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Abstract—Prediction of traffic flow variables such as traffic
volume, travel speed or travel time for a short time horizon
is of paramount importance in traffic control. Hence, the data
assimilation process in traffic modeling for estimation and pre-
diction plays a key role. However, the increasing complexity,
non-linearity and presence of various uncertainties (both in
the measured data and models) are important factors affecting
the traffic state prediction. To overcome this problem, new
methodologies have been proposed. With this aim, in this paper
we propose the use of the Probability Hypothesis Density (PHD)
filter for traffic estimation. This methology is intensively studied,
developed and improved for the purposes of multiple object
tracking and consists in the recursive state estimation of several
targets by using the information coming from an observation
process. However, some issues need to be studied, especially the
impact of the clutter (false alarm) intensity. The goal of this paper
is to expose the potential of the PHD filters for real-time traffic
state estimation and the choice of an appropriate clutter intensity.
This investigation is based on a Cell Transmission Model (CTM)
coupled with the PHD filter. It brings a novel tool to the state
estimation problem and allows one to estimate the densities in
traffic networks. In this work, we compare this PHD filter with
the particle filter (PF) which has been successfully applied in
traffic control and conclude that the PHD filter can be seen as
a relevant alternative that opens new research avenues.

I. INTRODUCTION

Advanced estimation methods and sensor data fusion can
improve the traffic conditions in Intelligent Transportation
Systems (ITS) and provide information about special events.
The fact that the full benefits of these systems cannot be
realized without an ability to predict short-term traffic condi-
tions has been emphasized by Sussman [20]. Hence, short-term
prediction of traffic states appears as a key point in various ITS
applications such as Advanced Traffic Management Systems
(ATMS). In this context, prediction of traffic flow variables
such as traffic volume, travel speed or travel time for a short
time horizon (typically 5 up to 30 minutes) is of paramount
importance. However, the increasing complexity, non-linearity

and presence of various uncertainties (both in the measured
data and models) are important factors affecting the traffic
state prediction. These make prediction methods based on
deterministic assumptions unable to meet the accuracy needed
in ITS applications.

To overcome this limitation, many non-deterministic pre-
dictive methods have been investigated [1]. In this scope,
our research is focused on developing a stochastic traffic
modelling framework that enables estimation and prediction
of some information such as traffic flow with high accuracy.
The purpose of this work is to show the potential of the
Probability Hypothesis Density (PHD) filters for real-time
traffic state estimation and to investigate the choice of an
appropriate clutter density which is usually chosen following
a Poisson distribution. The dynamic evolution is based on
a Cell Transmission Model (CTM) coupled with the PHD
filter as an estimation engine. The CTM is well known in
traffic modelling, however the use of the PHD filter in traffic
engineering is novel and it offers an alternative to estimate
traffic network densities.

The remaining part of this paper is organised as follows.
Section II presents the objectives of this work. Section III
describes the main results with real traffic data. Finally,
conclusions are summarized in Section V.

II. OBJECTIVES

For the problem of multiple-object tracking, the PHD filter
has been intensively studied and used in the literature [11].
This problem consists in the recursive state estimation of
several targets based on the information coming from an
observation process. However, the PHD filter has not been
applied yet to traffic estimation problems (such as to the travel
time) except for one recent work [2].

Hence, the main objective is to investigate the potential
of the PHD filters for real-time traffic state estimation, with



Fig. 1. Space discretization

integration of the effects of adversary weather. The PHD filter
is implemented based on a Sequential Monte Carlo algorithm.

Indeed, common traffic estimation issues can be tackled by
the attractive properties of PHD filter, especially in dealing
with clutter and multiple traffic flows (considering weather
conditions). In most of the existing PHD filters, the clutter is
modeled as a Poisson random finite set with a given intensity.
The clutter intensity is characterized as a product of the
average number of clutter (false alarm) points per scan and
the probability density of clutter spatial distribution.

This work applies the PHD filter jointly with a constant
velocity model for estimation of trajectories. In contrast to
[2], in which authors estimate road traffic intensity based on
mobile vehicles’ coordinates, we develop a PHD filter for
traffic networks, and combine the CTM with the PHD filter.
Its performance is evaluated over a real-world study case.

III. METHODOLOGY

A. Macroscopic traffic model

In this study, the traffic model used is the well-known
first order Lighthill-Whitham-Richards (LWR) model in its
sending-receiving cell version of Daganzo [5], which is based
on hydrodynamic analogy describing the behavior of the traffic
flow. Let us recall it briefly in its discrete version, with
application to a simple section (as shown on Figure 1). The
motorway section is divided into n cells of length ∆xi. The
cell densities, ki for cell i, and flows, qi for flow between cell
i and i+1, are updated every ∆tN interval where the subscript
N stands for numerical.

