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The distribution function of local amplitudes, t = ~@(ro)~, of single-particle states in disordered
conductors is calculated on the basis of a reduced version of the supersymmetric o model solved
using the saddle-point method. Although the distribution of relatively small amplitudes can be
approxixnated by the universal Porter-Thomas formulas known from the random-matrix theory, the
asymptotical statistics of large t s is strongly modified by localization effects. In particular, we
find a multifractal behavior of eigenstates in two-dimensional (2D) conductors which follows from
the noninteger power-law scaling for the inverse participation numbers (IPN s) with the size of the
system, Vt ocL, where d'(n) = 2 —P n/(4rr vD) is a function of the index n and
disorder. The result is valid for all fundamental symmetry classes (unitary, P = 1; orthogonal,
P = —; symplectic, P, = 2). The multifractality is due to the existence of prelocalized states
which are characterized by a power-law form of statistically averaged envelopes of wave functions
at the tails, ~Qr, (r)~ oc r, p = p(t) & 1. The prelocalized states in short quasi-one-dimensional
(1D) wires have the tails ~g(z)~ oc z, too, although their IPN's indicate no fractal behavior.
The distribution function of the largest-amplitude Quctuations of wave functions in 2D and 3D
conductors has logarithmically normal asymptotics.

I. INTRODUCTION

Localization of a particle by a random potential has
been extensively investigated during the past several
decades. It is well known that, at strong disor-
der, single-particle wave functions are confined and have
exponentially decaying tails beyond the scale of the lo-
calization length L . At weak disorder, the localization
length can be very large in one-dimensional (1D) and 2D
conductors, and infinite in 3D. A natural question arises:
What is the behavior of the wave functions at distances
smaller than the localization length'? Despite its impor-
tance, the problem of the structure of quantum states of
weakly disordered conductors for scales below the length
L has only recently started to attract interest.

In particular, one of the issues that has not been ex-
plored up to now concerns the way the localized states
develop as a consequence of the increase of disorder in
an isolated piece of a metal, though a great deal is al-
ready known about the extended states in it. Some part
of the recent results related to the extended (metallic-
type) states has been obtained by mapping the prob-
lem of quantum mechanics in the classically chaotic sys-
tems to the Wigner-Dyson randem-matrix theory, or
using the zero-dimensional supermatrix 0 model, '

which are two equivalent ways of describing disordered
and chaotic systems.

Both the advantage and disadvantage of such an ap-

proach come from the statistical equivalence of eigen-
states, which is usually built i+to the construction of the
random matrix substituting the real dynamics. In par-
ticular, this reveals the set of universalities of the spec-
tra, the level-level correlations and the transition matrix
elements, which are similar for a wide variety of objects.
For example, the distribution function of local densities
of wave functions ~@(ro)~ in a chaotic cavity, which one
can find in such a way, is determined only by the funda-
mental symmetry of the system and its volume V L",
but is independent of the level of disorder (i.e., of the
value of a mean free path I) or a physical dimension, d.

On the other hand, this approach hides individual
features of physically different systems and permits us
to describe only metallic-type states, which equally test
the random potential all over the sample. More com-
plex states, which can distinguish between the ballis-
tic and diffusive regimes, have to be analyzed beyond
the conventional random-matrix theory. Numerical ev-
idence for their existence has been obtained by several
groups. ' The goal of the theory to be presented
in the present paper is to find manifestations of these
precursors of localization among the wave functions of
classically diffusive conductors (p~l &) 1, I && L). That
is, w'e consider an isolated piece of a disordered metal
with dimensions l (( L (I, assuming that the internal
"conductance" g, which one would assign to the "electric
circuit" connecting the observation point (blown up to
the mean free path size), with the external surface of the
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specimen is much larger than the conductance quan-
tum, i.e. , g )) l. In the following sections, we perform
a statistical analysis of local densities and partly recon-
struct the spatial structure of those rare states, which
have locally too high amplitudes (as compared to the av-
erage V i) to fit into the universal random-matrix the-
ory description. As can be suggested on the basis of
the theory below, these states are responsible for non-
Gaussian tails of distributions of Quctuations of local den-
sities of states and conductances suggested by Altshuler,
Kravtsov, and Lerner and are generic for the long-living
current relaxation discussed in Refs. 9 and 17.

Our paper is organized as follows. In Sec. II, we intro-
duce the notion of the eigenstates statistics (II A), discuss
the universal distributions of metallic-type states (IIB)
and, then, sketch the main results of the paper focusing
our attention at the localization effects (IIC). Sections
III and IV are devoted to the presentation of our theo-
retical scheme: We derive a reduced supersymmetric o
model and show that it has a nontrivial saddle point.
The details of the derivation of the saddlepoint solutions
of the reduced o model are given separately for each of
the fundamental symmetry classes (unitary, orthogonal,
and symplectic) in Secs. IVA—IVC, and the influence
of Huctuations around the saddle point is discussed in
Sec. IVD and the Appendixes. The resulting statistics
of wave functions and the structure of the prelocalized
states in the conducting regime in quasi-one-dimensional
(QlD), three-dimensional (3D), and in the most interest-
ing case of two-dimensional (2D) samples are discussed in
Secs. V, VI, and VII, respectively. Section VIII contains
a brief summary of our results and their discussion.

where U is a random potential. The local amplitude @ of
a wave function at some observation point r0 inside the
sample, i.e.,

will be the object of our statistical analysis. In the mean-
ing of statistical analysis, we employ studies of two re-
lated quantities: the distribution function f (t) of local
amplitudes t averaged over disorder,

(2)

and the set of generalized inverse participation numbers
(IPN's) (Refs. 8 and 15), which are the moments of the
distribution function f,

) Ivy (ro) I
b(e —6 ) = t f (t)dt . (3)

CX 0

As indicated, t( ) denotes the averaging over random con-
6gurations of a random potential U in the system. In
Eq. (3), the sum is over the full set of states (g },V is
the volume of the system, and A = (vV) denotes the
mean level spacing with v = v(e) the density of states
per unit volume. Since the distribution function f and
wave functions (g }are norinalized, one has the follow-
ing relations:

II. METALLIC VERSUS PRELOCALIZEI3
STATES IN THE EIGENSTATES

STATISTICS (PRELIMINARIES AND RESULTS)

In this section, we give a mathematical formulation
to the problem of the eigenvalues statistics in disordered
systems and consider alternative approaches to its so-
lution. That is what subsection A is about. The next
part B is devoted to the universal statistics of metal-
lic type of states known in the random-matrix theory as
the Porter- Thomas distribution. The localization effects,
which are beyond the random-matrix theory approach,
are discussed in subsection C, where we give an essence
of the obtained results. This subsection is written for the
erst reading and can be used as a guide through the rest
of the text.

A. Definitions of the eigenstates statistics

To de6ne the statistics, which we shall be studying in
this paper, we first mention that the properly normalized
eigenstates (@ }that we consider below correspond to a
quantum particle in a disordered cavity,

Q2
+ U(rj ) @ (rj = r cP (rj, @ (r C Sj = 0,

One can also introduce the distribution f, (0., t) of a lo-
cal spin density of the wave with cr =$, g. It is an
important quantity for systems with a strong spin-Hip
scattering. In random-matrix theory, these systems be-
long to a symplectic ensemble. Their statistics can be
formulated in terms of spin-projected eigenstates, e.g. ,
tg = I@~(ro)I . ' The distribution of a total local den-
sity (t = tg + tt) can be found as the convolution,

Historically, the studies of eigenstates in disordered
conductors started &om Wegner's perturbative calcula-
tions of IPN's. Due to the equivalence between the de-
scriptions based on the distribution function and the full
set of its moments, in most of the later studies '

the eigenstates statistics were reconstructed &om the set
of IPN's. Alternatively, one can start &om calculating
directly the entire distribution function, 2 ' ' ' espe-
cially regarding the possibility to apply the supersym-
metry technique. This alternative approach has already
been used for describing the eigenstates statistics over
the entire crossover regime from the orthogonal to uni-
tary ensembles (low magnetic fields). More recently,
this construction has been advanced by developing a re-
duced o model which is applicable to closed systems.
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The reduced o. model has nontrivial saddle-point solu-
tions, which enabled us to consider the localization effects
nonperturbatively.

