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Lévy Flights in Quantum Transport in Quasiballistic Wires
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Conductance fluctuations, localization, and statistics of Lyapunov exponents are studied numerically
in pure metallic wires with rough boundaries (quasiballistic wires). We find that the correlation energy
of conductance fluctuations scales anomalously with the sample dimensions, indicating the role of Lévy
flights. Application of a magnetic field deflects the Lévy flights which reduces the localization length.
This deflection also breaks geometrical flux cancellation and restores the usual Aharonov-Bohm type
magnetoconductance fluctuations. [S0031-9007(98)06794-5]

PACS numbers: 72.10.Fk, 05.40.+j, 42.25.Bs, 73.23.-b

During recent years theoretical interest in mesoscopiavith only edge disorder, ballistic segmenis= W/ sina
systems has started to divert from studies of universal propnuch longer than the sample width appear with the proba-
erties of ergodic systems, such as disordered metals, tbility ~»~2 for n > W. Below we report the results
wards structures which are nonergodic [1]. Ergodicity ofof numerical simulations of quantum transport in quasi-
diffusive conductors is provided by effective mixing of ballistic wires with edges which are rough on an atomic
the phase space corresponding to the classical counterpanale. We analyze the effects of superdiffusion on the
of quantum mechanics—due to quantum scattering at eorrelation properties of mesoscopic conductance fluctua-
short-range random potential. In nonergodic systems, hdions, §G (e, B), and the effect of a magnetic field on the
mogeneous mixing of classical phase space does not occlacalization length,L.. To anticipate a little, the corre-
before the gquantum state is formed. Although issues ofation energy of conductance fluctuations we found scales
nonergodicity are usually addressed in a context of spe@nomalously with the system size Bs = %thFL*2 X
tral and wave function statistics in closed systems, such aa(ﬁ). Although geometrical flux cancellation [8—10]
partly chaotic billiards [2—4], one may extend the notionhinders the conventional crossover in the localization ef-
of nonergodicity to open systems and study its implicafects between the orthogonal and unitary symmetry classes
tions in quantum transport effects such as localization an{fL7,18], we observe the usual Aharonov-Bohm magneto-
conductance fluctuations. We distinguish below a classonductance fluctuations due to the deflection of Lévy
of disordered objects where a large part of classical phagtights by a magnetic field (which transforms part of them
space is not mixed [5] since the particle motion through itisinto skipping orbits). This deflection breaks the flux can-
not diffusive. These systems are pure metallic wires witrcellation rules and also determines the magnetic field de-
rough edges corrugated at the length scale of the electrgsendence of the localization length which is different from
wavelength (quasiballistic wires) [6—13], where the exis-that obtained in ergodic (with bulk impurities) disordered
tence of anomalously long grazing ballistic paths is knowrsystems.
to lead to noticeable effects even in classical transport The results presented below are based upon numerical
properties [14]. solution of a two-dimensional Anderson Hamiltonian on

In the theory of dynamically generated random walksa square latticed = >, |i)e; (il — V 3, |i)(jl, where
ballistic paths with lengths very much exceeding the aver{i;) denotes nearest neighbor siiesnd;j. The structure
age have the name Lévy flights [15,16], and when the lateonsidered consists of two ideal leads of wilithattached
ter occur with a relatively high probability they determine to a scattering regiofV sites wide and. sites long (all
a superdiffusion character of random motion. In diffusivelengths are in units of the lattice constant In the ab-
wires with static short-range bulk impurities, the probabil-sence of a magnetic field, the off-diagonal matrix elements
ity of finding a ballistic pathn longer than the mean free V = 1 determine the width of the energy band. Within
path! is exponentially small;-exp(—7/[). Thisleadsto the leads and in the center of the scattering region (when
the normal diffusion relation between the variance of themodeling clean wires with rough boundaries), the diago-
lengths of random walk paths and the system size and givesl matrix elements were; = ¢, (with €y > 1, which
the “ergodic” form for the correlation energy of conduc- keeps the Fermi level away from the van Hove singular-
tance fluctuationsE. ~ hD/L? [1]. A natural example ity in the band center). For simulating bulk disorder, the
of a classically superdiffusive system with static disordere; in the scattering region are taken uniformly from the
is a pure metallic wire with corrugated edges, where Lévyinterval —U /2 < €; — €y < U/2 whereU is the disor-
flights are just those grazing ballistic trajectories whichder strength. For sites on the boundagy,= €; + €p
cross it at a small angle; < 1, to the wire axis. Inwires whereez = 10*. The rough structure of the boundary was
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generated by having an equal probability of either 0, 1, or 0.2
2 sites at each edge with on-site potentigl+ e [19].