The complete model is composed of two equations. The first
equation is the conservation equation. The second equation
is the flow equation which consists of the demand-supply
flows, i.e. the resulting flow in cell i at time t will be the
minimum between cell i + 1 supply Σi+1(t) and the cell
i demand Γi(t). Note that the Stochastic Cell Transmission
Model (SCTM) developed by Sumalee et al., [18], extends
the CTM to consider both supply and demand uncertainties.
The numerical time step is taken as a sub-multiple of the
observation time step fulfilling numerical conditions.

The state vector (of length 2n+ 1) to be estimated consists
of the flows and densities in the n cells of the section:

xt =
(
k1(t), . . . , kn(t), q0(t), . . . , qn(t)

)T
, (1)

where T denotes the transpose operator.
The inputs ut of the system are the demand upstream and

the supply downstream of the considered section and other

perturbations (incidents, work zones). The state equation is
then written as follows:

xt+1 = f(xt, ut), (2)

where f is a complex and highly nonlinear function with no
straightforward analytical form.

The state equation (2) is completed by an (linear) obser-
vation equation, which maps measurements, yt, and the state
vector of the system:

yt = Cxt, (3)

where C is a real matrix consisting of rows whose elements are
all zero except for the element corresponding to the position
of the sensor delivering a measurement.

As there are uncertainties in both the measurements and the
model, the complete dynamical model is given by{

xt = f(xt−1, ut−1) + wt,
yt = Cxt + vt,

(4)

where wt and vt are Gaussian noises of null mean and
variance-covariance matrix respectively Qt and Rt.

B. The particle PHD filter for traffic state estimation

1) Overview: The PHD filter is a multiple target filter for
recursively estimating the number and the state of a set of
targets given a set of observations. It works by propagating
in time the first moment (called intensity function or PHD
function) associated with the multi-target posterior [10]. Multi-
target tracking is a common problem in many applications.
The literature in this area is spread and the state-of-art and
methodology are well summarized in [11]. Recently, one
article has been concerned by traffic modeling issues [2], and
the potential for real-time traffic state estimation has been
investigated in Canaud et al., [4].

In [7] and [12] the authors highlighted the fact that the PHD
filter outperforms the standard approaches such as the Kalman
Filter (KF), Particle Filter (PF) or the Multiple Hypothesis
tracking (MHT). One can find many implementations of the
PHD filter either via the sequential Monte Carlo (SMC)
method [21], [24] or using finite Gaussian mixtures (GM) [22],
[23].

The GM method is attractive because it provides a closed
form algebraic solution to the PHD filtering equation, with
the state estimate (and its covariance) easily accomplished.
However, the GM method is based on somewhat restrictive
assumptions that single-object transitional densities and like-
lihood functions are Gaussian, and that the probability of
survival and the probability of detection are homogenous ([11]
[22]). The SMC method imposes no such restrictions and
should therefore provide a more general framework for PHD
filtering, even though it is also affected by different issues
[11].

Beginning with Sidenbladh [16] and Zajic and Mahler [25],
most researchers have implemented the PHD filter using SMC
methods. SMC techniques were originally devised to approx-
imate probability densities and the single-target Bayes filter.



Consequently, they must be modified for use with the PHD
filter. This is because first: (i) the PHD is not a probability
density function, and (ii) the PHD filter equations are more
complex than the single-target Bayes filter equations.

Despite these differences, the SMC approximation carries
over to the PHD filter relatively easily (with the exception
of regularization). Particles represent random samples drawn
from a posterior PHD. Particles are supposed to be more
densely located where targets are most likely to be present. As
with single-target SMC filtering, the basic idea is to propagate
particles from time step to time step so that this assumption
remains valid. The implementation is introduced in [21]. Then
some improvements have been proposed in [13] and [15].

2) General formulation: The purpose of this section is to
introduce the general formulation of a probability hypothesis
density in the random finite set framework for multiple-
target filtering. In this context targets and measurements are
considered as random sets (random in values and also in
number of values). From time step to time step, some of these
targets may disappear. The surviving targets evolve to their
new states and new targets may appear. Due to imperfections
in the detector, some of the surviving and newborn objects may
not be detected, whereas the observation set Yt may include
false alarm detection.