The idea of working with the distribution function as
a whole also has the additional advantage of making it
possible to select those rare states which do not fit to the
universal statistics, and to study their spatial structure.
The latter information is implicit in the cress-correlation
function R(t, r),

As will be clear &om the calculations below, rare pre-
localized states show up as deviations of the function
in Eq. (2) &om universal distributions at the tails,
where t )) V g, so that the combination R(t, r)/f(t)
mimics the envelope I/i(r)l of these states at distances
r = lrl & I &om the top-amplitude (t) position.

B. Metallic states and universal statistics

To find the manifestation of prelocalized states in the
distribution function f(t), we have, for comparison, to
give an idea about what would be the form of the distri-
bution function if all states were extended. Qualitatively,
extended states test the realization of a random poten-
tial equivalently all over the sample and that is why their
statistics coincide with the Porter- Thomas eigenstates
statistics renowned in the random-matrix theory. ',Re-
cent studies of properties of eigenstates of disordered
and ballistic chaotic cavities [using either the numerical
tools20 2i or the zero-dimensional limit (OD) of the su-
persymmetric nonlinear o model '2 '2s' s] have confirmed
such an expectation.

Depending on the fundamental symmetry class, the
Porter-Thomas distributions can be represented as fol-
lows. For the single-particle Hamiltonian describing a
spinless particle in the system with a broken (e.g. , by a
magnetic field) time-reversal symmetry (unitary class),
the distribution function of local amplitudes and the cor-
responding IPN's have the form

f„(t) = Vexp( —Vt}, t„=n!V

whereas in the case of a system with the time-reversal
symmetry (orthogonal ensemble),

V Vt (2n —1)!!
exp —,t

2wt 2 ' V

For spin-& particles, which undergo a strong spin-orbit
interaction (symplectic ensemble), the Porter- Thomas
type of a distribution can be repeated both for the spin-
projected wave functions and for the total density and
has the form

f($, t) = 2Ve '; f, (t) = 4V te

C. Localization e6ects
and eigenstates statistics beyond the universal limit

The universal statistics described by Eqs. (6)—(8) are
presented only as a reference point for the subsequent
analysis. The rare events, which cannot be described
on its basis, have to be studied using more sophisticated
methods, and need a treatment of the nonlinear o model
beyond OD limit. Details of these calculation are pre-
sented in Secs. IV—VII, whereas in the forthcoming sub-
section, we sketch only the basic results. In few words,
the universal disorder-independent laws work well enough
either until this disorder is so weak that the system be-
haves as in the nearly ballistic regime or at small ampli-
tudes t ( V ~g. But they are partly broken or, at least,
modified after the disorder makes the electron motion
diffusive. In one- and two-dimensional conductors, this
requires a different statistical treatment of states which
have too high splashes of a local amplitude, t ) V ~g.

The method of taking into account all finite (i.e., not
only small) inhomogeneous variations of the fields used in
the supersymmetric field theory is based on the existence
of a saddle point in the nonlinear 0 model discovered by
Muzykantskii and Khmelnitskii. The presence of a sad-
dle point is especially prominent for a reduced version of
the o model, which was formulated and solved for the
unitary symmetry ensemble in Ref. 33. An interesting
result of Ref. 33 for the quantum diffusion in the dimen-
sion d = 2 is the multifractality of the states, which is in
agreement with previous numerical simulations. ' Us-
ing the same saddle-point method as for the unitary (u)
symmetry class, we extend the analysis of 2D systems
to the ensembles of other fundamental symmetries (or-
thogonal, o; symplectic, s; spin unitary, s4 su) and arrive,
again, at the multiII'ractality. The latter is Inanifested by
the following scaling of INP's:

Vt„oc I !" i", d*(n) = 2—
4~2~0

(9)

The &actal, or generalized Renyi dimensions, d (n), obey
Eq. (9) only for those n's where they are positive and
are obtained in the leading order in (2vrvD), where D
is the classical diffusion coeFicient. The sensitivity of the
derived statistics to boundary conditions, as well as the
form of the correlation function R(t, r), which we find
in our calculations, enable us to suggest such a behavior
of 2D multi&actal states, which is associated with the
power-law behavior of statistically averaged envelopes of
their tails, Iv)(ro + r)l oc (1/r) i". Being extended from
the position of a rare high-amplitude splash Ig(ro)l
t )) 1, these tails have exponents p(t) individual for each
state marked by its own t.

The behavior of prelocalized states in a Q1D quire

within the localization length scale L also resembles the
power-law localization. Independently of t, l@(xo+2:)I

oc

I x . The density of wave functions accumulated by
these tails is integrable, so that no assertion about frac-
tality can be made, and the inverse participation numbers
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t tend to take a volume-independent form for n & g.
The localization effects in 8D conductors are weak, if

disorder is weak enough to keep the system far away from
the metal-insulator transition, p~l && 1. As a result, the
statistics of eigenstates in a 3D conductor is most similar
to the universal one: Amplitude t scales with V, and the
mean &ee path I appears only as an extra parameter both
in the distribution function f = f(Vt, pal), and inverse
participation numbers t oc V K(n, p~l).

Nevertheless, even then the statistics of rare events
show strong deviations &om the Porter-Thomas formu-
las. We obtain for both 2D and 3D diffusive samples the
jtogarithmically normal distribution of large local ampli-
tudes of wave functions,

P+ G, (r, r) G, (r', r')

can be represented as a functional integral over the
eight-component supervector field 4' = (@i,il/2), iIJ

(y*,y, s*,s ). The supervector ii/ is composed of
four anticommuting and four commuting variables y and
s, respectively. The indices m = 1, 2 appear in order to
distinguish between advanced and retarded Green func-
tions. Besides 4, the charge-conjugate Beld 4 should be
de6ned; one can find this definition in Ref. 7. The action

vr2vD
f(t) = oxp (

—P tr T), T =

where )72 ——ln
&

and res (2l) . Although we study
an isolated specimen, this result strikingly resembles the
asymptotics of distributions of local density of states or
conductance Buctuations found. in open systems. This
signals deep physical reasons behind it related, probably,
to the properties of random walk paths.

III. EIGENSTATES PROBLEM IN TERMS
OF A NONLINEAR SUPERSYMMETRIC

cr MODEL

In the following paragraphs, we formulate the eigen-
states statistics problem in terms of the nonlinear o.

model. The details of this technique are described in
a review article, ~ and below we give only a compressed
extraction &om it, keeping similar notations.

One can try to use the supersymmetry technique as
soon as a physical quantity of interest is expressed in
terms of retarded and advanced Green's functions,

GR,~(, ,) ) - I@-(r)I'
e —e + ip/2

T(2r) =t f 4t(r) o —a' Go(r) —t —4 4t(r)dr, (24)
2

incorporates both the &ee-particle Hamiltonian Ho and
the random impurity potential U(r).

After Gaussian averaging over U, ~ we derive a new La-
grangian with an interaction of the superfields 4. The
interaction term can be decoupled by the functional in-
tegration over a supermatrix field Q, so that any calcu-
lation is finally reduced to the evaluation of a functional
integral,

over slow-varying superfields Q(r). This manipulation is
analogous to the introduction of an effective order param-
eter in the theory of superconductivity. The free energy,
which determines weights of diferent configurations of
Q, appears after integrating over fast modes and has the
form

1 ooO

E[Q] = dr ——Str ln —iHO + —A
2 2

StrQQ ~v
2w) Sw

(16)

f(t) = A lim . G, (r', r') —G, (r', r')
y-+o 2' i

oob t —tgVG, (r, r) ). (12)

The reformulation of Eq. (12) in terms of the cr model
exploits the fact22 that any product of Green functions,

In Eq. (11),p is level broadening. In an isolated sample,
one has to take the limit of p ~ 0. Due to the discrete-
ness of the spectrum of levels (e ), this extracts only

, the closest to the current energy slice e. Using the
expression in Eq. (11) and taking the limit of p ~ 0,
one can formalize the statistics of Eq. (2) in such a way
that"

The "anomalous mean" Q can be found from the self-
consistency condition

orr Q = f dto ( iHo+ pA/2 4- q/2r —)' (17)

which minimizes E[Q].
In the limit of p ~ 0, the solutions of Eq. (17) take

the values

Q=VAV, VV=1,
&om the degeneracy space of one of the graded symmetry
groups. This 6eld-theoretical model is strongly nonlin-
ear, since the matrix Q satisfies the condition Q = 1,
and operations of the conjugation V ~ V and the super-
trace (Str) in Eq. (16) are those defined in Ref. 7. The
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"rotation" V, and after some algebra, we arrive at

&ux O)
~

exp"i)
( 0

0—'LV2 —XL2
2

0
ZtCg V2

2

o
(19)

y(t) = f ))re fDt) f Str(x, q(r))

xt (t — Str(T(j}q(re))) e

is parametrized with the equal number of commuting and
anticommuting variables. The second matrix in the prod-
uct in Eq. (19) is composed only of commuting ones. All
anticommuting variables are collected into the matrices
ui and vx. Smooth spatial variations of the Q field at
the length scale longer than the mean &ee path l and the
inQuence of a small but 6nite value of p can be taken into
account by the effective Bee energy functional,

where

and

0') t'0 o ) /0 0&~b=
I 0 1 I

«
) & ~b) E )

'r(() = ~,e'&" («+ ~x)e '~".

