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Giant magneto-conductance in twisted carbon nanotubes
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PACS. 72.80.Rj – Electronic transport: fullerenes and related materials.
PACS. 73.61.Wp – Electronic structure: fullerenes and related materials.

Abstract. – Using the Landauer-Büttiker formalism, we calculate the effect of structural twist
on electron transport in conducting carbon nanotubes. We demonstrate that even a localized
region of twist scatters the propagating π electrons and induces the opening of a (pseudo-)
gap near the Fermi level. The subsequent conductance reduction may be compensated by an
applied axial magnetic field, leading to a twist-induced, giant positive magneto-conductance in
clean armchair nanotubes.

Carbon nanotubes [1–3] exhibit a range of unusual electronic properties associated with
the morphology of these quasi-1D structures. Early one-electron theories successfully associ-
ated metallic or semi-conducting behaviour with the chiral vector that characterizes a given
nanotube [4–6]. Further studies addressed the effect of atomic-level impurities [7–10] and inter-
tube interactions [11–14] on electrical conductance, or magneto-transport [7,15–19]. In parallel
with the development of such one-electron theories, intensive studies of electron-electron cor-
relations have been undertaken. Indeed, nonlinear current-voltage (I-V ) characteristics have
recently been observed [20], which are reminiscent of Luttinger liquid behaviour. An intrigu-
ing question remains however, namely whether other effects may augment or even dominate
such nonlinearities in the transport properties of nanotubes.

In this letter we predict that scattering of electrons from twistons may give rise to strongly
nonlinear I-V characteristics. Twistons [21–23], associated with regions of axial twist in
otherwise perfect nanotubes, are intrinsic defects that are frozen into nanotube bundles dur-
ing their synthesis and hence cannot be ignored when discussing electron transport. Un-
like ideal straight and defect-free nanotubes, which have been shown to exhibit conventional
magneto-resistive behaviour [24], we find that nanotubes containing twistons may behave in
a very different way. In twisted tubes, we predict the occurrence of a giant positive magneto-
conductance, an unexpected effect that by far exceeds the positive magneto-conductance as-
sociated with weak localisation in disordered tubes [25].
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Fig. 1 – Differential conductance G of an infinite (10, 10) carbon nanotube as a function of the applied
bias voltage Vbias. (a) Results for a perfectly straight tube (dotted line) are compared to those for a
∆θ = 36◦ finite twiston extending over 100 unit cells in the axial direction. For a tube with radius R,
a portion of the unit cell of length L is shown in the inset. G0 = 2e2/h is the conductance quantum.
(b) Differential conductance of the (10, 10) nanotube subject to an infinitely long uniform twist, for
different values of the twist per unit length dθ/dl. (c) Dependence of the conductance gap ∆ on the
infinitely long twist dθ/dl for various (n, n) nanotubes.

To compute the effect of a finite scattering region on transport in an otherwise perfect
(n, n) armchair nanotube, we use a parameterized four-state (s, px, py, pz) Hamiltonian, based
on a global fit to density functional results for graphite, diamond and C2 as a function of
the lattice parameter [26]. A finite twiston is treated as a scattering region connecting two
semi-infinite (n, n) nanotubes. A recursive Green’s function formalism is used to evaluate the
transmission matrix t, describing the scattering of electrons of energy E from one end of the
semi-infinite nanotube to the other [27]. The differential electrical conductance at bias voltage
Vbias is related to scattering properties at energy E = EF − eVbias by the Landauer formula
G = G0Tr

{
t†t

}
, where G0 = 2e2/h is the conductance quantum. A twiston is formed by

introducing a small angular distortion between neighbouring axial slices within the scattering
region. This is shown schematically in the inset of fig. 1(a), which displays the local shear
distortion within the unit cell of length L, containing two axial slices. The perturbation to
the Hamiltonian matrix enters through the scaling of the nearest-neighbour hopping integrals
that follow the changes in C-C bonds r1 and r2.