The concept of PHD filter then requires to recursively esti-
mate the set of states of all nt targets, Xt = {xt,1, . . . , xt,nt

}
that are present at time t given random measurements Yt =
{yk,1, . . . , yk,mk

} for all k up to time t. In the next parts
of the paper, we abusively use x to denote the multi-target
vector state, in order to simplify notation and without loss of
generality since the context gives enough information about
which vector is used. The underlying idea of the PHD filter
is to propagate a suitable density function D(x) in the target
state space χ ⊂ Rn (n = dim x). The PHD is a density
function but not a probability density function, such that, for
any region S ⊆ χ, the expected number of targets in S is
given by

n(S) =

∫
S

D(s)dx, (5)

i.e. by integration of D(·) over S.
Let’s D(·) be the PHD function and Dk|k be the PHD

function at time k based on the set Yk of measurements till
time instant k. The objective of PHD filter is time propagation

Dk−1|k−1(x)→ Dk|k−1(x)→ Dk|k(x). (6)

Before presenting the predictor and corrector equations, we
introduce some assumptions and notations. The PHD filter
presumes some multi-target motion model. More precisely,
target motions are statistically independent. Targets can disap-
pear from the scene. New targets can be spawned by existing
targets; and new targets can appear in the scene independently
of existing targets. These possibilities are described as follows.

• Motion of individual targets: fk+1|k(x|x′) is the single
target Markov transition density.

• Probability of surviving: pS,k+1|k(x′) noted pS(x′) is the
probability that a target with state x′ at time step k will
survive in time step k + 1.

• Spawning of new targets by existing targets: bk+1|k(x|x′)
but as this phenomenon is negligible in our case, this
asumptions is not included in this formulation compared
to the general PHD recursion [11].

• Appearance of completely new targets: bk+1|k(x) is a
term characterising that new targets with state set x will
enter the scene at time step k + 1.

The PHD filter also presumes the standard multitarget
measurements model. More precisely, no target generates more
than one measurement and each measurement is generated by
no more than a single target, all measurements are condition-
ally independent of the target state, missed detections, and a
multiobject Poisson false alarm process. These assumptions
can be summarized as follows:

• Single-target measurement generation: Lk(y|x) is the
sensor likelihood function for observation y at time step
k and state x.

• Probability of detection: pD,k+1|k(x′) noted pD(x′) is the
probability that an observation will be collected at time
step k + 1 from a target with state x, if the sensor has
state x′ at that time step.

• False alarm density: At time step k+1, the sensor collects
an average number λ = λk+1(x) of Poisson-distributed
false alarms, the spatial distribution is governed by the
probability density c(y).

With these notations, we now describe the basic steps of
the PHD filter: initialization, prediction and correction.

1) PHD Filter initialization
Regarding the initialization step of the PHD filter i.e.
the choice of D0|0(x), no special recommendations are
given in the litterature. One could choose this PHD
initialization as a sum of Gaussians. Mahler, [11], em-
phasizes that with no prior information about initial
target position, an uniform PHD should be chosen.

2) PHD Filter predictor
At time step k, starting from Dk|k, one can derive a
formula for the predictive Dk+1|k, which can be found
in [10], defined as:

Dk+1|k(x) = bk+1|k(x)︸ ︷︷ ︸
birth targets

+

∫
Fk+1|k(x|x′)Dk|k(x′)dx′,

(7)
where the PHD “pseudo-Markov transition density” is

Fk+1|k(x|x′) = pS(x′)fk+1|k(x|x′)︸ ︷︷ ︸
persisting targets

+ bk+1|k(x|x′)︸ ︷︷ ︸
spawned targets

,

(8)
with the spawned target equal to zero in our study case.
The predicted number of targets is therefore

Nk+1|k =

∫
Dk+1|k(x|yk)dx, (9)



then we have, under the non restrictive assumption of
no spawning,

Dk+1|k(x) = bk+1|k(x)+∫
pS(x′)fk+1|k(x|x′)Dk|k(x′)dx′.

(10)

3) PHD Filter corrector
From the previous step, one has the predicted PHD
Dk+1|k(x), given by (10). At time step k+1, one collects
a new observation set Yk+1 = {y1, . . . , ym} and requires
a formula for the data updated PHD Dk+1|k+1(x).
According to Mahler, [10], the PHD corrector step is

Dk+1|k+1(x) = Lk+1(y|x)Dk+1|k(x), (11)

where the “PHD pseudo-likelihood” function is defined
by

Lk+1(y|x) = 1− pD(x)+

pD(x)
∑
y∈Y

Lk(y|x)

λc(y) +
∫
pD(x)Lk(y|x)Dk+1|k(x)dx

.