I'[Q] = KV D
4 f drStr —(V'Q) —pAQ

2
(2o)

Everywhere below, w; are the Pauli matrices, and 7 p is a
2 x 2 unit matrix.

The extension of this equation to the case of spin-& par-
ticles can be found in Ref. 7, too.

To transform the formulas in Eqs. (2)—(5) into inte-
grals over the Q space, we expand the b function in Eq.
(12) into the formal series in GP, and study the averages

i re Gr(r, r) f dr'Gx (r', r') )
for all n's Using E. q. (13), each of them can be repre-
sented as a functional integral over the field 4 and then
modi6ed into the construction

tr tt ( ) 't) t) (f t)o —e(e)—ee(e))
),&~0 (2lr) 2 2(2n)!

In the latter equation, we perform an additional in-
tegration over the phases (x 2 [which are hidden into
the vectors 8i —— ~2(0) 0, e'~') e '&'

t 0, 0, 0, 0), 82

~2(0, 0, 0, 0, 0, 0, e'~', e '~')] and add to the Lagrangian
from Eq. (14) a weak perturbation bI,

bI = dr p6~@r 4r v~

+ A(82tll(r'))()I)(r')v2)b(r' —r)

After this, we have to evaluate the generating func-
tional (f D@e +~@~ ~+~@l). Its exponent difFers from
that in Eqs. (15)—(20) only by the perturbation,

hH =i dr @vs (36~+ Av2 62 r —r

IV. REDUCED cr MODEL
AND ITS SOLUTION USING SADDLE-POINT

METHOD

Based on Eq. (21), we can obtain the full statistics of
local amplitudes ~@~ for any regime. As we mentioned
before, the universal expressions of Eqs. (6)—(8) can be
rederived by assuming the zero-dimensional (OD) limit:
the coordinate-dependent field Q(r) has to be replaced
by its value at the observation point, Q(ro) = Qo, which
transforms the functional integral in Eq. (21) into a def-
inite integral over Qo.

To go beyond the OD approximation, one should take
into account inhomogeneous fiuctuations of the field Q.
If we integrate over Qo ——VOAVO, any functions in Eqs.
(2)—(4) can be finally expressed in terms of relative rota-
tions of the Q field, with respect to its value at ro. This
is the reduced cr modeL For its derivation, it is significant
to note that the degeneracy space of the supermatrix Q
is noncompact. Due to this property, the main contribu-
tion to the integral in Eq. (21) comes from the region of
large Qo's where Str(TQO) (x 1/p. As a result, finite vari-
ations of Q(r) produced by means of local rotations Q(r)
-+ Q(r') = V(r, r')Q(r)V(r, r') of the supermatrix field
along the noncompact "direction" can be taken into ac-
count consistently, since they cover only relatively small
environs of an "infinitely large" Qo.

Using the decomposition V (r) = VOV (r), we define
supermatrices Q of the reduced 0' model as

Q = VAV, Q(r) = VOQ(r)VO, Q(ro) = A . (22)

added to the Haxniltonian Ho in Eq. (16). The latter
results in an additional term bE in the &ee energy func-
tional; we find bE by expanding the logarithmical expres-
sion in Eq. (16) into the series in p and A. Doing that,
we keep only the contributions up to the erst order in
p, , whereas "cross terms" which originate &om pairing of
@'s at different coordinates (r and r') can be neglected.
As an intermediate step, we obtain

bE = —7( v(8xQ'ox) + —ill [1 + e)7l P( Q8v2)]2p
2 2

Due to the invariance of the Q space, the transformation
of Eq. (22) preserves the form of the gradient term in
the free energy I" in Eq. (20), whereas the second term
in E can be modi6ed as

E2 ——— drStr p r, p = VpAVp.

A corresponding substitution can be done in the preex-
ponential in Eq. (21), too. The explicit form and exact
paraxnetrization of the matrix Qo varies from one sym-
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metry ensemble to another. Nonetheless, in the limit of
p ~ 0, those parameters of the Q space, which are re-
sponsible for its noncompactness, appear in the argument
of the b function in Eq. (21) in the same combination
with the factor p that enters to the "potential" part of
the &ee energy, I"2. Therefore, integrating over Qp in
this limit, we eliminate p and convert Eq. (21) into ex-
pressions that relate the distribution function f (t) to the
generating functionals represented in terms of the fields
Q. Recently, Muzykantskii and Khmelnitskiii~ have gen-
erated an idea that the supersymmetric cr-model formu-
lation of the localization theory can be treated using the
saddle-point method. As will be clearly seen &om the
form of the effective action incorporated to the generat-
ing functionals of the reduced a model, the latter has a
nontrivial saddle point, which will be the central object
of studies in following subsections.

The parametrization of Q matrices, and, therefore, the
derivation and form of the reduced 0 model depend on
the fundamental symmetry of the system. In parts A,
8, and C of this section, we specify this for unitary, or-
thogonal, and symplectic symmetry classes separately,
though it turns out that the most essential part of our
calculation —the use of the solution of the saddle-point
equation described in subsection D—is quite similar for
all of them.

and we reinind you that Q(rp) = A at the origin. The
projection operator II in Eq. (26) is defined as

(0 o)
(mrs zs) (0 rp) '

and selects &om the Q matrix only its noncompact sector.
The generating functional 4„(t) has several funny fea-

tures. First, at t = 0, it has a completely invariant form,
and, therefore, is equal to unity, which corresponds to
the normalization of the wave functions,

Vti ——4'„(0) = 1.

On the other hand, for any 6nite t, the reduced 0 model
is a model with a broken symmetry, so that the free en-
ergy in Eq. (26) can be minimized by an inhoinogeneous
solution Q(r). Indeed, 4AII in the second term in Eq.
(26) looks like a field tending to align the matrix Q along
the noncompact "direction" of the Q space (related to
the parameter gi), whereas the boundary condition at
r0 together with the gradient term is a rigidity attempt-
ing to prevent that. The competition between these two
tendencies results in an optimal configuration of Q. To
find such an optimal configuration (saddle point), we use,
again, the invariance of the Q space with respect to ro-
tations V and represent Q as

A. Unitary ensemble

In the unitary case, the parametrization of the Q field
using Eq. (19) includes "angles"

~( g~p
0 ~, 0(g(~, 0(g, (~,o

egin) '

1 d'e„(t)
V dt2„ t (23)

where only one of them is imaginary and makes the sym-
metry group noncompact. Matrices u2 and v2 in Eq.
(19), are diagonal and can be trivially eliminated from
Eq. (21) as well as the external phases (. Other de-
tails of the integration over Qp are the same as those in
Ref. 25.

The distribution function f,

~(
Bi imp + ZB1 2'

~+
o,

B2 tlap + 'EB2 2T3 ) (3o)

(o o
()

The form of the saddle point, Qi ——ViAVi, follows
ft. om the requirement of the absence of linear terms in
the expansion E„ into the series,

where a weak perturbation P stands for fluctuations
around the saddle point, and the matrices B,B can be
decomposed into blocks as follows:

and the inverse participation numbers t„, n & 2, [t Q]
—y, + y(2) + y(3) + y(4) + (31)

t"f(t)dt = t" '4„(t)dt, (24)
0 0

can be related to the generating functional C' (t) of the
reduced o model,

g(~.)=~

The &ee energy I'„ in Eq. (25) has the form

S'„(I,Q] = f drStr (t7Q) ——ttIIQ(r), (26)

in the perturbation P. This selects

o
Vi ——exp

(

gee tX~s

i gse'&~S )

4g, (r) = — e
~vD

with the boundary conditions g&(rp) = 0 in the origin
and (n t7)gs ——0 at the surface of a sample. In Eq. (33),
L stands for the Laplacian in the real space. This equa-

where the parameter gi(r) satisfies the optiinum equa-
tlonq
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tion is partly similar to the saddle-point equation derived
by Muzykantskii and Khmelnitskii when studying the
problem of long-living current relaxation in open con-
ductors, but it has a different nonlinearity and different
boundary conditions.