Figure 1 shows the differential conductance for a straight and twisted (10, 10) nanotube. In
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Fig. 2 – (a) Details of the differential conductance G of a (10, 10) carbon nanotube subject to a
finite twiston, as a function of the applied bias voltage Vbias. (b) Differential conductance of (n, n)
nanotubes at zero bias as a function of the local twist in finite twistons. In both figures, the twistons
∆θ extend only across a finite segment of 100 unit cells in the axial direction.

the straight nanotube of fig. 1(a), the nondegenerate bands, which cross near EF, open up two
conductance channels at this energy. Additional conduction channels follow as an increasing
number of subbands appear near EF − eVbias at higher bias voltages. In the presence of a
localized twiston, the differential conductance is suppressed at all energies, in particular near
the Fermi level. This is shown in fig. 1(a) for a finite-length twiston, with a total twist of 36◦

extending over 100 unit cells or ≈ 24.6 nm. The occurrence of a conductance gap near EF

suggests that electron scattering by a finite twiston can be viewed as a tunneling phenomenon.
For comparison with fig. 1(a), fig. 1(b) shows results for a nanotube subject to an infinitely

long uniform twist dθ/dl. This shows that that a localized or infinitely long twist opens up
a conductance gap ∆ near EF. The predicted gap in the presence of infinitely long twists is
shown in fig. 1(c) and agrees with results of refs. [21] and [22].

In the following, we discuss the dependence of the conductance gap on the twist distortion
dθ/dl, the spatial extent of the twiston, and an axially applied magnetic field. As shown
in fig. 1(c), we find that for a range of (n, n) tubes subject to an infinitely long twist, the
magnitude of the conductance gap ∆ increases linearly with increasing twist distortion to
its maximum value ∆max, and decreases thereafter. For an (n, n) nanotube, we find the
maximum value of the conductance gap ∆max to be achieved at an “optimum tube twist”
value (dθ/dl)0 ≈ An−2 (with A = 620◦/nm), which depends on the chiral index n. The
dependence of ∆max on the optimum tube twist (dθ/dl)0 corresponds to the envelope function
in fig. 1(c), and is well approximated by ∆max ≈ ∆(dθ/dl)0 ≈ 1.30 eV (1 − e−0.21(dθ/dl)0),
with (dθ/dl)0 in ◦/nm units.

Details of conductance changes due to localized twistons, such as those of fig. 1(a), are
shown for small bias voltages in fig. 2(a). In the present case, we subjected a straight (10, 10)
nanotube to finite twists ∆θ extending over 100 unit cells. We find that the conductance
pseudo-gap associated with finite twistons is accompanied by conductance oscillations at small
bias voltages. A tube subject to an infinitely long twist, on the other hand, possesses a real
gap with no such oscillations. The zero-bias conductance as a function of the twist angle for
finite twistons extending over 100 unit cells is presented in fig. 2(b) for a range of tube sizes.
This type of conductance behaviour is reminiscent of that associated with tunneling through
a potential barrier, where the twist-induced gap is analogous to the height of the barrier.
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Fig. 3 – (a) Differential conductance of an (8, 8) carbon nanotube subject to a ∆θ = 36◦ twiston
extending over 100 unit cells and/or a magnetic flux Φ = 0.15Φ0 in the axial direction. Both the
twiston and the flux alone open up near-identical conductance gaps. A careful combination of nonzero
flux and twist reopens a single conductance channel at small bias voltages. (b) Corresponding band
structure of an infinite (8, 8) carbon nanotube. Results for a straight tube in zero field are compared
to those for a tube subject to an infinitely long uniform twist of dθ/dl = 0.36◦ per unit cell and a
magnetic flux Φ = 0.15Φ0 in the axial direction.

These results, when combined, clearly demonstrate that finite twistons yield nonlinear I-V
characteristics.

It must be stressed that the degree of twist required to open a pseudo-gap is small. For
example in the finite (10, 10) carbon nanotube of fig. 2(a), ∆θ = 20◦ over 100 unit cells
is equivalent to dθ/dl � 1◦/nm only. The resulting perturbation to the Hamiltonian is
therefore well within the limits of our model, where the twist is viewed as a frozen-in defect
to the nanotube at low temperatures [23].

In a reasoning based on London theory, we now consider the effect of a uniform magnetic
field on transport in straight and twisted nanotubes. Axially applied magnetic fields produce
an Aharonov-Bohm effect in carbon nanotubes [16,17,28], which in the clean limit arises from
the opening and closing of a band gap at the Fermi level. In the presence of a twiston, we
now demonstrate that the reverse effect can occur, namely that an axial magnetic field can
remove the twiston-induced conductance gap, resulting in a positive magneto-conductance.
The effect of a combined structural twist and magnetic field on the conductance of nanotubes
is discussed in fig. 3(a). These results show that a magnetic field may restore the zero-bias
conductance of twisted armchair nanotubes from an essentially vanishing value to near half
of the initial zero-twist value.

