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Abstract—This paper considers the challenging task of real-
time extended object tracking using cluttered measurements from
laser range scanners. The performance of the recently proposed
Box Particle Filter (Box PF) algorithm is evaluated utilising
real measurements from laser range scanners obtained within
a prototype security system replicating an airport corridor.

The problem is expressed as the joint estimation of both state
and parameters of an extended target. Circularly and elliptically
shaped targets are considered. Promising results are presented.

I. INTRODUCTION

The problem of tracking an extended object has been
extensively studied in the recent years. Such objects of interest
could be individual targets or a formation (considered as one
target) such as a convoy of vehicles, a formation of aircrafts,
a fleet of ships, a crowd of people, etc. The particularity here
is that such objects are giving rise to many measurements and
need sophisticated methods to cope with them. The proximity
of the object and the resolution of the sensors may often be
sufficient for the observer to infer some valuable information
from the measurements about the shape and the size of the
target’s extent.

Usually the problem is formulated as a joint estimation
of kinematic states and parameters, where the parameters
relate to the extent of the object of interest [1], [2], [3],
[4], [5], [6], [7] and the main methodology is the Bayesian
framework. Various filters have been developed for extended
target tracking: particle track-before-detect filters [8], cluster
based approaches [9], [10], Poisson spatial models combined
with particle filters (PFs) [11], [12], [13], [14] and mixture
Kalman filters combined with data augmentation [1].

Recently various Probabilistic Hypothesis Density (PHD)
filters for extended object tracking have been proposed,
i.e. [15]. As an alternative, various interval algorithms have
been developed, mainly for linear systems and linear mea-
surements [16], [17], [18]. This paper proposes a Box Particle
Filter (Box PF) framework for extended object tracking. The
Box Particle filter is developed in [19] and applied for lo-
calisation problems. The theoretical justification of the Box
PF approach is derived in [20], [21]. The Box PF has also
been applied to filtering problems within the random finite set

statistics approach in [22] and in particular as a more efficient
implementation of a Bernouli PF.

In the present paper the Box PF addresses the problem of
extended target tracking. The main contribution of this work
is in presenting a general form for calculating the likelihood
function based on solving a Constraint Satisfaction Problem
(CSP) and the performance evaluation of the algorithm using
real data from laser range scanners.

The rest of this paper is organised as follows. Section II
gives the main idea behind the Box PF. Section III presents the
formulation of the problem within the Bayesian framework.
Section IV introduces the necessary theoretical background
from interval analysis. The Box Particle Filtering algorithm
for extended target tracking is presented in Section V. The
evaluation scenarios are described in Section VI, the results
are given in Section VII and the conclusions in Section VIII.

II. MAIN IDEA OF THE BOX PARTICLE FILTERING

The main idea of the Box PF is to replace the point particles
with region-particles, also called boxes. This approach is
suitable for dealing with various types of uncertainties in the
measurements: i.e. interval, stochastic and data association
uncertainties [22]. These three types of uncertainties can be
dealt with the same prediction and correction steps as in the
case with the generic PF. However, there are some significant
differences.

The prediction step is performed in a similar way as in
the classical PF, however, it is with respect to box particles.
When a box particle is propagated via a non-linear function,
the image of it is not necessarily a box particle. Hence, a
function, called inclusion function, introduced in the previous
section, is applied to convert the predicted region into a box
particle. The measurement update step requires the calculation
of the generalised likelihood function. Since the measurement
noise is supposed to be bounded, a likelihood box is defined
as a set containing the measurement and the noise boundaries.
This generalised measurement likelihood function is calculated
in a different way compared to the classical PF [23]. The
measurement update step is based on finding the minimum
boxes inside the box particles, consistent with the likelihood
box. This is done with a procedure called contraction which



removes inconsistent parts between the box particles and the
likelihood box. When there is no consistency between the
box state particle and the likelihood box, the likelihood value
is set to zero. This case commonly happens when a clutter
measurement is contracted with the box state particle. There
are different methods for performing the contraction step [24].
The resampling step is used to introduce variety. However, the
resampling step in the box PF differs from the resampling step
of the generic PF. The resampling step in the Box PF can be
performed by a division of box particles [22] or by other
techniques.