As will be clear &om the following analysis, a general
solution of the saddle-point equation requires the pos-
sibility of considering singular confugurations of e in
dimensions d = 2 and 3. The treatment of singularities
can be done in two ways: using an equivalent formulation
of the Beld theoretical problem on the lattice with the site
about the mean &ee path, or cutting off short distances
and replacing the boundary conditions in a single point
by conditions at the surface with the radius about the
mean &ee path /. In the following, we choose the second
way.

B. Orthogonal ensemble

The parametrization of Q matrices in the orthogonal
ensemble is more complicated due to a larger number
of independent parameters in it. In particular, the non-
compact sector of the degeneracy space is parametrized
by two "imaginary angles" —variables 0» 2..

0 l 0&8&~,
~(81~0+83~])) ' 0 & 8g, 3 & oo.

Unitary matrices uz and vz in Eq. (19) have a more
complicated form, too,

(M 0 i /~p 0

r
»=I 0,'y; I

»=~ 0

in the &ee energy,

This II determines the direction of an effective "force"
along the symmetrically chosen noncompact "direction"
(8g ~ 83).

Next, in the orthogonal ensemble, one has to keep the
external phase factor e't in Eq. (21) until the end of the
integration over Qp, which results in the integrodifferen-
tial relation,

4 df (t)=, dz4, (t+z'))
Ver t dt2 p

between the distribution function f and generating func-
tional,

4 (t') = DQ exp( —F [t', Q]) .
g(ro) =W

tn = ( I ) (t/) ft.—2 4, (tl )dtl
~sr V I'(n —1)

(37)

and, again, has the property C' (0) = Vtz = 1.
To study the Buctuations near the saddle point, we

represent Q in the form of Eq. (29), where

B++B

The generating functional 4 (t') gives directly the inverse
participation numbers t„, n & 2,

]. —am'
1+ im7"-'

B = ]( (Spy ro + xsy373)r+
(~(+))+

l-(+)
0»

(83 y
'ro + z 823 'r3 ) r+ )

where 0 & ()), y & 2vr, m] 3 3 are real, and the number of
anticommuting variables in u» and v» is twice as large as
in the unitary case.

The integration over Qp can be performed in a com-
plete analogy with the unitary-symmetry case, but with
several distinguishing features. First of all, in the limit
of p ~ 0, the main contribution comes &om the region of
the (8qt 83) plane, where cosh 8q cosh83 1/p. Since the
product cosh&» cosh 02 can be large at large 0» as well as
at large 02, we end up with a different form of projection
operators,

and

fr —
~

( +) ( +) ~
7+ —rp +erg

In this decomposition, 8+& are real numbers, 0+ and
((7+)* anticommuting variables. Indices "+" are in-
troduced for later convenience. Everywhere below, we
keep superscript "—"but omit "+."

Similarly to the unitary case, the free energy E, which
governs the generating functional 4, has the minimum
at Q = V~AV~,

Vq
——exp

if'.3 0
e + e—'x
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where the variables Oq = Oi + 82, 8~—:Oi —82 and y, (t)

satisfy the following equations:

e ' AO~ (r) = 0, e'~x+~~ = —1 . (38)
7t VD

The conditions at the origin and boundary are the same
as in the unitary case. The latter gives 8~ (r) = 0, and the
nontrivial saddle point is related only to the symmetric
variable Oq.

f,„($,t) = 2f„(2t) at D m 2D .

& A.
p + 8'~i

0
o

0 & 8, 8' & m. , 0 & Oi & oo,
ZPiTp )

Concerning the symplectic ensemble with the time-
reversal symmetry, it demands an extra calculation, since
in the presence of spin-orbit interactions it cannot be re-
duced to the spinless orthogonal one. The parametriza-
tion of the Q space in this case is given by Eq. (19)
with

C. Symplectic ensemble

An analogous investigation of the statistics of spin-
polarized electron waves in the case of a strong spin-Hip
scattering needs an extension of dimensions of Q matrices
and the following analysis of the degeneracy space related
to their gapless Goldstone modes. The gaps in the spec-
trum of Q's appear due to a large spin-relaxation rate,

, which can be caused both by the spin-orbit coupling
built into the material properties or by the spin-Hip scat-
tering on a classical randomly oriented static magnetic
6eld. In the former case, the time-reversal symmetry is
conserved, whereas in the latter this invariance is violated
by the source of a scattering. Since triplet components
of Q correspond to gapfull modes, ' only singlet modes
have to be taken into account, so that the number of in-
dependent variables of Q is the same as in the spinless
case. One has to remember only that all matrix elements
of Q are multiplied by the unit 2 x 2 spin matrix Tp.

In this subsection, we work with the distribution f ($, t)
of a local spin density t—:~vP~~2 of eigenstates, which we
defined by Eq. (5) and above. To incorporate spins into
Eq. (21), one can substitute

7t y 2 M 7ry 2 |3 'To) T M T |3 'Tg)

where "" stands for the direct product of matrices, and

01
are spin . operators:

&0 'r
The degeneracy space of Qp is noncompact along a single
direction, and the integration over Qp gives us

and

)t'et&~~ 0 ) f etx~a 0 )
0 M) ' ( 0 ~p)

0
Vq

——exp

~
—M+ o )

where 0& satis6es the optimum equation and the matrix
M is chosen in such a way that M = —wo.

aO, (r) =— e s', /m/woo, (41)

with the boundary conditions Oi(rp) = 0 in the observa-
tion point and (riV')Oi ——0 at the surface.

D. Optimal free energy
and fluctuations near the saddle point

After comparing the saddle-point equations in Eqs.
(33),(38),(41), one finds that they are similar in differ-
ent symmetry classes. The difference between the uni-
tary, orthogonal, and symplectic ensembles leads only to
difFerent values of a coefficient P,

1 —im7=

1+im7= '

where 0 & P, y & 2', and mi 2 s are real variables. After
this, the saddle-point configuration of Q for the symplec-
tic case can be found as Qi ——ViAVit

f[). t) = ', , I (t) = f.DQ(r)e) 2V d~2 )

(39)
Po = — P = 1 P. = P. = 2,1

in the expression for the optimal &ee energy,

(42)

where

P, [tQ] = f drStr (,ttQ)' ——AIIQ(r), (40)
Iie=Pfdr( (ttd, ) +te ') (43)

and II is exactly the same as in Eq. (27).
From the point of view of the rest of calculations, the

case with a broken time-reversal invariance is equivalent
to the spinless unitary-symmetry class. That is why we
mark the quantities related to this symmetry with a label
"su" and generate the distribution function f,„(j,t) from,
the distribution function f (t) in Eqs. (23)—(26) as

and in the higher-order terms of the expansion of E[t, Qj
in the environs of the saddle point. The generating func-
tional Ct(t) from Eqs. (25),(36),(39) can be represented
in the form

4(t) = J(t) exp( —Eq).

In the conducting regime, the value of the optimal &ee
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energy determines the leading term in the exponential of
the generating functional, whereas the effect of fluctua-
tions around the saddle point is included into the function

J = exp ( —) ln (y (n))
1

a,P
y, ~ (n) &, (47)

Z(t) = fDPexp( —Pt'~ —Pt'~ —Pt'~ (44)

where the sum is extended over all the eigenvalues of the
spectral problem,

[
—A+ U —ZjP = 0, P(r ) = 0, nV'P(S) = 0. (48)

Due to the normalization condition in Eq. (28), the re-
lation J(0) = 1 holds exactly, and the contribution &om
the fluctuations P can be calculated by expanding the ex-
ponential in the integrand in Eq. (44) into the series in
the higher-order terms E& '"~ and performing Gaussian
integrations over P with the weight exp( —E~2l) deter-
mined by the second-order correction to the &ee energy.

