for s0 by comparing the relations
(18) and (22).
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11.2 Lie algebras of type E7 and 2E6

Let k be an algebraically closed field of characteristic 6= 2, 3 and let g be a simple Lie algebra over k
of type E7 with automorphism group G = Aut(g). We fix a maximal torus T ⊂ G with Lie algebra
t and we choose an affine pinning Π̃ = {E0, . . . , E7} for T in g, numbered as in (17). As above we
let ϑ = r1r2r3 ∈ WΠ be the unique involution acting on Π via the permutation (07)(16)(25). Recall
from section 6 that ϑ has a lift n ∈ N of order two defined via the homomorphism ϕ : SL2 → G as in
equation (11).

Let S = (T ϑ)◦ be the identity component of the group of fixed-points of ϑ in T . The co-weight group
of S is X̌ϑ and we have

T ϑ = S × 〈µ̌(−1)〉,
where µ̌ = ω̌7 is the nontrivial minuscule co-weight. The automorphism ε := Ad(µ̌(−1)) has order
two; its fixed-point subalgebra gε decomposes as

gε = h⊕ z

where z = dµ̌(k) and h = [gε, gε], the derived subalgebra of gε, has type E6 and is generated by the
root spaces gα for α ∈ ±{α1, . . . , α6}. Note that ε and n both lie in the subgroup ϕ(SL2) and are
conjugate therein.

The centralizer CG(ε) is the normalizer in G of h, surjecting onto Aut(h), and is also the normalizer
of in G of z. The centralizer CG(z) of z is the identity component of CG(ε), and the image of CG(z) in
Aut(h) is the group

H := Aut(h)◦

of inner automorphisms of h. It follows that we have an exact sequence

1 −→ µ(k×) −→ CG(z) −→ H −→ 1. (23)

Proposition 11.1 Let θ ∈ Aut(g) be a torsion automorphism whose order m is nonzero in k. Then the
centralizer Gθ has at most two components, and the following are equivalent.

1. The normalized Kac diagram of θ has the symmetric form a b c d c b a
e .

2. The G-conjugacy class of θ meets Sn.

3. The centralizer Gθ has two components and n lies in the non-identity component.

Proof: After conjugating by G, we may assume θ = Ad(t), where t = λ̌(ζ), for some λ̌ ∈ X̌ and
ζ ∈ k× of order m. We set x = 1

m
λ̌.

Over C, the equivalence 1⇔ 3 follows from [24, Prop. 2.1], whose proof, once we replace exp(x) by
λ̌(ζ), is also valid over k.

We prove 1⇔ 2. From the previous section the Kac coordinates of θ are symmetric precisely if

x = µ̌+ ϑ · x.

62



This is equivalent to having λ̌− m
2
µ̌ ∈ X̌ϑ. Evaluating at ζ this is in turn equivalent to having tε ∈ S,

or t ∈ Sε. Since n and ε are conjugate in ϕ(SL2) which centralizes S (see Lemma 6.3) we can replace
ε by n. �

Proposition 11.2 Let s ∈ S and suppose sn has order m invertible in k and let θ = Ad(sn) have
symmetric normalized Kac diagram a b c d c b a

e . Then

1. θ normalizes h and θ|h is an outer automorphism of h with Kac diagram

a b c⇐ d e.

2. Every torsion outer automorphism of h is conjugate to θ|h, where θ = Ad(sn) for some s ∈ S.

3. We have rank(θ|h) ≤ rank(θ).

Proof: Since Ad(n) = ϑ normalizes h, acting there via a pinned automorphism, and s ∈ S ⊂ H ,
we have that θ|h is an outer automorphism of h. The relation between the Kac diagrams of θ and θ|h
follows from the discussion in section 11.1.

Assertion 2 is now clear, since every Kac diagram s0 s1 s2 ⇐ s3 s4 corresponds to Ad(sn)|h for some
s ∈ S. We can also prove assertion 2 directly, as follows: Since ϑ preserves the maximal torus T ∩H of
H , and permutes the simple roots {α1, . . . , α6}, every torsion outer automorphism of h is H-conjugate
to one of the form Ad(s)ϑ for some s ∈ (T ∩H)ϑ (see [24, Lemma 3.2], whose proof is valid for k).
We must therefore show that (T ∩ H)ϑ = S. Since the Lie algebra of S is tϑ which is contained in
(t∩h)ϑ, it suffices to show that tϑ ⊂ h. But tϑ has dimension four and is spanned by dα̌i(1)+dα̌7−i(1)
for 1 ≤ i ≤ 4, and these vectors lie in h.