III. PROBLEM FORMULATION
WITHIN THE BAYESIAN FRAMEWORK

The system dynamics and the sensor equations have the
following general form:

xk = f(xk−1,ηk), (1)
zk = h(xk,wk), (2)

where xk =
(
XT
k ,Θ

T
k

)T
⊂ Rnx and zk ⊂ Rnz are the

unknown system state vector and the measurement vector,
respectively, at time step k, k = 1, 2, ...,K. The maximum
number of time steps is given by K; nx is the dimension of xk
and nz is the dimension of zk. The notation (·)T is used for the
transpose operator. The system function f(·) and measurement
function h(·) are nonlinear in general. The vector xk consists
of the object kinematic state vector Xk ⊂ RnX and object ex-
tent, characterised by the parameters vector Θk ⊂ RnΘ , where
nΘ is the number of parameters to be estimated. The system
(kinematic state and parameters) noise and measurement noise
are given, respectively, by: ηk = (ηTX,k,η

T
Θ,k)T and wk.

According to the Bayesian framework the state vector is
obtained in a recursive way based on the following equations,
for the prediction

p(xk|z1:k−1) =

∫
Rnx

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3)

and respectively for the update

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (4)

where p(xk|z1:k−1) is the prior state probability den-
sity function (pdf), p(xk|xk−1) is the state transition pdf,
p(xk−1|z1:k−1) is the posterior state pdf at time step k − 1,
p(xk|z1:k) is the posterior state pdf at time step k, p(zk|xk)
is the likelihood function and p(zk|z1:k−1) is a normalisation
factor.

IV. BACKGROUND FROM INTERVAL ANALYSIS

A real interval, [x] = [x, x] is defined as a closed and
connected subset of the set R of real numbers. The lower
bar is the minimum value of a quantity and the upper bar is
the maximum value of a quantity. In a vector form, a box
[x] of Rnx is defined as a Cartesian product of nx intervals:
[x] = [x1] × [x2] · · · × [xn] = ×nx

i=1[xi]. In this paper, the
operator |[.]| denotes the size |[x]| of a box [x]. The underlying

concept of interval analysis is to deal with intervals of real
numbers instead of dealing with real numbers. For that pur-
pose, elementary arithmetic operations, e.g., +,−, ∗,÷, etc.,
as well as operations between sets of Rn, such as ⊂,⊃,∩,∪,
etc., have been naturally extended to interval analysis context.

In addition, a lot of research has been performed with the
so called inclusion functions [24]. An inclusion function [f ]
of a given function f is defined such that the image of a
box [x] is a box [f ]([x]) containing f([x]). The goal of
inclusion functions is to work only with intervals, to optimise
the interval enclosing the real image set and then to decrease
the pessimism when intervals are propagated.

Often constraints have to be fulfilled which requires to solve
the CSPs. A CSP often denoted H can be written as:

H : (f(x) = 0,x ∈ [x]). (5)

Equation (5) can be interpreted as follows: find the optimal
box enclosure of the set of vector x belonging to a given
prior domain [x] ⊂ Rn satisfying a set of m constraints f
(with f a multivalued function, i.e., f = (f1, f2, · · · , fm)T ,
where the fi are real valued functions). The solution set of H
is defined as:

S = {x ∈ [x] | f(x) = 0}. (6)

The contraction H means replacing [x] by a smaller domain
[x]′ such that S ⊆ [x]′ ⊆ [x]. A contractor for H is any
operator that can be used to contract H. Several methods
for building contractors are described in [24, Chapter 4],
e.g. Gauss elimination, the Gauss-Seidel algorithm, linear
programming. Each of these methods may be more suitable to
some types of CSP. Although the approaches presented in this
work are not limited to any particular contractor, a general and
well known contraction method, the Constraints Propagation
(CP) technique is used in this paper. The main advantages
of the CP method is its efficiency in the presence of high
redundancy of data and equations. The CP method is also
known to be simple and, most importantly, to be independent
of nonlinearities.

