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Conductance fluctuations due to a bistable scatterer in a weakly connected conductor
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We study the efI'ect of a single bistable scatterer on the conductance of mesoscopic conductors in

the crossover regime between open and closed systems. After the resistance of the contact between
the metallic grain and bulk electrode exceeds the resistance of a grain, the eKect of a bistability is

enhanced and takes the universal form. Its eKciency scales with the cross section of the bistable
impurity and conductances of contacts but is independent of this impurity position inside a sample.
Mutual correlations between magnetoconductance fluctuations at two conductance levels also look
universal. Enhancement of the conductance sensitivity to variations of impurity configurations in

samples with highly resistive contacts transforms the spectral density of excess quantum noise toward
a white-noise behavior and requires higher stability of the sample in order to observe mesoscopic
efFects in direct-current measurements.

I. INTRODUCTION

Mesoscopic devices of various modifications often show
pronounced telegraph and other low-&equency noise.
Some part of this noise has been interpreted in terms
of the presence of bistable or multistable configurations
of defects or of a slow impurity diffusion. The origin of
this effect has a quantum nature. In the absence of any
inelasticity and at low temperatures, the conductance of
an individual sample depends on the interference pattern
of diffusive electronic waves in it, and a bistable scat-
terer manifests itself by the change of phases of coherent
multiply scattered electron waves which touch it during
the pass through the sample. As a result, the recharging
of even a single impurity among an infinite number of
them can produce a finite effect on the conductance.

Nevertheless, in devices with the form of a microbridge
(open systems), this effect is rather limited. Recharging
or displacement of a single short-range impurity among
a lot of them (their density is n) produces a conduc-
tance variation of the order of (bg ) (l n) (Ref. 2)
(we use quantum units e2/h to measure all conductances
below and brackets stand for an averaging over static im-

purity configurations). This cannot provide a complete
renewing of a random potential realization from the point
of view of a resulting transmission through the sample,
since the number of impurities nl per area of a squared
mean free path / is usually great. Further, both the ab-
solute value and autocorrelation function of conductance
variations in a magnetic field are quite sensitive to the
bistable defect position with respect to current contacts. 4

The goal of the present work is to describe the effect of a
single scatterer on properties of a nearly closed meso-
scopic conductor and, in particular, to estimate, how
much changes one should produce in a disordered cavity
with low-conductance leads in order to collect full statis-
tics of conductance fluctuations (CF) in it. The latter in-
formation can be useful both for the studies of mesoscopic
effects in electronic microdevices ' and transmission ex-

periments with microwaves, which could be directed to
the check of recently predicted universal distributions of
transport coeKcients of chaotic microcavities. The cal-
culation below confirms an intuitive expectation that, as
the mesoscopic conductor gets less and less connected to
bulk electrodes (conductances gb of contacts decrease),
the inQuence of an individual scatterer on the conduc-
tance increases. The crossover occurs when the contact
resistance, g&, exceeds that of a metallic grain (g, ).
After this, CF s produced by a bistability take the uni-
versal asymptotic behavior specific to zero-dimensional
systems: their rms value, (b'g ) g& (o;/A& ) becomes
independent both of the position of the bistable impu-
rity and of the density of other scatterers, but depends
on the impurity cross section 0; weighted by the electron
Fermi wavelength A~ and the contact conductance. The
normalized magnetocorrelation function between conduc-
tances related to different impurity states also takes the
universal form resembling that of magnetoHuctuations of
the density of states in a closed chaotic billiard. The
above statement is also partly valid at relatively high
temperatures.

