Lancaster EPrints

A probabilistic hypothesis density filter for traffic flow estimation in the presence of clutter

Canaud, Matthieu and Mihaylova, Lyudmila and El Faouzi, Nour-Eddin and Billot, Romain and Sau, Jacques (2012) A probabilistic hypothesis density filter for traffic flow estimation in the presence of clutter. In: Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2012 Workshop on :. IEEE, pp. 31-36. ISBN 9781467330107

PDF (SDF_traffic_2012) - Submitted Version
Download (945Kb) | Preview


    Prediction of traffic flow variables such as traffic volume, travel speed or travel time for a short time horizon is of paramount importance in traffic control. Hence, the data assimilation process in traffic modeling for estimation and prediction plays a key role. However, the increasing complexity, non-linearity and presence of various uncertainties (both in the measured data and models) are important factors affecting the traffic state prediction. To overcome this problem, new methodologies have been proposed. With this aim, in this paper we propose the use of the Probability Hypothesis Density (PHD) filter for traffic estimation. This methology is intensively studied, developed and improved for the purposes of multiple object tracking and consists in the recursive state estimation of several targets by using the information coming from an observation process. However, some issues need to be studied, especially the impact of the clutter (false alarm) intensity. The goal of this paper is to expose the potential of the PHD filters for real-time traffic state estimation and the choice of an appropriate clutter intensity. This investigation is based on a Cell Transmission Model (CTM) coupled with the PHD filter. It brings a novel tool to the state estimation problem and allows one to estimate the densities in traffic networks. In this work, we compare this PHD filter with the particle filter (PF) which has been successfully applied in traffic control and conclude that the PHD filter can be seen as a relevant alternative that opens new research avenues.

    Item Type: Contribution in Book/Report/Proceedings
    Uncontrolled Keywords: Vehicular traffic ; traffic estimation ; clutter ; Probability hypothesis density filters ; Real data ; traffic modelling
    Subjects: ?? qa75 ??
    Departments: Faculty of Science and Technology > School of Computing & Communications
    ID Code: 57789
    Deposited By: ep_importer_pure
    Deposited On: 28 Aug 2012 13:59
    Refereed?: No
    Published?: Published
    Last Modified: 20 Jul 2018 01:19
    Identification Number:

    Actions (login required)

    View Item