V. BOX PARTICLE FILTERING ALGORITHM FOR
EXTENDED TARGET TRACKING

The Box PF algorithm for extended target tracking consists
of the following steps:

0. Initialise the box particles [x
(p)
0 ] = x̂0 + [−3σ0,+3σ0],

p = 1, ..., N . The available information about the target state is
contained within the state vector [x̂0] =

(
[X0]T , [Θ0]T

)T ⊂
Rnx and the standard deviation parameter vector σ0 ⊂ Rnx .

Repeat for K time steps, k = 1, ...K, the following steps:
Prediction
1. Propagate the box particles [x

(p)
k−1] through the state

evolution model [x
(p)
k|k−1] = [f ]([x

(p)
k−1], [ηk]) to obtain the

predicted box particles [x
(p)
k|k−1]. An inclusion function ensures

the resulting state vector is again a box.
Update



2. Upon receiving the measurements from the sensor(s) re-
duce their number to those M that are within the observability
region of the sensor(s).

3. To take into account the uncertainty of the sensor(s),
form intervals around the measurements zjk, thus obtaining the
measurement likelihood boxes [zjk], i.e. [zjk] = zjk+[−∆,+∆].
If the standard deviation of the measurement error σz is avail-
able the added interval of uncertainty can be [−3σz,+3σz]
for example. Often, the case is that an error interval ±∆ is
available in the technical sheet of the measurement device
instead. Using this interval is a convenient way of obtaining
the likelihood boxes.

4. Transform the measurements to a coordinate system
consistent with the coordinate system of the boxes, i.e. from
polar with respect to the sensor to Cartesian with respect to the
center of the coordinate system. Apply an inclusion function
after the transformation.

5. Contract the measurements with the box particles. Only
the contracted measurements are used in the next steps. They
are refereed as contracted measurement boxes. As a result,
M

(p)
c ≤M contracted measurements boxes remain associated

with the box particle p.
6. Calculate the likelihood terms p([zjk]|[x(p)

k ]), ∀ box
particles p = 1, ..., N and ∀ contracted measurement boxes
j = 1, ...M

(p)
c , as the area included within the contracted

measurement boxes divided by the area covered by their
associated box particles.

7. For each box particle p perform contraction based on
each of the contracted measurement boxes m = 1, ...,M

(p)
c .

Here we perform it using the CSP technique. This results in

obtaining M (p)
c contracted box particles

{
[x

((p)m)
k ]

}M(p)
c

m=1
from

each of the p box particles.
8. Obtain an estimate for each of the contracted box particles

[x
(p)
k,c], p = 1, ..., N as a weighted sum of the contracted box

particles pm, m = 1, ...,M
(p)
c using the weights obtained in

step 5.
9. Calculate the weights for each of the contracted box

particles:
9.1. Calculate the terms p([zjk]|[x(p)

k,c]), ∀ contracted box
particles p = 1, ..., N and ∀ contracted measurements j =

1, ...M
(p)
c , as the area included within the contracted mea-

surement boxes divided by the area covered by their associated
contracted box particles.

9.2. Calculate the weights w(p)
k , p = 1, ..., N using terms

from step 8.1. and the spatial distribution model derived in
[12], under the assumption that the number of measurements
originating from the target and the number of clutter points
have Poisson distribution:

p([zk]|[x(p)
k ]) =

M∏
j=1

(
1 +

λT
ρ
p([zjk]|[x(p)

k,c])

)
, (7)

w
(p)
k = w

(p)
k−1

p([zk]|[x(p)
k ])∑N

p=1 p([zk]|[x(p)
k ])

, (8)

where λT is the average number of the measurements origi-
nating from the target and ρ is the clutter density. The same
Poisson assumption is adopted in this work.