II. CONDUCTANCE FLUCTUATIONS
IN A VfEAKLY CONNECTED

DIFFUSIVE CONDUCTOR

In order to study the mesoscopic conductance in the
crossover regime between completely open and com-
pletely closed chaotic systems, we consider the circuit
composed of a difFusive coherent metallic conductor (with
conductance g, ) connected to reservoirs by two equal,
highly resistive contacts (with individual conductances
gb) The com. plication of calculations specific to the
Coulomb blockade regime can be avoided by suggesting
that the conductance gb &) 1. The same condition, re-
formulated in terms of energetic characteristics of levels,
holds the inequality I' &) Le between the characteristic
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escape-associated width of states in a box, I', and their
mean level spacing Ae. The latter relation is known to be
a condition to the applicability of the perturbation the-
ory analysis, so that in what follows, we slightly modify
the conventional diagrammatic calculations into a form
which allows us to incorporate the effect of resistive con-
tacts. We do this in the fashion of earlier works.

In a piece of a disordered metal (L )) l &) Ay),
the electron density-density and phase-phase correlations
obey the diffusion law, the same as the electron distri-
bution function N(e), (Bt —DB2)N(e) = 0, with the
same diffusion coefficient D and the same kind of bound-
ary conditions. The latter are the continuity and cur-
rent conservation equations which one should read as
nDBN = 0 at the wire boundaries and (+2nL)B N =
N —N~(e + eV/2) at the edges x = +L/2, respectively.
Here, N~ is the Fermi distribution function, and we al-
ready exploited the quasi-one-dimensional wire geometry
and separate the longitudinal (z) and transverse vari-
ables. The meaning of the parameter o. can be clar-
ified after comparing the value of an averaged current
through three resistors (g&, g, and again gz ) in se-
ries with the value calculated &om the diffusion equations
using the definition of a total current as an integral of a
local current density in a metallic part of this circuit,
(I) = eDL v—~ jdxde[B N(e)] (v~ is the density of
states at the Fermi level and L is the length of a wire).
After comparison, we determine the parameter o, as the
ratio between the wire to contact conductances,

) (~)
2gb

so that an open system corresponds to o. ~ 0 and a
quasi-isolated one is described by the limit of o. )) 1.

Using the above definition of the current through the
circuit in terms of the integrated current density in its
metallic part, the correlation function K = (gig2) —(g)
of two conductances, gi~2l = g(U + hU/2, H + AH/2),
taken for different impurity configurations Uq 2 ——U 6
bU/2 and at different magnetic fields Hi 2

——H + AH/2
can be related to two-particle Green functions Pd( )

——

(GP 0 G+& H ) averaged over realizations of a "back-
ground" random potential U, so called diffusons and
Cooperons. The latter two describe the density-density
and phase-phase correlations of electrons in a diffusive
regime and, after accounting for the variation bU, they
can be found &om the equations

potential hU, and ry = L /D .Equation (2) should be
completed with the boundary conditions,

A 0 —Z —Ad(c) Pd(c) = 0

at the surface, and
. e

Pgt 1
= (kaL) (8 —x —A gt,)) g(, )

at contacts to reservoirs, x = +L/2. Here, n has the
same meaning as above, and one can see that the escape-
induced term in the boundary conditions on the two-
particle Green functions Pd( ) is twice as efficient as that
of a single-particle distribution function N(e) For .the
sake of convenience, we choose such a gauge of the field

Ad( ), rotAd( )
——Hq +H~, which provides us with nA = 0

and allows an easy transition to quasi-one-dimensional
formulas. In particular, the above equations can be ap-
plied to the lowest transverse diffusive mode and, there-
fore, we rewrite it in the form where the presence of a
gauge field in a long derivative, (B —i& A), is replaced
by an extra decay rate p: we get (B —p /L ), where

2 2

(Pi + P2) is determined by the value of a
magnetic field fluxes, Pi 2 ——SHi 2/@p through sample
area, and C)p ——hc/e.