To understand this behaviour, we consider the roll-up process of a graphene sheet, spanned
by the Bravais lattice vectors a1 and a2, to an armchair nanotube. Structural twist of the tube,
depicted in the inset of fig. 1(a), is related to a shear distortion of the initial graphene sheet.
Let us assume that the electronic structure near EF can be attributed to the nearest-neighbour
ppπ interactions. The imposed structural twist is modeled by changing the relative strength of
the hopping integral γi along the neighbour vector ri with respect to the undistorted reference
value γ0 = 1. Taking into account the diatomic basis of the distorted graphene sheet, we obtain
a half-filled band with particle-hole symmetry and an energy gap between the valence and
conduction band of

∆(k) = |1 + γ1e
ik·a1 + γ2e

ik·a2 | .
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During the initial roll-up process to an (n, n) nanotube, the two-dimensional electron momen-
tum space of the graphene sheet collapses into a one-dimensional space with k along the tube
axis. Exposing the tube to a magnetic field adds the term eA/� to k, where A is the vector
potential, thus introducing a new phase factor [17]. Further noting that k · ai = k · ri, we
find that the energy gap between the highest valence and lowest conduction band of a twisted
tube becomes

∆(k) = |1 + γ1e
ik·r1eiφ + γ2e

ik·r2eiφ| . (1)

The phase φ = 2πΦ/Φ0 depends on the ratio between the magnetic flux Φ trapped in the tube
and the fundamental unit of flux Φ0 = h/e. Note that the fundamental unit of flux used in
this paper is twice the flux quantum, Φ0 = h/2e. The fundamental gap ∆ = ∆(k0), occurring
at k0, is the minimum value found in the Brillouin zone. We also note that ∆ = 0 for an
undistorted tube in zero field.

In view of the twisted-tube morphology defined in fig. 1(a), it is convenient to introduce
the quantity α = k·r1 = −k·r2. From eq. (1) we find that ∆(k) = 0 only if (sinφ/ sin α) =
(γ1 − γ2) and (cos φ/ cos α) = (−γ1 − γ2). Combining these equations, we find that the
fundamental gap closes if

cos 2φ =
(γ2

1 + γ2
2) − (γ2

1 − γ2
2)2

2γ1γ2
(2)

and

cos 2α =
1 − γ2

1 − γ2
2

2γ1γ2
. (3)

In other words, according to eq. (2), the twist-induced fundamental gap closes again, once the
(n, n) nanotube is exposed to a magnetic field B

B = Bc arccos
(

(γ2
1 + γ2

2) − (γ2
1 − γ2

2)2

2γ1γ2

)
(4)

along its axis, where Bc = 2.28×104 T/n2. According to eq. (3), the longitudinal wave vector
k0, at which the fundamental gap vanishes, must satisfy the condition

k0·r1 =
1
2

arccos
(

1 − γ2
1 − γ2

2

2γ1γ2

)
. (5)

The above heuristic model also demonstrates why the exact result of fig. 3(a) yields G≈G0

for the zero-bias conductance in the presence of a nonzero twist and flux, rather than the value
G = 2G0 for a twist-free tube in zero field. In the latter case, the two open scattering channels
at EF correspond to values of α (or wave vector k) of opposite sign. For a given nonzero flux
Φ and a corresponding sign of the phase φ, (sin φ/ sin α) = (γ1 − γ2) can be satisfied by only
one of these channels. This is shown in fig. 3(b), where the dispersion curves in the presence of
a compensating twist and flux are compared to those of a perfectly straight nanotube in zero
field. As expected, reversing the sign of the twist angle switches the allowed conduction chan-
nel. Figure 3(b) also illustrates that the longitudinal Fermi wave vector k0, which marks the
band crossing at EF, is shifted from the value for the unperturbed tube, as predicted by eq. (5).

In summary, we have analyzed for the first time the scattering properties of finite-size
twistons and shown that these introduce nonlinear I-V characteristics associated with the
opening of a pseudo-gap at EF, thus effectively quenching the nanotube conductance. This
conductance gap can be closed in an axial magnetic field, leading to a giant positive magneto-
conductance. At small bias voltages, the conductance of a twisted tube in nonzero field can
reach up to half the ballistic conductance value of a straight tube in zero field.
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[13] Kwon Y.-K., Saito S. and Tománek D., Phys. Rev. B, 58 (1998) R13314.
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