10. Obtain a box estimate for the state of the extended target
as a weighted sum of all particles:

[x̂k] =

N∑
p=1

w
(p)
k [x

(p)
k ] (9)

and a (non-interval) estimate x̂k for the extended shape using
the mid-points of the box estimated of the state vector [x̂k].

Resampling
11. Computing the effective sample size Neff =

1/
∑N
p=1(w

(p)
k )2. Choose a threshold, for example

Nth = 2N/3.
12. If Neff < Nth perform resampling using a modified

version of the Sequential Importance Resampling (SIR) algo-
rithm, in which the uncertainty regions of the selected box
particles are reduced to randomly selected portions of the
initial uncertainty regions. The weights are set to w(p)

k = 1/N .

VI. EVALUATION SCENARIOS

The performance of the Box PF algorithm for extended
object tracking is evaluated using data obtained within a
prototype security system replicating an airport corridor. This
data consists of range and bearing components obtained by
three laser rangefinder devices. The measurement devices are
positioned at three key locations, marked with crossed squares,
in a curved corridor (see Fig. 1). Two different scenarios are
considered. The first scenario is with a single person holding a
cylindrical object with radius equal to 18cm around his body at
the height of the sensors, referred as circular object scenario
from here on. In this scenario the target is visible from at
least one sensor (usually from two). The second scenario
is originally a multiple target tracking scenario with several
people which in order to relate to our problem we use partially
from the point of initial entry of the first person until the
first crossing point of that person with another one walking in
the scene. This scenario will be referred as the human body
scenario. In this case the people are moving in and out of the
area visible by the sensors. Because of intercrossing the targets
on the scene experience obscurations or occlusions at different
sections of their trajectories. The sensors are positioned around
the height of the hip, i.e. the measurements originate from the
body and from the moving limbs of the people. In that case the
walking people could be approximated with circles with radius
approximately 15-20cm. No exact ground truth is available in
both cases. Nevertheless, the information from video cameras
positioned in the corridor gives a sort of ground truth for the
trajectory of movement of the targets.

A. Model of the Extended Targets

We look at a two-dimensional case, where the state vector
consists of position coordinates and velocity of the centre of



the extent. Then the kinematic state vector is in the from

[Xk] = ([xk], [ẋk], [yk], [ẏk])T

= ([xk, xk], [ẋk, ẋk], [yk, yk], [ẏk, ẏk])T . (10)

The interval parameter vector, in its general form, is

[Θk] = ([θ1,k], [θ2,k], · · · , [θnΘ,k])T

= ([θ1,k, θ1,k], [θ2,k, θ2,k], · · · , [θnΘ,k, θnΘ,k])T . (11)

Here we consider a circularly-shape approximation of the
extended target, therefore the parameter vector holds only the
radius of that circle

[Θk] = ([rk]) =
(
[rk, rk]

)
. (12)

The motion of the interval centre of the extended target is
modelled by the nearly constant velocity model [25], [26]. The
evolution model for the interval state of the target is

[Xk] = A[Xk−1] + Γ[ηX,k]. (13)

The state transition matrix A1 =

(
1 Ts
0 1

)
for the two

dimensional case is given by A = diag(A1,A1), Γ =(
T 2
s /2 Ts 0 0
0 0 T 2

s /2 Ts

)T
and Ts is the sampling interval.

The system dynamics noise [ηX,k] is characterised by the
standard deviation parameters σx and σy . Then the system
dynamics noise is represented as a Gaussian noise process
with covariance Q = diag(Q1σ

2
x,Q1σ

2
y), where Q1 =(

T 4
s /4 T 3

s /2
T 3
s /2 T 2

s

)
. The evolution for the extent is assumed

to be a random walk model, described by the equation

[Θk] = [Θk−1] + [ηΘ,k], (14)

where the interval parameters noises [ηΘ,k] are characterised
by σΘ ∈ RnΘ . Then again, the augmented interval state vector
is [xk] = ([Xk]T , [Θk]T )T .