If we restrict the analysis to the case gb )) 1, we
can confine the perturbation theory calculation of K =
(gig2) —(g) to the diagrams which contain two diffusons
or Cooperons, so that

K =
2

dad~' dxdx' O~B,N e O~O, IN ~'

& ) .( I P~(.l(~ * *') I' +-,'«P~( l(~ * *')) (3)
d(c)

where 0 = e —e'. (The diagrams of higher orders in
P~~, l are suppressed by the factor g& .) After substitut-
ing N and P~~, l from Eq. (2) into Eq. (3), the latter
can be reduced to the form K(u, Pi, P2) = Kg + K, =
K(u, AP) + K(u, 2P),

6 1K u, P 4
(&+ 4-)',:[q:+"(~)]

In deriving Eq. (4) and in finding the set of q s which
stay in this expression, we treat Pd(, ) as the Green func-
tions of Eqs. (2), which are similar to the Schrodinger
equation of a particle in a corresponding potential,

—iO —D 0 —i Ad()

+u~~ 'Vb(i —P))P~(,)(O, ii') = b(P — '). (2),

In this equation, the effect of a single bistable scatterer
[placed at the coordinate r; = ((;L, r~)] is incorporated
into a b-functional repulsive potential with the strength

1 o';

l ) Vno'q, '

where Vn is the total number of short-range scatterers in-
side the sample with volume L x S~, o&,—their transport
cross section, a; the cross section of a varied impurity

P(n;*, *') = ) q„(*)q„(~')/(-'n+ n„).
n

Here, g are the eigenfunctions and 0 = Dq2 are the
eigenvalues of the spectral problem given by Eq. (2) with
its boundary conditions. For the case of a single bistable
scatterer in a quasi-one-dimensional wire placed at x; =
(;L we write g = a~~,

~
cos(q ++OS~„))+b~(„lsin(q~x+&(~)

0,
' ), where the indices l(r) denote the wire intervals to

the left (right) &om the scatterer (;L. Using the analogy
between the generalized diffusion equation (2) and the
Schrodinger equation, we repeat the conventional way
to find the spectrum of q's. That is, the coefficient a
and b, the phases 0's and the spectrum of q's have to be
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found from the above-mentioned boundary condition at
the wire edges and after adjusting functions @~ and @'
at the scatterer position: g has to be continuous in this
point and the jump of its derivative 8 g is determined
by the strength of the b potential in Eq. (2). This gives
one the set of linear equations. After eliminating the
coe%cients a, 6, 0, and 0' from the set of linear equations,
we arrive at the eigenvalue equation F(q) = 0 on the
number of wave modes q

Skipping the details of this linear algebraic procedure,
we find that for samples with the form of a single wire,

sin q
F(q) = 2 cos q + —nq sin q + un f

O.'Q

In this expression the function f includes all the neces-
sary parameters of a bistable scatterer,

sin q cos q + cos[(1 —2(,)q]+
0!g 2

cos[(l —2(;)q] —cos q

2(nq) 2

In the case of a ring (Aharonov-Bohm) geometry, the
function F can be derived from the same set of equa-
tion as before, but with the boundary conditions on the
electron diffusion in two semicirclets (with a total con-
ductance g, ) connected near contacts. It has the form

1 —cos(2q)
F(q) = + cos(2q)

nq
2 sin(2q) nu—cos(2vrg) + + f,

Ag 2

where

sin(2q) cos[(1+ 2(;)q] —cos(2q)+
(nq) 2

+ sin[(l + 2(;)q] —sin(2q)
(nq)'

and P denotes the magnetic field flux encircled by a ring
and measured in units of 40.