(12)

Then we have,

Dk+1|k+1(x) = [1− pD(x)]Dk+1|k(x)+∑
y∈Y

pD(x)Lk(y|x)Dk+1|k(x)

λc(y) +
∫
pD(x)Lk(y|x)Dk+1|k(x)dx

.

(13)

C. Clutter intensity

In Bayesian multi-target filtering knowledge of parameters
such as clutter intensity and sensor field-of-view are of critical
importance. Significant mismatches in clutter and sensor field
of view model parameters result in biased estimates. In addi-
tion to the non-linearity, process and measurement noise, the
two main sources of uncertainty which constitutes significant
challenges in multi-target filtering are clutter and detection.
Clutter are spurious measurements that do not belong to any
target.

An unknown and non-homogeneous clutter intensity is
accommodated in [9] by dropping the standard Poisson as-
sumption for false alarms, and modelling individual clutter
returns based on individual clutter targets or generators. Each
clutter generator is analogous to an actual target, in the sense
that clutter generators have their own separate models for
births and deaths as well as transition, likelihood and detection
or missed detection. However, the two types of clutter and
actual targets are distinct, and cannot evolve into the other
type. The intuition here is that the clutter generators will
dynamically distribute themselves around the state space to
explain the prevailing false alarm conditions.

However, since in traffic modeling and state estimation
problem the use of the PHD filter is a new concept, the first
step should be to investigate if some simple assumptions as
Uniform or Poisson distribution is far away from the ground

Fig. 2. Test site section (B → C) divided into 7 cells and its detector
configuration

truth, or if it possible to choose an adaptative methodology,
automatically estimating the clutter intensity ([17]).

IV. EXPERIMENTAL RESULTS

A. Site and collected data

The test site is the urban freeway located at the Eastern
part of Lyon’s ring road (point A to D on figure 2), which
consists of three lanes between km point B and km point C
(5.6km long), [3], [14]. Traffic data were provided by the urban
motorways’ operator CORALY and collected in 2007 from 8
loop sensors.

The upstream demand and the downstream supply and bal-
ances from a rainy day are used. The profiles of these external
actions on the motorway system come from the real data of
highway flow measurements in March 2007, on one weekday
(Tuesday). The motorway section under consideration is the
most frequently congested part. The upstream flow comprises
the flow from North-West Lyon and the on-ramp from the
Geneva freeway (point B). Therefore, the upstream demand
presents high values on classical peak hours in the morning
and at the end of the afternoon.

According to the section configuration, the space discretiza-
tion of our traffic model has been carried out in such a way that
the discretized cells are the segments between two consecutive
sensors (Figure 2). Hence, we have 7 cells and 8 sensors.
In this urban motorway section, three on and off-ramps are
located on cells 3, 5 and 6. Therefore, in the traffic model,
source terms have to be considered in these cells. The balance
on versus offramp movements are shown in figure 3 as well
as upstream demand.

B. Hypothesis, models parameters and filter considerations

From previous works, e.g. [14], the calibration of the
fundamental diagram for this test site under rainy conditions
(which is the case of the selected day), is achieved with the
following parameters:



Fig. 3. Upstream demand and the balance ramp movements

1) Critical density: kc=100 [veh/km];
2) Maximum density: kM=300 [veh/km];
3) Maximum flow: qM=138 [veh/min].
The variance matrices needed in the estimation method also

have to be selected. For the flow measurement uncertainty
we have chosen a standard deviation of σR=1.5 [veh/min]
(consistent with empirical analysis conducted on the raw data
collected on this network). Hence, the noise variance matrix
is then defined by: Rt = diag(σ2

R). Regarding the uncertainty
of the state equation, we assume the choice that the model
is as robust as the measurements, meaning that the standard
deviation of state vector flow part is the same as measurements
one (σQ=1.5 [veh/min]). The density magnitudes are much
smaller than those giving the flow; therefore the standard
deviation of the density part of the state vector is chosen to
be:

σk = σQ ×
kc
qM

= 0.0011 [veh/m] (14)

Thus, the n first diagonal elements of the Q matrix are equal
to σ2

k whereas the (n+ 1) last ones are equal to σ2
Q.

Regarding the filters, the particle PHD filter uses the fol-
lowing parameters:

1) Probability of detection: Pd=0.98;
2) Number of particles: Np=400;
3) Number of birth particles: Nb=250;
4) Number of clutter (false alarm): Nc=1.
We assume for the particle initialization a “Uniform PHD”.

Moreover, as the newborn object particles need to cover the
entire state-space with reasonable density for the SMC-PHD
filter in order to work properly, [13], the birth density is driven
by measurements following a uniform distribution. Further, it
is supposed that, at each time instant t, on average Nc clutter
measurements are generated with an uniform distribution in
the measurement space.