The applicability of such a perturbation theory is justi-
fied by the fact that the higher orders are, at least, by the
factor of (2vrvD) « 1 smaller, as compared to what is
given by

J(t) = fDPexp( —Pt t[t, P]) . (45)

The latter is nothing but the superdeterminant of the
Hamiltonian related to the fluctuations around the sad-
dle point. The value of J(t) differs from unity, merely
because the symmetry between fermionic and bosonic de-
grees of &eedom is broken by the optimal solution. Since
not all the projections of the infinitesimal P to the gen-
erators of the I ie algebra of the graded symmetry group
are equivalently afFected by the symmetry breaking, it is
convenient to separate in E~ ~ the terms that are affected
by the existence of the optimal solution from those that
are not. Depending on the physical symmetry class, this
involves different sets of variables. Nevertheless, after an
appropriate diagonalization, quadratic form J"~ ~ can be
represented uniquely for all symmetry classes:

(46)

Pet t =2xsD ) f tr(Bo tB(er )'+Be B(s )*)
a=1,2

This term does not contribute to the function-J in the
Gaussian approximation, due to the symmetry between
boson and fermion degrees of freedom incorporated in it.
On the contrary, the first term in Eq. (46) is the sum
over those four pairs of dynamical variables, which are
affected by the violation of the boson-fermion symmetry,

The term E~ l in Eq. (46) is composed of fields, which
are not affected by the symmetry breaking,

As we already mentioned above, in the quadratic ap-
proximation, any difference in J &om unity is due to the
broken symmetry between fermionic and bosonic degrees
of &eedom in P. The broken symmetry shows up in the
Hamiltonian F~ as the difFerence between the efFective
potentials,

t
U~ = 4(]p'Og)2+ e

2mvD
UnP ~sP (~0 )2 + qDtsP e —Stk tq

4 2mvD

(49)

In Eq. (49), k~ i ——q~ i ——0 and ki 2 ——4, k2 2
——0,

q 2
——2. The spectra (y (n) ) and (y, ~(n)) of modes

remain gapfull, since all U ) 0. Moreover, due to the
sum rule,

) U~ =4) U. ,
aP

(50)

their main contribution to J comes &om low-lying eigen-
values of Eq. (48). Since the set of U's in Eq. (49)
depends on the form of the saddle point alone, the calcu-
lation of the correction to the exponent in this order in
(2vrvD) can be performed simultaneously for all sym-
metry classes and is small.

On the other hand, the effect of fluctuations can be-
come important, once we want to extend the considera-
tion of samples with the size larger than the localization
length. Such a step, which is beyond of the scope of
this paper, would need some kind of a renormalization of
the saddle point. We would only like to stress that this
could be a way to avoid difBculties in obtaining a stable
fixed point in the renormalization group treatment of the
localization problem pointed out by several authors.

The existence of the saddle point and relatively small
contribution from fluctuations in the metallic regime
makes it easy to find the form of the cross-correlation
function R(t, r) from Eq. (5), too. If we study the en-
velope (statistically averaged) of the wave function at
large enough distances r )& t, &om the position of a
high-amplitude splash, the reasoning used above can be
repeated for R(t, r), with minor inodifications, and we
arrive at

F~ = 2mvD dr Oo Oo* + U o o*
a=1)2

) [(Bs p) +U. s p]) .
P,a=1)2

Due to that, the preexponential J can be represented as

R(t, r)/f(t) ~ te-'*~ l, (51)

s«hat one can say that the statistical envelope ~@q(r) ~2

follows the form of the optimal con6guration of the re-
duced o model.

Up until now, we performed our analysis without refer-
ring to any specific dimensionality of the system. On the
other hand, from Eqs. (33),(38),(41),(48), one can see
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that the form of the saddle point and, therefore, the op-
timal &ee energy E~ crucially depend on the dimensional-
ity. In the next sections, we discuss the statistics of local
amplitudes of wave functions in quasi-one-dimensional,
three-dimensional, and two-dimensional conductors sep-
arately.

V. NEAR' LOCALIZED STATES
IN A SHORT DISORDERED W'IRE

It is well known that the localization efFects are the
strongest in one-dimensional and Q1D conductors. 2 s

Even when disorder is weak, the quantum diffusion of
a particle is blocked at the length scale L, = P27rvD,
where D is the classical diffusion coefIicient determined
by the elastic impurity scattering~ and P is specified by
Eq. (42). In Q1D wires the effective density of states v is
the local one integrated over cross-sectional width m or
an area, S m, and, therefore, the localization length
L, ~ l(ttt/A~)" can be much longer than the mean
&ee path L. This allows us to consider the short wires
L & L, with an already developed difFusive regime, and
below we analyze the distribution of amplitudes and the
shape of untypical states, which are the precursors of
localization at larger distances. Note, that in the Q1D
case, we define the variable t as the wave function density
integrated over the cross-sectional area (width) of a wire.
Since there is a lot known about the Q1D systems, '

it is useful to compare the results of the saddle-point
approximation, with the exact calculation based on the
transfer-matrix method. Prom this point of view, the
saddle point gives nothing but a "semiclassical" solution
of the effective Schrodinger equation in the q space,
which appears in the transfer-matrix method. Such a
"semiclassics" not only gives the results, which are very
close to the exact solutions, but also enables us to make
a statement about the form of statistical envelopes of pre-
localized states in the metallic regime.

In the following paragraphs, we apply the scheme of
calculus described in the previous section. First of all,
we have to solve the saddle-point equation,

this solution formally contains a singularity at x
L—; [a/(2A;~T;) —1], the latter is illusory, since it takes

place in the nonphysical region x & 0 and plays no role
unless it comes up to the formulation of the limitations
to our theory. The requirement x )) l, which emerges
&om the existence of the singular point, is related to the
conditions on maximal values of gradients permitted by
the use of only the lowest-order gradient expansion terms
in the free energy functional in Eq. (21). We shall dis-
cuss the consequences of this condition at the end of the
section, assuming for a while that it is satisfied. If so, the
consistency equations on the parameters A, come &om
the boundary conditions 0 Ot, (L;) = 0 at the edges and
have the form

A, =cos Ai T; (54)

where T, are defined as

tL,.
27l VD

(55)

Z, =P ). '
2 1 —X,' —X,'~r;

i =I,R
(56)

In general, the exact form of I"t, in Eq. (56) based on
the closed set of Eqs. (53)—(55) can be studied numeri-
cally at any values of the parameters included, as illus-
trated in Fig. 1. On the other hand, a somewhat simpler
analytical expression can be written in the asymptotical
regions. First of all, we examine the limit of small ampli-
tudes, T, & 1, where the exact distribution has to match
the random-matrix theory results. At Ti & 1, the results

e, g=L, /L
symmetry

0.01

The optimal value of the &ee energy can be found, in its
turn, as

0 0,(x) = — exp( —Ot), (52)

and use its solution Ht(x) when calculating the optimal
free energy I' t. Due to the condition Oq(xo) = 0 at the ob-
servation point xo, the latter splits the wire with length I
into two, not necessarily equal intervals 0 & x & I;—I, R.
The form of Ot(x) can be found separately in each of
them. In dimension one, the differential equation in Eq.
(52) can be solved exactly, and we represent its general
solution in the form

0.001

0.0001

0.00001

0.000001

10 20
tV

30

g =3, Lp/L= 0. 1

g=3 i,/L=O. 5g=6
I

40

Ai

cos Ai Ti 1 —
L

x&0; i=L, B.

Although one can notice that the general form of

FIG. 1. Distribution function of local amplitudes in QlD
system calculated for the orthogonal symmetry class. Dashed
line shows the Porter-Thomas statistics, and solid lines cor-
respond to various levels of disorder and diferent positions of
an observation point inside a sample.
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of Eqs. (54)—(56) can be expanded into the series in T;,
which gives A; 1 —2T; + 24T; + - and1 13

. T,L,I' = Vt 1 — ) ' '+ . , f~'&(t) = Ve ~~'
3Li=L,R

We see that in this limit, the Porter-Thomas formulas,
Eqs. (6)—(8) give a good approximation for the body
of the distribution fuiiction f (t), which describes those
amplitudes t which are t ( L gL, /L Oth. erwise, the
second term of this expansion, VtT, , becomes larger than
unity and strongly affects the probability to detect a too
high splash of the wave function.