B. Observation Model

The collected measurements consist of range and bearing.
The number of measurements M obtained at each time
step from an active sensor consists of MT measurements
originating from the target and MC clutter measurements,
i.e. M = MT + MC . The measurement equation for the
measurement point j, j = 1, ...,M is of the form:

zjk = h(xk,w
j
k). (15)

The range and bearing components are described respectively:

djk =

√
xj2k + yj2k + wjd,k, (16)

βjk = tan−1 y
j
k

xjk
+ wjβ,k, (17)

where xjk and yjk denote the Cartesian coordinates of the
actual point of the source which generates the measurement
in the case of two dimensional space. The measurement noise
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Fig. 1. Testing scenario. The three laser scanner devices are indicated with
crossed boxes.

wj
k = (wjd,k, w

j
β,k)T , is assumed (but not restricted) to be

Gaussian, with a known covariance matrix R = diag(σ2
d, σ

2
β).

The interval measurements vector is [zjk] = ([djk], [βjk])T ,
where [djk] is the interval range and [βjk] is the interval
bearing of the measurement point j. One way to describe these
components is:

[djk] = djk + [−3σd,+3σd], (18)

[βjk] = βjk + [−3σβ ,+3σβ ]. (19)

VII. PERFORMANCE EVALUATION

The performance of the algorithm is evaluated by averaging
over 500 repetitive runs for the two scenarios described above.
The estimated trajectories for the circular target scenario and
for the human body scenario are presented in Fig. 3(a) and
Fig. 3(b), respectively. Fig. 3(c) and Fig. 3(d) present the
averaging for the estimated radius. Fig. 3(a) to Fig. 3(d) give
both interval and non-interval estimation graphs, where the
non-interval results are obtained as the mean of the intervals.
The performance is further evaluated based on the volume
of the interval shape and the inclusion of the measurements
within that interval shape show in Fig. 4 and Fig. 5.
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Fig. 2. The box particles are given with black lines, the estimated interval
shape is in red colour the measurement likelihood boxes are in cyan and the
non-interval estimate is given in blue

During the first∼10 time steps the circular target is entering
the scene. Fig. 3(a) shows that this leads to decreasing the
uncertainty within the target’s state vector after the initial
blow up of the box particles. This is related to the volume
of the interval shape, which decreases, as seen in Fig. 4.
As seen in Fig. 3(c) the estimate of the target’s radius is
within the expected range - an interval of ∼[7cm, 27cm],
and mean of ∼17cm. Due to the nature of the sensors, the
number of the measurements inside the interval shape is higher
when the object is closer to any of the sensors. Nevertheless,
the percentage of measurements that are inside the region of
the interval shape remains higher than 90% throughout the
tracking process in this scenario, see Fig. 4.

Similar behaviour is observed in the human body scenario.
An initial decrease of the interval uncertainty to a certain
interval size is observed, once the target enters the scene. The
difference here is the presence of up to 4 targets in the scene
at the same time. It leads to lower percentage of measurements
(∼1/4 of the initial 90%) within the estimated interval target
shape after three other targets enter the scene, see Fig. 5. That
happens between time steps 30 to 50. The estimated radius is
shown in Fig. 3(d) to be at an interval of ∼[8cm, 25cm], with
a mean of ∼16.5cm.

VIII. CONCLUSIONS

This paper presents a Box Particle Filter for extended
target tracking in the presence of clutter and validates its
performance based on real data. Two different scenarios are
considered and the results show precise and effective estima-
tion of the extended target state. Both an interval and a non-
interval (punctual) estimation of the target state is obtained as
an output of the filter. The Box Particle Filter appears to be a
promising technique for extended target tracking an will be a
subject to further studies.
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(b) Scenario with a human body
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Fig. 3. Performance evaluation for circular target scenario (a), (b) and for
human body scenario (c), (d).
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