Finally, a Cartan subspace for θ|h is contained in a Cartan subspace for θ, so assertion 3 is obvious. �

Prop. 11.2 implies that the Kac diagram of any outer positive rank automorphism of h must have the
form a b c ⇐ d e, where a b c d c b a

e is a positive rank diagram for E7 appearing in section 9.2.

For example, there are two outer automorphisms of h having order m = 2, namely the restrictions to
h of ϑ = Ad(n) and ϑ0 = Ad(n0) where n0 is a lift of −1 ∈ W (E7). These are the involutions in E7

numbered 2c and 2a respectively Table 20 of section 9.2. The Kac diagrams in E7 and 2E6 are shown:

ϑ :
1 0 0 0 0 0 1

0
ϑ0 :

0 0 0 0 0 0 0
1

ϑ|h : 1 0 0⇐ 0 0 ϑ0|h : 0 0 0⇐ 0 1.

Both ϑ and ϑ0 act by −1 on z. It follows that their ranks in E6 are one less than their ranks in E7,
namely

rank(ϑ|h) = 2, rank(ϑ0|h) = 6.
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11.3 Positive rank gradings on E6 (outer case)

From Props. 11.1 and 11.2 we know that the Kac diagrams for positive rank gradings in outer type E6

are obtained from symmetric positive-rank diagrams for E7. We now adapt our methods for the inner
case to complete the classification of positive rank outer gradings of E6.

We regard W (E6) as the subgroup of W (E7) generated by the reflections for the roots α1, . . . , α6.
Equivalently, W (E6) is the centralizer of z in W (E7). The coset −W (E6) = {wϑ0 : w ∈ W (E6)}
consists of the elements in W (E7) acting by −1 on z and contains both ϑ and ϑ0.

Lemma 11.3 Let nw ∈ NG(t) be a lift of an element w ∈ −W (E6). Then Ad(nw) normalizes h and
acts on h as an outer automorphism.

Proof: Since w permutes the root spaces in h it follows that nw normalizes h. Let n ∈ NG(t) be the
lift of ϑ constructed above. Both n and nw act by −1 on z, so n · nw lies in the connected subgroup
CG(z) and the image of n · nw in Aut(h) lies in the subgroup Aut(h)◦ of inner automorphisms. Since
Ad(n) = ϑ is outer on h, it follows that Ad(nw) is outer on h as well. �

Let w ∈ W (E7) be any element whose order m is invertible in k and such that w has an eigenvalue ζ
of order m on t. Recall that Kac(w) is the set of normalized Kac diagrams of torsion automorphisms
θ ∈ Aut(g) of order m such that θ normalizes t and acts on t via w.

Let τ ∈ Aut(h) be a torsion outer automorphism with Kac coordinates a b c⇐ d e. We write

τ  w

to mean that the symmetric Kac diagram
a b c d c b a

e
appears in Kac(w). Let Kac(w)sym denote

the set of symmetric diagrams in Kac(w).

Proposition 11.4 Let τ ∈ Aut(h) be a torsion outer automorphism whose order m > 2 is invertible
in k. Assume that rank(τ) > 0. Then there exists w ∈ −W (E6) such τ  w. Moreover, we have

rank(τ) = max{rank(w) : w ∈ −W (E6), τ  w}.

Proof: Let c ⊂ h(τ, ζ) be a Cartan subspace. Then c is contained in a τ -stable Cartan subalgebra t′ of
h so that c = t′(τ, ζ). Conjugating by H , we may assume that t′ ⊂ t and therefore t = t′ ⊕ z.

We have τ = θ|h for some θ ∈ Aut(g) normalizing h. Then θ also normalizes the centralizer z of h.
Since θ|h is outer but θ2|h is inner, it follows that θ acts by −1 on z.

Since θ normalizes t, it projects to an element w ∈ W (E7). The subgroup of W (E7) normalizing z is
{±1} ×W (E6) and W (E6) is the subgroup centralizing z. It follows that w ∈ −W (E6).

Since the normalized Kac diagram of θ belongs to Kac(w) and τ = θ|h, we have τ  w. We also have

rank(w) = t(w, ζ) = t′(w, ζ).
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Suppose now that w ∈ −W (E6) is any element for which τ  w. Let a b c ⇐ d e be the normalized
Kac coordinates for τ . Since τ  w there is a lift nw ∈ NG(t) such that Ad(nw) has normalized Kac

diagram
a b c d c b a

e
.