When T; )) 1, the optimal configuration e ' develops
at the length scale of A = /2mvD/t, where it can be
approximated as

(57)

and gets less sensitive to the presence of boundaries. In-
deed, in the limit of T; )) 1, one has A; = 2T; (1—
T; + . . .), and the exact expression for the optimal-1/2

free energy can be expanded into the series in T;

S, = 4/PL. t(1 —S, —S~&,

~vP, (x)~2 oc te s' - L, /x2 . (60)

In contrast to the 2D case, which we discuss in Sec. VII,
the derived form of a typical wave function has the same
exponent for all prelocalized states, independently of the
amplitude of their top splashes. Further, the tails of the
envelope in Eq. (60) are integrable, so that the inverse
participation numbers, which one can find on the basis
of Eqs. (3) and (24),(37), do not indicate any &actal be-
havior.

VI. EIGENSTATES STATISTICS IN D = 3

that the states, which are responsible for the rare event
that we discussed in the previous paragraph, are (at least,
partly) localized. Nevertheless, even for the largest am-
plitudes t & L /L, the effect of edges is still present,
which means that this in not an exponential localization.
On the basis of an analysis of the cross-correlation func-
tion R(t, r) &orn Eqs. (5) and (51), we can say that,
within the range of distances x & L, the statistical en-
velope of the density of prelocalized states, ~vga(x)~ re-
sembles the form of the optimal solution and has the
power-law intermediate asymptotics,

where

'7l 1/2 12

+ ~ ~ ~

8 2
i =L,B.

The leading term in Eq. (58) does not depend on the
system length and (in the orthogonal ensemble) coincides
with the asymptotical behavior of the distribution func-
tion of local amplitudes in infinite wires. The latter has
been found by Mirlin and Fyodorov on the basis of the
analysis of the transfer-matrix equations derived by Efe-
tov and Larkin. Although we did our calculations for
the short-length samples, L ( L, = p2vrvD, the results
for the high-amplitude splashes surprisingly agree with
those for the infinite geometry, even up to the leading
term in the preexponential factor J, which is derived in
Appendix A. Roughly speaking, the "semiclassical" solu-
tion of the transfer-matrix equation gives an almost exact
result. The full form of the tails of f (t) at t ) g/L, where
g = L,/L, can be represented as

f (i)(t) ~ Q
v'LI, Lz

I t
—'

exp 4+PL, t (1 ——8g —b~)

and is applicable up to the amplitudes t L,/l2
io/(lA~). The latter condition emerges &om the require-
ment of a smoothness of the saddle-point solution, so that
its characteristic length scale A = /2mvD/t, should be
longer than the mean free path, A ) l. Otherwise, the
singularity of the equation in Eq. (53) comes too close
to the physical part of the space (x & 0), which would
create too large gradients forbidden within the used ap-
proximation.

The distribution function given by Eq. (59) evidences

The localization effects in weakly disordered 3D con-
ductors are known to be the least pronounced, so that
their eigenstates statistics have to be most similar to the
universal one. Nevertheless, even in this case, not all
states are described by the Porter-Thomas distribution,
and this section is devoted to the disorder-dependent cor-
rections to formulas in Eqs. (6)—(8) in dimension three.

To describe the statistics beyond the universality limit,
we have to solve optimum equations (33),(38),(41). For
the sake of simplicity, we consider a spherically shaped
conducting particle and place the observation point into
its center. This enables us to seek the solutions eq(r) in
a symmetric form. Nonetheless, even that does not help
us to find the exact form of a general solution of the
nonlinear equation,

we, (r) = [r 'a, r'o„]e, = —— e
—',

xvD

so that we have to develop the following approximate
procedure. The nonlinear o model, Eq. (20), was de-
rived under the conjecture of smoothly varying Q Belds.
This implies that the distances shorter than the mean
free path l are excluded from our consideration, and the
condition eq(0) = 0 at the origin has to be substituted
by the condition eq(rp) = 0 at the sphere of a radius
ro I. Of course, this is an approximate procedure. If
one starts &om the equivalent lattice model of the Q-field
theory, the necessity to deal with the cutoff of singular-
ities vanishes, but it is replaced by an uncertainty in the
choice of a basic lattice. In the 2D case the lattice form
factor enters under the logarithm, i.e., it plays a minor
role. In the 3D case, the form factor enters as a multi-
plier, which produces an uncertainty up to the numerical
coeKcient in front of the part of the &ee energy coming
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&om short distances, although we believe that functional
dependences take a correct form.

After this, we scale the distances by l, so that 8& ——

0»(r/I), and solve the problem iteratively. The iterative
procedure appeals to the fact that the Laplace equation,
which one can get by neglecting the right-hand. side of
Eq. (61), has nonzero solutions and that the parameter

p = Q~vD/(l2t)

which appears after rescaling the distances r with the
mean &ee path is large. The latter condition restricts
our consideration to the amplitudes t & (lg,),which
are smaller than the density formed by the forward-and-
backward scattered trajectory between two impurities.

As the first step, we expand the desired function 0»(r)
as

0» = 0» + 0», 0» = A(1 —l/r).

The first term in it satisfies the Laplace equation, but
does not satisfy the necessary boundary condition at
r = L. The term 0~ is added in order to meet the(~) .

requirement 0„0& ——0 at the external edge. It must turn
to zero at r = l and can be found &om the linearized
equation,

[u B„u B„]0»!'l =- —p 'exp( —0»! l), 0»!'!(1)= 0,

where u = r/l. After this, the nonlinearity of Eq. (61)
transforms into a self-consistent determination of the pa-
rameter A, &om the algebraic equation,

A= p u duexp( —A(1—u )) =, ~

—
~

e
1 (Ll

E~)

which arises from the requirement 0„0» (L/l) = 0. One
could continue the iterative scheme even further and add
corrections, which improve the function 0»! l (z) itself, and
so on, but this is not necessary for evaluating the leading
terms of the optimal &ee energy E~. So, we stop the
iteration after the first step and find that

approximate A —T —T2 + . . and

Vtg3 —1J» = PVt 1 —— +, g, - (2l)—
4~2PD

When T » 1, the leading terms arise &om the estimation
A lnT. In each of these two regimes, the generating
functional 4'(t) has the form

exp
~

—pV&+ p 2 D
+.. . ~, & ( 1,

( (Vt)'q,
4vr2vD

2PD 2exp —Per —ln T+. . ), T)1,
713

which can be used for evaluating both the distribution
function f (t) and IPN's, using Eqs. (23),(35),(39) and
(24), (37). At this point, we have to mention that the co-
efficient gs (2l) cannot be determined better than by
the order of magnitude. We also remind you that difer-
ent symmetry classes are distinguished by the parameter
P: P = 1 Po = -,

' P. = 2.
Equation (65) indicates that the noticeable deviations

&om the universal Porter-Thomas distribution start ris-
ing at local densities tV py l [the second term in the ex-
ponent in Eq. (65) becomes larger than unity] and then
develop into the logarithmically normal asymptotics at
tV ) (p~l)2. On one hand, the states, which generate
such an asymptotical tail, are not typically metallic. On
the other hand, both the form of the envelope,

~g» (r) [ oc exp( —A(1 —//r) ),

which we extract &om the shape of the optimal solution
in Eq. (62) and the scaling of IPN's with the integer
power of the system volume for any n,

min((p(n), [2vr2vD/res]") ( n qs
Vn (P47r2vD) '

e ' = exp[—A(l —l/r)], r ) I . (62) p„= n!, p. = (2n —1)!!,p. = n!/2",

A.e" = T:— ' - V&/(py &)',
2vr2vD

(63)

where gs (2l) i and the condition p~l )) 1 corre-
sponds to the limit of a weak disorder. The optimal &ee
energy related to the saddle-point configuration can be
calculated, too, and has the form

2vD A
Pg = p2vr A 1+—

r/3 2
(64)

When T (& 1, the calculation both of the self-
consistent A and the related value of Eq can be performed
as an expansion into a series in the parameter T, i.e., we

1'he combination of the parameters, which stands in
the right-hand side of Eq. (61) and the self-consistency
equation itself, can be rewritten in the form indicate that these 3D states are not localized in a con-

ventional sense: They always have a finite part of the
density in remote parts of a sample. Of course, these ex-
tended density tails decrease when t approaches the lim-
iting value t (lA&), but our methods do not allow
us to make a statement about the structure of standing
waves at the scale of r ( L.