C. Performance evaluation

In order to evaluate performance of PHD filter for real-
time traffic state estimation, the proposed methodology has
been carried out. The assimilation was performed by two
methodologies: (i) Particle filter and (ii) SMC-PHD filter,
both under the same conditions (CPU time, filter and model
parameters). Finally, we compare the flow estimates obtained
from both filters and for each sensor location.

The simulation has been conducted as follows. First, it
is supposed that measurements at some boundary cells are
available. Then, it is assumed that the upstream demand and

Fig. 4. Actual versus estimated flows for the fifth sensor. Dot-lines represent
real measured flows and blue and red solid line are respectively PF and SMC-
PHD estimates

downstream supply are known with a certain probability of
detection and false alarms, as well as the ramp balances of
in and out flows. Then we estimate by the two proposed
methodologies the state vector of densities and flows. For
comparison purposes, estimated versus actual traffic flows have
been depicted for both estimation engines (see figure 4). Root
Mean Square Error (RMSE) is used as a measure of the
performance. Namely, for each time step and each sensor, we
compute:

RMSEi =
1

NsNt

Ns∑
j=1

Nt∑
k=1

(
ŷi,j(tk)− yj(tk)

)2
, (15)

where the subscript i =PF or PHD, Ns is the number of
sensors, Nt the number of time step and ŷi,j(tk) the traffic
flow estimates for i, sensor j at time tk.

Since noises are unknown with real data, first conclusions
about the two methodologies could be subject to criticism.
For example, if measurements if measurments are far from
the real conditions, the less the RMSE, the worst the method.
To prevent this, and following the work of Canaud et al., [4],
we choose to perform the study on simulated data instead of
real data. The aim is that when we form the difference ŷ− y,
we can easily see the error in % and then see the performance
for all filters with respect to the ground truth data.

For setting up the simulation scenario, the typical days
upstream demand and downstream supply and balances of
ramp movements introduce before were used. In other word,
simulated data were derived from the real one. The model used
to simulate data is the same as the one used in the filters in
which the level of noises of the simulated data is defined by
the diagonal of Q. Results are presented in table I.

As one can see, with only boundaries conditions, both esti-
mates are quite similar, and close to the actual measurements
with a noticeable PHD overperformance: RMSEPF =3.44 and
RMSESMC−PHD=3.29. However, PHD estimates appear
smoother that those given by PF, which can be an interesting
feature if we look at the confidence interval of estimates.



TABLE I
RMSE OF THE ESTIMATIONS WITH SIMULATED DATA

cell 1 cell 2 cell 3 cell 4
sensor sensor sensor sensor

RMSEPF 1.3942 2.0524 2.0708 2.0420
RMSEPHD 1.9191 1.4859 1.6333 2.8381

cell 5 cell 6 cell 7 cell 8
sensor sensor sensor sensor

RMSEPF 1.9516 1.8819 2.1413 1.0018
RMSEPHD 2.3989 1.3884 1.1386 0.8493

Thus, PHD filter performed better than PF. Finally, focusing
on the transition regime (from free flow to congestion and
conversely), PHD detects changes in traffic conditions better.

V. CONCLUSIONS

This paper develops a PHD filter for traffic state estimation
with an appropriate clutter intensity. It is implemented based
on a SMC algorithm. Its performance is evaluated over a real-
world study case. The results are compared with the generic
PF, well recognized to solve traffic state estimation problems.

The results show the potential of the PHD filter to be
applied to traffic state estimation and lay the cornerstone for
the clutter intensity feature. The results demonstrate that the
PHD filter outperforms the particle filter on this real study
case. Secondly, it opens new avenues for PHD filter research
in traffic control, showing useful potential. The PHD filter can
be especially powerful in dealing with multiple traffic flows.
Specifically, this work can be extended with more complex
models to adversary weather conditions (which means more
clutter in the data), including switching state space models
as developed in [3] or [19] in order to adapt the traffic
state estimation according to weather or traffic conditions.
Multiple data sources can also be considered since the PHD
filter is relevant in multi-target multi-source tracking. One can
consider urban traffic and the estimation of other information
such as travel time under various noise uncertainties.

In conclusion, this first step in using the PHD filter for
traffic estimation issues shows the potential use of such a
tool. Some features have still to be investigated now, like the
likelihood function, the calibration of some parameters: rate,
resampling improvement, detection profile. The question of
clutter intensity has to be reconsidered in order to automati-
cally adapt itself. However, this filter has a great interest, with
no doubt, and definitively needs more consideration for future
traffic applications.
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