By Lemma (11.3), we have that Ad(nw) is an outer automorphism of h. Hence there is s ∈ S such that
Ad(nw)|h is H-conjugate to Ad(sn)|h. From the exact sequence (23) there are g ∈ CG(z) and z ∈ Z
such that

gnwzg
−1 = sn.

But nw is Z-conjugate to nwz, since w = −1 on z. Therefore nw and sn are conjugate under CG(z), so

Ad(sn) also has normalized Kac diagram
a b c d c b a

e
.

By Prop. 11.2, Ad(sn)|h has Kac diagram a b c ⇐ d e, and therefore Ad(sn)|h is H-conjugate to τ .
But

Ad(sn)|h = Ad(gnwzg
−1)|h = Ad(gnwg

−1)|h
is conjugate to Ad(nw)|h, via the element h = Ad(g)|h ∈ H . Thus, τ and Ad(nw)|h are H-conjugate.
Since t(w, ζ) ⊂ h, an H-conjugate of t(w, ζ) is contained in a Cartan subspace of τ , so rank(w) ≤
rank(τ). This completes the proof. �

The Kac diagrams of positive rank for 2E6 are obtained from symmetric positive rank diagrams for E7,
of which there are 20 (see Table 20).

Three of these (14a, 8d, 8e) have rank zero for 2E6 as will be explained. Two more have order m = 2
and are easily handled by known results. The ranks for the remaining 15 are found as follows. Using
Prop. 11.4, it is enough to extract the symmetric diagrams from the preliminary table for E7 in section
9.1. The results are shown below, where r is the rank of τ in 2E6.

Table 22: Kac(w)sym for certain w in −W (E6)

m w ∈ −W (E6) w ∈ W (E7) r Kac(w)un Kac(w)sym

18 −E6(a1) E7 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1 1
1

12 −E6 E7(a2) 1 1 1 0 1 0 1 1
1

1 1 0 1 0 1 1
1

10 −(A4 + A1) D6 1 ∗ ∗ 1 1 1 1 1
1

0 1 0 1 0 1 0
1

1 0 1 0 1 0 1
1

1 1 0 1 0 1 1
0

8 −D5 D5 + A1 1 1 ∗ 1 1 1 1 ∗
1

0 1 0 1 0 1 0
0

1 0 0 1 0 0 1
1

6 −(3A2) E7(a4) 3 1 0 0 1 0 0 1
0

1 0 0 1 0 0 1
0

6 −(2A2) A1 +D6(a2) 2 1 ∗ 1 0 1 0 1
1

0 1 0 0 0 1 0
1

1 0 0 1 0 0 1
0

6 −A2 3A1 +D4 1 1 ∗ 1 1 1 ∗ 1
1

0 0 0 1 0 0 0
1

6 −(A1 + A′′5) A′5 1 ∗ 1 1 1 1 1 ∗
∗

0 0 1 0 1 0 0
0

1 1 0 0 0 1 1
0

0 1 0 0 0 1 0
1

1 0 0 1 0 0 1
0

4 −D4(a1) A1 + 2A3 2 1 1 1 ∗ 1 1 1
1

0 0 0 1 0 0 0
0

4 −A3 + 2A1 (A1 + A3)′′ 1 1 1 1 ∗ 1 1 1
1

0 0 0 1 0 0 0
0

0 1 0 0 0 1 0
0

1 0 0 0 0 0 1
1
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Case 14a has rank zero since there are no elements of order 7 or 14 in W (E6). Cases 8d and 8e have
rank zero sinceD5 is the only element of order 8 inW (E6) and the Kac diagrams for 8d,e do not appear
in the row for w = −D5 in Table 22 above.

11.4 Little Weyl groups for 2E6

The little Weyl groups WH(c, τ) and their degrees are determined as follows.

Cases 18a, 12b, 6a, 4b, 2a: These cases are stable, hence by Cor. 7.4 we have WH(c, τ) = W (t′)θ,
where t′ is the unique Cartan subalgebra of h containing c. Then W (t′)θ and its degrees are determined
from [29].

Lemma 11.5 If dim c = 1 then WH(c, τ) ' µd for some integer d divisible by m/2.

Proof: Since dim c = 1 we have WH(c, τ) ' µd for some integer d. We may assume τ = Ad(nw)|h,
where nw ∈ NG(t) has image w ∈ −W (E6). Then n2

w ∈ H0 has eigenvalue ζ2 on c, where ζ ∈ k× has
order m equal to the order of τ . It follows that so m/2 divides d. �

Cases 10a, 10b, 10c: In these cases we have m = 10 and dim c = 1 so µ5 ≤ WH(c, τ), by Lemma
11.5. And WH(c, τ) ≤ WH(c, τ 2). Now w2 has type A4 in E6, and all lifts of this type have little Weyl
group µ5, from Table 19. 3 So And WH(c, τ) ≤ WH(c, τ 2) ' µ5.