The version of the o model that we used above also re-
stricts our consideration to the metallic regime @~3 && 1.
The development of a theory at critical conditions, p~l &
1, requires the use of more sophisticated methods. Nev-
ertheless, the common belief, which arises &om most of
the known localization theories, is that the dimension
d = 2 is critical, so that the analysis of wave function
statistics in 2B disordered conductors would manifest the
important features of the criticality.
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VII. MULTIFRACTALITY OF EIGENSTATES
IN WEAKLY DISORDERED 2D CONDUCTORS

tory approximate solution of the saddle-point equation
in d = 2, similar to what we did in d = 3.

To find an optimal con6guration in the 2D case, we
limit the length scale of the Q-field variations &om be-
low by the value of a mean free path —similar to what
we discussed in the previous section. This modi6es the
boundary conditions into 8i(ro) = 0 at ro l. For the
sake of simplicity, we consider the sample in the form of a
disk (with the radius L) and place the observation point
ro right in its center. Then, we seek an axially symmetric
solution 8q(r) of the equation,

t
(r O„rO„)8& ——— e

~vD

This can be done both exactly or using an iterative
procedure developed in Sec. VI.

B. Solution using iterations

The result of Eq. (69) can also be derived using the
iterative scheme discussed in Sec. VI. Being approved
by the strong inequality p &) 1, we use, 6rst, the linear
Laplace equation by choosing its solution in the form that
satisfies the boundary conditions at the origin,

8I l = 2@in(r/l),

where the parameter p will be the subject of the next
iteration. That is, we seek 8q

——8i + 8~ (rjl), which
satis6es the boundary condition at the external edge, and
where

A. Exact, solution

The exact solution can be represented in the form

2 (i/~) '-" v'( —') ~ + 1+ 1

(—')'+ 1+ 1 —(—')'(-)'"

2

(67)

where p =
&, , and A has to be found &om the

boundary condition at the sample edge r = L,

[u 'O„u8„]8~'l = 2p —u '",
8~ l(1) = 0, u = r/l .

This gives 8~ in the form

8~'~(u) = 1 —u~~' "~)
2(1 —p)'

The requirement 0„8i(L) = 0 gives rise to the consistency
equation and enables us to forxnulate the approximate
procedure in the closed form,

(L/1)~ 1+ AA2+ p 2+A =
p

(68)

(Ljl)' '"
2p =

(1 —V)p'

After substituting 8i(r) from Eq. (67) to Eq. (43), we
also 6nd the optimal &ee energy,

The use of the iterative procedure is formally limited by
a requirement 8~ && 1.(~)

The parameter p in the above equation can be found
[with the accuracy controlled by 1/in(L/I) « 1] as

z(T), tV 1n(L/l)
21n(L/1)

' 2m2vD (70)

+2(1 —QA2+ p
—2)

Together with Eq. (68), the latter expression can be
studied numerically. The numerical analysis shows that
the consistency equation in Eq. (68) has positive roots
only if p & ln(L/l) &) 1, which provides a reasonable
limitation to the wave functions amplitudes that we can
study using this method: We have to restrict the density
t of a splash by the value (A~1) i related to the density
of an electron state bound to the forward-and-backward
scattered trajectory between two impurities. At the same
tixne, in the lixnit of p &) 1, the roots of Eq. (68) can be
approximated by A = 1 —p, where p ( 1. The same
condition gives us the possibility of replacing the exact
solution in Eq. (67) by

and varies when the amplitude t changes. For example,
the crossover of the optimal solution to the homogeneous
Q = A occurs in the limit of T « 1, where one can find
that

1 L
p = —T(l —T+ . )/ln —.

2 l

In the opposite limit of large amplitudes, T &) 1,

1 L
p, --—1nT/ln —& 1 .

2 l

The approximate form of the optimal &ee energy can
be found, in i.ts turn, as

e ' = (ljr)'" (69) Fg P4vr vD ))x+ p ln—2 L
l

(71)

which means that there is an easier way to get a satisfac- When T (( 1, this can be expanded in T as
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When T )) 1 [but still t (& (lAy) i], the leading term in
the optimal Fq takes the form

ln T
ln(L/l)

f =VexpI P—Vt 1 ——+..
I

x ((~)
2 )

where T is defined in Eq. (70), and

1
2~tV'
1) tL

2) 8) 8'll

(72)

Although the size of the system enters these formulas,
the logarithmically weak dependence of Fq on L makes it
meaningful to use the derived expressions for an arbitrary
position of the observation point inside the sample of an
arbitrary convex shape.

The fluctuations around the saddle-point configuration
and the resulting preexponential factor J(t) for the 2D
case are discussed in Appendix B.All over the conduction
regime their contribution is not important, as compared
to that of the saddle point itself.

C. Distribution function and IPN's
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FIG. 2. Distribution function of local amplitudes in a dis-
ordered 2D system calculated for the orthogonal symmetry
class. Dashed line shows the Porter-Thomas statistics, and
solid lines correspond to various levels of disorder.

All of this enables us to calculate the distribution func-
tion f with the exponential accuracy. Figure 2 shows its
behavior (for difFerent levels of disorder) in the transient
regime, where the deviations &om the universal statistics
start to develop. Here, we illustrate the behavior of the
orthogonal symmetry ensemble, since it corresponds to
the experimentally studied case of statistics of the dis-
tribution of microwave irradiation in a disordered slab.
The numerically calculated f (t) shown in Fig. 2 describes
the statistics in the transient regime of not very large am-
plitudes t, whereas the limits of small and large t allow
an asymptotical analysis.

For small amplitudes t ( 2vrvD/[L2 ln
& ], one obtains

1
Po —— P =1 P...2

In the opposite limit, t ) 2mvD/[L2ln
& ], the distribu-

tion function takes the form

ln(L/t)

Equations (72) and (73) generalize our earlier resultss
to various symmetry classes. They show that for any
of the fundamental symmetries —orthogonal, symplectic,
and unitary —disorder makes the appearance of high-
amplitude splashes of wave functions much more prob-
able than one would expect from the Porter-Thomas for-
mula and, as concerns the most extraordinary events,
tends for the tails to take the logarithmically normal
form. When being written for the orthogonal ensemble,
the logarithmically normal law in Eq. (65) strikingly
coincides with the form of the asymptotics of the distri-
bution of Buctuations of the local density of states and
conductances in open systems found in Ref. 9, although
our theory was made for closed systems and is based on
a difFerent scheme of calculations. This agreement re-
veals the deep relationship of these two results obviously
caused by the localization efFects.

But the localization of wave functions, which are re-
sponsible for the asymptotic events, is not the localiza-
tion of a particle in a confining potential in the conven-
tional sense. The tails of these states do not decay ex-
ponentially: Even in the asymptotical regime T )) 1,
the size L of the system inQuences the distribution. The
splashes look as if they were formed by focusing the waves

by some rare configurations of scatterers. In some sense,
they are analogous to the scars in the wave functions of
chaotic ballistic billiards, though their appearance is
of a stochastic origin. The structure of these states can
be anticipated from the way the distribution function is
affected by the boundary or—directly —&om the cross-
correlation functions R(t, r) in Eqs. (5),(51). Following
the form of the saddle-point configuration, the statisti-
cally averaged envelope of the density of such a state has
a power-law asymptotic tail,

(74)

where p ( 1 and tends to approach the limiting value
p, = 1 for the highest amplitudes t (lA~)

Moreover, the form of IPN's, t derived on the basis
of Eqs. (24), (37) shows such a scaling with the size of a
system, which implies that they are a multi&actal'struc-
ture. To find the moments t accurately enough, we have
to take into account that, although the crossover to the
OD case looks like the formal limit T(t) ~ 0, the Porter-
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Thomas statistics fail unless the condition tV &( /2vrvD
is satisfied [see Eq. (72)]. Hence, only the first few ratios
t, 2 & n (( /2mvD, can be estimated. using a finite
polynomial expansion of f(t) into the series in T, and
their erst terms reproduce corrections to the universal
statistics found pertubatively in Ref. 26. Alternatively,
we derive the higher-order IPN's f'rom Eqs. (3),(24), (36)
using the saddle-point method of integration over t. The
moments t calculated in both ways are in good agree-
ment with each other and, in the leading order, can be
represented as

min(y(n), [2vrvD/ln ~i]") ( 1 ) "

where

d'(n) = 2 — and b = (n —l)(2 —d*) . (76)
P-'n
4%2VD

As one can see from Eqs. (75),(76), we end up with
such a volume dependence of the inverse participation
numbers t that manifests the multifractal behavior of
quantum states, Eq. (9). The multifractality seems to
be the generic property of 2D disordered systems. The
multi&actal dimensions in Eq. (76) are calculated up to
the main order in the inverse conductivity, so that all
over the metallic regime, the dependence of d* on n and
disorder is accurate enough and qualitatively agrees with
numerical results. Due to the limitation t & (lA~)
the above equations work at n & 2mvD, so that n h& 0, —
and the fractal dimensions d' in Eq. (76) are positive.