The summation over the set of eigenvalues q can be
performed using the following procedure. We rewrite the
sum in Eq. (4) as a result of an integration of the function
R(z) = F'(z)/[F(z)(z + p2) ] over a complex variable z
along the contour C "encircling" the real axis. Function
R(z) has poles z = +q on the real axis, two poles z =
Sip on the imaginary axis and tends to zero at z —+ oo.
Therefore, it is natural to shift the contour t to +ioo,
so that the value of the correlation function K would be
determined by the residues of R(z) at z = Sip. This
gives us

6 d ( —F'(z)
(1+ 4o)' dz (E(z)(z+ip)'), , )

III. UNIVERSAL CORRELATION FUNCTION
OF CONDUCTANCE FLUCTUATIONS

IN NEARLY CLOSED SYSTEMS
Now one can describe the correlations K(u, &Pq, P2) at

any value of parameters involved and analyze the asymp-

totic limits. In particular, we can follow the features of
magnetoconductance fluctuations from open (n ~ 0) to
closed (n + oo) systems I. n an open system, we ar-
rive at the well known rms value of the universal CF
(Refs. 3 and 8) and the correlation function, K(Pq, P2) =
K(2$) g K(6P), with

3 2p +2+p sinh(2p) —cosh(2p)
2 p4 ]cosh(2p) —1]
] 1+2' cos(2m4))

&5 [1—
2 a cos(2n P)]

ring,

which describes both wire and. ring geometries.
In an opposite limit of a weak connection (n &) 1),

we get a different geometrical prefactor in the rms value
of CF in the unitary limit, var(g) = 22, and find the
flux-dependent correlation function of a ring K(Pq, $2) =
K(2$) + K(AQ),

+ 1+ —u+p 2

The first term in the right hand side describes corre-
lations between g~ and g2 in the unitary limit. The
second can be used for discussing the crossover regime
to the orthogonal (H = 0) ensemble. The parameter

u = (+&) &
—*' related to a change of a scatterer enters

into this expression in combination with enhancement
parameter n = g, /2gb. After using the Drude-Einstein
formula, we find that the efFect of a single scatterer is

1+ s cos(2sgl
16 (1+ d (1—cos(2s'Pl]) (6)

which shows periodically repeated narrow splashes in the
form of squared Lorentzians of a width C'o/~n.

The efI'ect of a single bistable impurity on a samp/e
conductance can be analyzed &om the dependence of the
correlation function K on the parameter u. After study-
ing the limit of n ~ 0 (open system), one can see that
the effect of a single scatterer on a conductance can never
be strong enough to renew completely the realization of
a random potential configuration. Second, the jump in
the conductance value due to a change of one impurity
shows a dependence (through the parameter p =

4
—(; )

on its position relative to the wire edges, both in the
bistable-scatterer efFiciency,

1—K(u), 2(1+ pu) + p(4 —pu)= 2p
var(g) (1 + pu)2

and in autocorrelation properties under a variation of a
magnetic field. The latter could even allow one to make
a rough tomography of a bistable impurity.

In a system with highly resistive contacts, o. )) 1, the
electron spends much longer time inside the mesoscopic
conductor, as compared to the diffusion time ry = L /D.
A classical diffusive trajectory in a "box" is much longer
than in an open system, so that it has a better possi-
bility of meeting a bistable scatterer many times during
different traversals from one contact to another. This
prod. uces its higher efFiciency in renewing the sample re-
alization and results in the universal form of the correla-
tion function K(u, Pq, $2),(""*'= (~+ -(-+.*(sd)))

*

var(g) 2
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scaled by the combination of its scattering cross section
and the conductance gg,

ou - —'

Remarkably, this combination does not depend on prop-
erties of other scatterers, except that we think about the
limit of Ay &l ( L.

Equations (7, 8) tell us how many scatterers have to
be changed. -shifted in order to collect the full statistics
of transmission fluctuations through a quasiclosed quan-
tum box. In electronic devices prepared of metals with
short-range scatterers, the efFect of single impurity is
never strong enough until the system becomes completely
closed and gets into the Coulomb blockade regime. In
low-density semiconductor devices, the displacement of
a trapped charge near the two-dimensional (2D) channel
afFects electron scattering phases more than a short-range
defect can do it. A rough estimation shows that, after 2D
screening at the distance of a donor-related Bohr a~ is
taken into account, a single recharging event can be suf-
flcient enough if gb A~/a~. As applied to microwave
experiments on a single mode transmission through dif-
fusive cavities (that corresponds to gb = 1), Eqs. (7, 8)
show that a single scatterer (such as a small piece of a
metal) can already produce enough changes, if its size is
of about a wavelength of irradiation.