Cases 8c, 8f : In these cases we have m = 8 and dim c = 1 so µ4 ≤ WH(c, τ) ≤ µ8, by Lemma 11.5.

In case 8f the diagram for θ′ in Table 20 shows that τ is principle in Aut(h). Hence WH(c, τ) =
NWH

(c)/ZWH
(c), by Prop. 7.2. The element w has type −D5 and c may be chosen to be the −ζ-

eigenspace for y = −w in t. Since 〈y〉 acts faithfully on C, there is a copy of µ8 in WH(c, τ).

In case 8c we rule out µ4 using invariant theory, as in section 10. A degree-four invariant in h1 would
correspond to an element of

HomM

(
Sym2(2� 2)L, Sym2(3� 2)R

)
, (24)

arising from the action of L×M ×R = SL2× SL2× SL2 on

h1 ' 2� 2� 1 ⊕ 1� 3� 2.

But Sym2(2� 2)L is the trivial representation of M and Sym2(3� 2)R is the adjoint representation of
M , which is irreducible since p > 2. Hence the vector space (24) is zero.

Case 6c: Here the centralizer of w = −2A2 in W (E6) has order 108 and contains a subgroup W (A2)
acting trivially on the root subsystem spanned by the 2A2. It follows that |WH(τ, c)| ≤ 18. Results in
the next section show that WH(τ, c) contains the centralizer of a [33]-cycle in the symmetric group S6,
which has order 18.

3In fact, using Kac diagrams one can check that classes 10a,b,c in Table 20 square to classes 5a,b,c, respectively, in Table
19.
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Case 6g: Here dim c = 1 and w2 has type A2, of which all lifts in H have little Weyl group µ6. Hence
µ3 ≤ WH(c, τ) ≤ µ6. One checks that an H0-invariant in degree 3 in h1 is a quadratic form on S24̌,
which must be trivial. Hence WH(c, τ) ' µ6.

Cases 6i, 6k: These cases have m = 6 and dim c = 1 so µ3 ≤ WH(c, τ), by Lemma 11.5. We show
this is equality by finding an H0-invariant of degree 3 on h1.

In case 6i, h1 is the respresentation 3 � 3̌ = End(3) of SL3× SL3, and the determinant is a cubic
invariant.

In case 6k, h1 is the respresentation 1 ⊕ 8 of Spin7, where 8 is the Spin representation, which affords
an invariant quadratic form q. The map (x, v) 7→ x · q(v) is a cubic invariant.

Cases 4e, 4d: These cases have m = 4 and dim c = 1 so µ2 ≤ WH(c, τ), by Lemma 11.5. We show
that in both cases there is a quartic invariant but no quadratic invariant.

In case 4e, h1 is the representation Λ3(6) = 6 ⊕ 14 of Sp6×T1, where t ∈ T1 acts by t, t−1 on the
respective summands. Since p > 2 both summands are irreducible so there is no invariant in bidegree
(1, 1). In characteristic zero one computes that Sym2(6) appears in Sym2(14), giving a nonzero H0

quartic invariant, which persists in positive characteristic by Lemma 10.1.

In case 4d, h1 is the representation 2 � 8 of SL2× Spin7. Since this representation is irreducible and
symplectic there is no quadratic invariant. To find a quartic invariant we may assume the characteristic
of k is zero. Write

h1 = 8+ ⊕ 8−,

according to the characters t 7→ t±1 of the maximal torus of SL2. One checks that

dim
[
Sym4−i(8+)⊗ Symi(8−)

]Spin7 =

{
1 for i 6= 2

2 for i = 2.

Since this summand affords the character t4−2i of the maximal torus of SL2, it follows that there is a
one-dimensional space of quartic invariants in h1 for SL2× Spin7.

11.5 Standard subalgebras and Kostant sections

Fix a torsion automorphism θ = Ad(s)ϑ of h = e6, with s ∈ S = (T ϑ)◦, and let τ ∈ Aut(h) be
another torsion automorphism of the form τ = Ad(t) (inner case) or τ = Ad(t)ϑ (outer case), for
some t ∈ S. We call the fixed-point subalgebra hτ a standard subalgebra. The standard subalgebras
hτ for inner automorphisms τ = Ad(t) are in bijection with proper subdiagrams of the affine diagram
of type E6; these subalgebras all contain t as a Cartan subalgebra. The standard subalgebras hτ for
outer automorphisms τ = Ad(t)ϑ are in bijection with proper subdiagrams of the affine diagram of
type 2E6; these subalgebras all contain tϑ as a Cartan subalgebra.