VIII. DISCUSSIONS

Summarizing the results of the paper, we studied the
manifestation of precursors of localization among the
eigenstates of isolated disordered conductors with the
size smaller than the localization length. In order to
detect these states, we analyzed the statistics of local
amplitudes of wave functions, t = ]@~, and at the tails

)) V found strong deviations from the universal
Porter-Thomas distribution [see Eqs. (6)—(8)] associated
with the typically extended-type behavior. The universal
statistics equally describe the quantum states of various
classically chaotic systems; it depends on their funda-
mental symmetry, but not on the physical dimensionality
or the level of disorder. Such a description can be suc-
cessfully applied to most of the states (extended ones) in
the metallic regime and gives the body of the distribu-
tion function of their local amplitudes. The deviations
from the universal laws start rising at the amplitudes
t ~g/V and finally develop into completely difFerent
asymptotics at t g/V. In dimensions d = 2 and 3, the
form of the asymptotics is described by the logarithmi-
cally normal tails in Eqs. (10),(65),(73), whereas in @1D
wires it has a stronger dependence, f oc exp( —4/PtL, ).

The scheme of calculus (see Secs. III and IV) and
the similarity between our results for isolated systems
and the asymptotics of distributions of the local den-
sity of states and fluctuations of other quantities in @1D

(Ref. 31) and 2D (Ref. 9) conductors indicate that the
above-mentioned long tails are strongly influenced by the
localization. To answer the question of how the local-
ization develops, we can refer to the fact that the de-
viations from the Porter-Thomas distribution appear as
a small number of events, oc exp( —~g), and that their
occurrence near the Fermi level in a speci6c sample is
a typically mesoscopic phenomenon. We interpret this
as the rare top-amplitude splashes are not locally im-
plicit as portions to any state, but represent very non-
trivial con6gurations of waves, which can be found more
and more often if the disorder increases. The analy-
sis of the cross correlations R(t, r) also indicates that
the states, which are responsible for locally the high-
est amplitudes ~@(ro)]~ & g/V, have individually spe-
cific envelopes of their decaying density far away from
the observation point ro. In QlD and 2D systems, the
tails of the envelopes obey the power-law dependence
~@(ro+ r)~ oc r ". In wires, p = 1, so that the density
of these tails is perfectly integrable at long distances, and
one could speak about them as nearly localized ones. In
dimension d = 2, the exponent p is limited by p(t) & 1
(so that it is not the localization in the usual sense) and is
individual for the states with diferent amplitudes of the
top splash. Such a behavior of prelocalized states in d = 2
coexists with the typically multifractal behavior of the
inverse participation numbers, which has been observed
earlier in various numerical simulations at critical con-
ditions of the localization-delocalization transition.
Unfortunately, at the present stage we cannot approach
close to the 3D Anderson transition and check the mul-
tifractality globally. Nevertheless, even in d = 3, we find
the nontrivial logarithmically normal asymptotic behav-
ior of the statistics, although the states, which seem to
be responsible for that, are not localized.

The combination of the facts presented above forces
us to suggest that the details of the structure and un-
usual statistics of rare prelocalized states, which we were
discussing, have something to do with the statistics of
extraordinary multiply self-crossing difFusive paths which
anomalously often return to the same spatial coordinates
ro. In some sense, the anomalous events are analogous to
the scars in wave functions found by Heller ' in chaotic
ballistic cavities, although in disordered conductor they
have a stochastic nature. Using the language of path
integrals, the "prelocalized" states develop, because of
rare shortened classical trajectories, which form a closed
loop not only in the real space, but also in the full phase
space, since they 6nally come to the same "cell" dpdx =
h where they started. For instance, the most dense con-
Bguration could be formed by a forward-and-backward
scattered trajectory of a particle bouncing few impuri-
ties. An additional argument, which supports this sce-
nano, relates to the conditions limiting the validity of our
theory. Based on the use of the o. model, we have found
it necessary to cut the linear length scale of the super-
matrix Q-Beld variation &om below, by the value of the
mean free path. Nevertheless, the densities, which can
be described in our approach, are limited by the value

1/(lA& ) instead of a naively expected inverse volume
". This is only possible if the states that we study are
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locally anisotropic at the fine scale of distances of about
l and typically have a snakelike structure with the cross-
sectional width ~ A~
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AP PENDIX 8: PREEXPONENTIAL FACTOR
FOR 2D CASE

H= r—0 (rO)+m r +U,
where U is determined by Eq. (49).

Without any symmetry breaking, the spectrum of y's
can be approximated as

q(0, 0) = 2L-'/ ln(L/1) (Bl)

In the 2D case, the spectrum (y(n, m)) of fluctuations
around the saddle point should be classified by orbital
and radial quantum numbers n and m, respectively, and
can be found &om the eigenvalues of the Hamiltonian,

APPENDIX A: PREEXPONENTIAL FACTOR
FOR QUASI-ONE-DIMENSIONAL CASE

for the lowest mode and as
- 2

(B2)

~T;vr/2

& I+V&;
~T;vr/2 x
1+~T;L;

where i = L, R. When T (( 1 (in the paragraph below,
we omit indices L and R), these potentials can be treated
perturbatively. Their erst-order corrections cancel, due
to the sum rule from Eq. (50), so that J = 1+T = l.
When T )) 1, the same cancellation eliminates contribu-
tions from the high-excitation eigenvalues y ) (7r/2L) T,
so that the important contribution comes &om the low-
energy part of the spectrum, y ( (7r/2L)2T, where one
can approximate

U (vr/2L) [k+ k'/sin (vrx/2I)], k' = k+ r.
Using this approximation, the spectral problem of 1D Eq.
(48) can be solved exactly. To find the exact solution, one
has to change variables from x to y = cot(7rx/2L) and
then seek solutions in the form P = P„(y2)/(1+ y2)~~"1,
where P (y ) are polynomials. This results in the set of
eigenvalues y(n), n ) 0,

y(n) = (m/2L)* 2n y 1/2 y Qk' i 1/4 —k)

Being substituted into Eq. (47), this gives the preexpo-
nential factor J in the main order in Tg ~..

In this Appendix, we show some details of calculations
of the preexponential factor J for the Q1D case. Due
to the condition Oq ——0 at x = xo, the observation point
splits the interval [0, L] into two pieces, and the spectrum
(y(n)) of fluctuations around the saddle-point solution
can be found in each interval separately. Therefore, we
represent the preexponential as a product J = JL,J~ of
contributions &om the left- and right-hand-side intervals
with lengths IJ ~, where each of JL, ~ is determined by
the eigenvalues of the Schrodinger equation in Eq. (48),
with the symmetry-breaking potentials,

for higher n's and m's.
The optimal solution breaks the fermion-boson sym-

metry and induces effective potentials composed of two
types of contributions,

1 2 2 2 t, , (L1'"
—k(00q) = ky, /r and r e ' = KpL
4 2vrvD

In the above equations, the approximate values are
given for the most important range of distances r
Li/z(T)/T, and one has to remember that p, & 1.

For any m j 0, the potential U is relatively small,
U « m /r, and could be treated perturbatively. Due
to the sum rule mentioned in Sec. IIID, Eq. (50), the
modes with m g 0 contribute only in the second order in
U, and what they give to the exponential of J is of the
order of p ln(L/t); p . With the accuracy we need here
regarding the leading terms in Eq, this contribution can
be neglected.

The spectrum of low-lying modes (y(n ) 0, 0) j is given
by the expression

p L
X(ii~0) — ii+ —+ V k—,0 ( n & —. (B3)

L 4 2
—

vrl

The cancellation between diferent eigenvalues &om
Eqs. (Bl)—(B3) substituted to the general equation in
Eq. (47) produces a multiplier to J, which is of the order

2
of e ~ for T (( 1 and pin &, at T )) 1. Finally, we get

J = 1+0(T2), T (& 1,
J oc p exp

~
y, ln —

~

T, T && l.

J exp ) —ln T; + const C (TL,T~) . (Al)
i=L,R This result can be used for all symmetry classes.
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