The multiple difFusive traversal of a quasiclosed system
by an electron from contact to contact —destroys the
memory about a specific impurity position, which makes
the magneto-tomography of a bistable scatterer no longer
possible. This is manifested by the fact that the correla-
tion function of random magnetoconductance variations
takes the uinversal form Eq. (6), which is similar to that
of thermodynamic parameters of isolated systems, but
with a rescaled correlation magnetic field flux P = H S
The field H in a weakly connected mesoscopic conduc-
tor lies in between of what is known for open systems,

P (n —+ 0) = C'p, and P, (1' ( 8e) = 4p/8e/E, deter-
mined by the mean level spacing be in isolated metallic
grains. ' Since the lifetime of a difFusive electron in-

side a weakly connected conductor (the quantity inverse
to I'/h, ) is n )) 1 times longer than the difl'usive flight
time rt = L /D, the mean square (q'i ) of a magnetic
Beld flux encircled by a characteristic difFusive chaotic
trajectory is o. times greater than the geometrical flux
SH through the sample area. This rescales the
correlation magnetic field flux of CF, in our case down
to the value of P:C p/(7r~a) (& 4p.

In a weakly connected conductor, a finite temperature
shows up at the scale of 27rT ) I' = hr& /a E,/n.
Thermal smearing of the Fermi distribution function be-
yond a shortened correlation energy I' = o. hv& par-
tially cancels CF coming from "independent" spectral in-
tervals. At those high temperatures, the correlation func-
tion K can be calculated from Eq. (3) by transforming
the integral over energies into the sum over Matsubara's
frequencies, and at o. )) 1, we arrive at

which again has universal parametric dependence.
Since in earlier experiments ' ' the magnetocorrela-

tions of conductance fluctuations were also studied using
the Fourier transform representation of the data, it is rea-
sonable to compare the mean square values of the Fourier
components of conductance fluctuations in a magnetic
field with what one can get from Eqs. (6) and (8). rms
values of a Fourier transform of AB oscillations in a ring
with respect to the flux P shows directly the efficiency
of the electron escape from a sample: (bgb) oc (n/2)
o. (( 1. In a weakly connected sample, o. )) 1,

where the most serious temperature dependence of the
"spectral function" is incorporated into the multiplyer v. .
In two limits of a low and high temperatures, v(0) = 1

2h~f
and v(T )) I") = p&~ . This behavior is consistent
with the rms value of the Fourier transform of CF with
respect to the flux 2vrg through the sample of a single-
connected geometry: At o. &) 1, we get

2&
(10)

where 6 1 is a geometrical factor. The factor r.(T/I')
is the same as above. One can see that the exponential
dependence of the Fourier transform on the "frequency" k
of random magnetoconductance oscillations is similar for
the low and high temperatures, like it has been observed
in (Refs. 5 and 6).

IV. BISTABLE-SCATTERER-INDUCED
EXCESS NOISE IN A QUANTUM CONDUCTOR

Higher sensitivity of nearly closed systems to a change
of the impurity potential causes modifications of the spec-
tral shape of the lotu frequency ez-cess noise (generated by
random switches of several, bN; )& 1, localized charges
or defects) towards the white-noise dispersion. That is,
a variation of scatterers at the characteristic time scale

(U(0)U(t)) oc e(t/r ), related to a spectral disper-
sion of the source of the noise at the frequency w„
destroys the correlation of instant conductance values,