The automorphisms θ and τ commute, so θ acts on the standard subalgebra k := gτ . If τ is inner and ϑ
acts nontrivially on the subdiagram for k then θ|k is outer, because θ permutes a basis of the root-system
of t in k. And if τ is outer then θ|k must be inner, because θ acts trivially on the Cartan subalgebra tϑ of
k.
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Suppose now that rank(θ|k) = rank(θ), so that there is a Cartan subspace c for θ such that c ⊂ k.
Let K = Aut(k)◦ and let K̃ be the connected subgroup of H corresponding to k. These groups are
normalized by θ and the natural map K̃ → K restricts to a surjection

K̃0 := (K̃θ)◦ −→ (Kθ)◦ =: K0

which induces an isomorphism

NK̃0
(c)/ZK̃0

(c) ' NK0(c)/ZK0(c).

It follows that we have an embedding of little Weyl groups

WK(c, θ|k) ↪→ WH(c, θ).

With the exception of number 2c, the next-to-right-most column of Table 23 below gives the Kac
diagram of an H-conjugate θ′ of θ such that the subdiagram of 1′s determines a standard subalgebra k
(given in the last column) such that

rank(θ|k) = rank(θ) and WK(c, θ|k) = WH(c, θ),

and such that θ|k satisfies the conditions of Lemma 7.4. From [19, Prop. 5.2] it follows that θ admits a
Kostant section contained in k.

In the table below we indicate k = hτ as the subdiagram of 1′s in a Kac diagram of type E6 or 2E6

according to whether τ is inner or outer. Recall that θ|k is then outer or inner, respectively. The
superscript 2X means that θ|k is outer. The notation 2(2A2) indicates that k ' sl3⊕ sl3 and θ swaps the
two factors.

In the exceptional case 2c, previous work on involutions [16, Prop. 23] (for k = C) and [18, 6.3]
(for p 6= 2) shows that there is a θ-stable subalgebra k ' sl3 containing c as a Cartan subalgebra, and
WH(c, θ) is just the ordinary Weyl group of c in k. In this case θ is the unique (up to conjugacy) pinned
involution of sl3, which is known to have a Kostant section.
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Table 23: The gradings of positive rank in type E6 (outer case)

No. θ|h w∈−W (E6) w ∈ W (E7) WH(c, θ|h) degrees θ′|h k

18a 111⇐11 −E6(a1) E7 µ9 9 111⇐11 2E6

12b 110⇐11 −E6 E7(a2) µ12 12 −211⇐11 2E6

10b 110⇐10 −(A4 + A1) D6 µ5 5 −311⇐11 2E6

10a 101⇐01 −(A4 + A1) D6 µ5 5 −111⇐1−1 2A5

10c 010⇐11 −(A4 + A1) D6 µ5 5 9−5 1⇐11 2D5

8f 100⇐11 −D5 D5 + A1 µ8 8 −411⇐11 2E6

8c 010⇐10 −D5 D5 + A1 µ8 8 111⇐1−4 C4

6a 100⇐10 −(3A2) E7(a4) G25 6, 9, 12 −511⇐11 2E6

6c 010⇐01 −(2A2) D6(a2) + A1 G(3, 1, 2) 3, 6 211⇐1− 6 2A5

6g 000⇐11 −A2 D4 + 3A1 µ6 6 −3 0 1⇐11 B3

6i 001⇐00 −(A5 + A1) A′5 µ3 3 011⇐0−2 2(2A2)

6k 110⇐00 −(A5 + A1) A′5 µ3 3 011⇐2−6 2(2A2)

4b 000⇐10 −D4(a1) 2A3 + A1 G8 8, 12 −611⇐11 2E6

4d 010⇐00 −(A3 + 2A1) (A3 + A1)′′ µ4 4 111⇐−20 A3

4e 100⇐01 −(A3 + 2A1) (A3 + A1)′′ µ4 4 −1−11⇐10 B2

2a 000⇐01 −1 7A1 W (E6) 2, 5, 6, 8, 9, 12 −711⇐11 2E6

2c 100⇐00 −(4A1) (3A1)′ W (A2) 2, 3 −−− 2A2
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