K(t) (1+ 2" [1 —r(t/r„)]), at a much shorter time
scale: t, = r„7;/(awe). This estimation can be produced
in the same way as in Ref. 19. In order to do this, we
introduce the scattering rate w, = u7& oc b%, in-

stead of the parameter u. The rate 7;. shows us how
often the difFusive electron scatters on a bistable im-
purity, so that the ratio art/r, )) 1 gives the proba-
bility that an electron meets this scatterer during this
lifetime inside a sample. Therefore, the time t, can be
obtained from the condition (t, /r„)(art/r;) 1, which
requires that each difFusive path can meet a renewed scat-
terer with a unit probability, and this will be the value
which determines the spectral shape of a low-frequency
excess noise in a current. By the definition, the latter is
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S(w) = f dte' t(I(t)I(0)) and can be found as

From this, as more breathing impurities are located in-
side a metallic region, the spectral density of a noise is
redistributed over a range of frequencies 1/t, much
wider than spectral range of the source of a noise (the
noise is transformed to the white noise). It is also clear
that the integral intensity J'dwS(w) = bI(t)2 (e V/h)
remains fixed.

On the other hand, the above consideration shows that
the observation of effects of coherence in direct-current
measurements in a closed system requires a higher sta-
bility of samples, as compared to open ones. Any in-
ternal source of a soft noise reduces the amplitude of
mesoscopic CF down to the value var(g) = K(t ~ oo).
This would be, for example, crucial for their observation
in (even slightly) magnetically contaminated systems.
That is, the electron spin Pip scat-tering makes conduc-
tance dependent on an instant configuration of spins of
few magnetic impurities, whereas the Korringa relaxation
of impurity spins caused by the same flip-flop -with
thermal or current electrons varies the transmission
in time. ' This effect is completely analogous to the
impurity recharging or displacement discussed above and
leads to the same result: The mesoscopic dc conductance
fluctuations are easily washed out even when the spin-
flip scattering length in a bulk material, t; = (D7;)~~2, is
much longer than sample dimensions. Therefore, at low
magnetic fields, dc fluctuations are suppressed down to
the rms value

the variation of a bistable scatterer increases, so that
at gg 1 even a single scatter can produce a variation
bg 1. In the same limit, the correlations function of
conductance fluctuations takes the universal form specific
to the zero-dimensional system, both with respect to the
variation of an impurity configuration and external pa-
rameters, such as a magnetic field.

Although the calculations are performed in the diffu-
sion regime, the derived above magnetocorrelation func-
tions seem to be able to describe fluctuations in chaotic
ballistic systems. In particular, Eqs. (7,9,10) are in a
good. agreement with observations of Refs. 5, 6 and 18.
One can also expect that in billiards the variation of an
impurity can be replaced by the variation of a shape,
but before using the derived above equations one has
to take into account the following remark. The varia-
tion of a shape is usually produced by some variation of
a voltage bVg applied to side gates. This variation of
gate voltages changes not only the shape of a structure,
but also its area, S ~ S + bS. In an arbitrary case,
the change of an area occurs in the first order on bVg,
BS oc bVg, and results in a proportional rescaling of the
energies e of all single-particle states in the box spec-
trum: e —+ e /(1+ bS). Therefore, the states near the
Fermi level flow together through the Fermi level roughly
preserving their spatial structure, and, therefore, their
transport abilities, since the change of a scattering due to
a direct shape variation can appear only as a quadratic
term on bVg. This results in the same effect as if one
would vary the Fermi energy itself and has to be de-
scribed by the correlation function,

K
var(g)

A spectacular feature of a paramagnetic impurity sys-
tem can be expected after application of a high enough
magnetic field. If the latter is able to polarize spins of
scatterers, their time-dependent variation would be sup-
pressed which can be observed as an abrupt restoration
of the universal CF's in dc measurements.

where br cx bS oc bVg. It is amusing to mention that, af-
ter necessary substitutions, the parameter nryhe/h which
stands in the function K can be rewritten as bN, /gg,
where b% is an actual change of a number of carriers
assigned to the interior of a metallic box.
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