To simulate the effect of a magnetic field, we incorporate 0.0
a Peierls phase factor in%0 in the scattering region. Nu-

. . . X 0.6
merical decimation techniques [20] were used to compute
the Green’s function for each given realization of disorder. 0.4
From these the transmission matriX was found and di-

agonalized. lIts eigenvalueg,, were analyzed statistically ﬁ 0.2
and used to compute thge conductaite= Y, T,,, which o
we measure in units of-. Note that numerical results 0.0
presented here describe a model system without any deco- 0.0
herence (i.e., without any inelasticity).

The effect of Lévy flights can be easily identified in 0.0
our numerical results of quantum transport in pure wires
with edge disorder. Rather than consider the statistics of 0-00 0
the T,’s it is more useful to introduce the parametriza- '
tion T, = 1/cosH(L/&,) and consider the distribution,
P(¢7Y), of inverse localization lengths or Lyapunov ex- 1.50
ponents. This is shown in Fig. 1(a) for four series of c A
guasiballistic wire samples wit = 15 (giving a mean 15) 1.00 ¢ | (b)
width of 13) and lengthsl. = 52 (A), 104 (B), 208 (C), a 050 |
and416 (D), and a series of sample’)Y with bulk “de- ’
fects.” As pointed out by Tesanovidt al. [7] and veri- 0.00 ‘ ‘
fied numerically in Ref. [11], the length of Lévy flights, 0.0 4.0
Tmax 1S limited in quantum systems. This is because un-
certainty in the transverse momentuéik, ~ #/W, in a 0.010
wire with a finite width sets a quantum limit to the angles
W/n ~a > 8a ~ 8k /kr ~ A/W which can be as- 0.008
signed to a classically defined ballistic segment [10]. This .06} 1
sets the cutoffr]max = W?2/\p, and a finite localization = (c)
lengthL, ~ % Samples from the serigsandB meet W 0.004; |
the criterionL < L., and the distribution of the Lyapunov 0.002 |
exponents obtained in them has a pronounced peak at small
&1 corresponding to eigenvalu&s ~ 1. This should be 0.000 ‘ ‘ :

0 100 200 300 400

compared to the plateauxlike [21] distributidt{& ") re-

produced using the same numerical procedure in a sample
from the seriesU. Note a finite width of the ballistic FIG. 1. (a) Distribution functionP(L/¢) for four quasiballis-
peak inP(¢7 1) and thatP(0) = 0. The enhanced den- tic samples withW = 15 and L = 52 (A), 104 @), 208 (C),
sity of small ¢! can be identified even in samples from and 416 D) and for one wire ) with on-site bulk disor-
the serieC andD with L ~ L., WhereP(ffl) starts to der U = 2.0 (nominal mean free path~= 8.5, W = 15, and

L = 52). (b) ShowsP(G) for the two quasiballistic struc-

show a periodic modulation specific to the localized re-tires A and C. (c) ShowskE, (L) for quasiballistic wires with

gime where the spectrum of Lyapunov exponents tends tg, e [1.5,1.7] (circles) ande, € [1.0,1.2] (diamonds) and for
crystallize [18,22]. a wire from theU series (squares). Also shown is the analyti-

The distribution of the eigenvalues of the transmissiorfal result [Eq. (2), solid curve] witthv, = 12.3 andW = 9.3
matrix results in a finite-width distribution of conduc- [15]. The dashed curve is the ergodic law ~ hD/L* with
tances and, hence, conductance fluctuations. The statistitg = 62--
of conductance fluctuation?(G), for wires with edge _ _ . .
disorder is shown in Fig. 1(b) (for the case of zero magheight of the correlation functiof8G(e)6G(e + Se)) is
netic field) for the serieh, W = 15, L = 52 < L. ~  shownin Fig. 1(c). For comparisof(L) ~ L™* is also
aW?2/Ar ~ 200, (G) = 2.0 (the distribution is almost shown for bulk-disordered sampleld)( which serves us
Gaussian), an€, W = 15, L = 208 ~ L., (G) ~ 0.71.  as areference case. o
The distribution functiorP(G) is the result of the analysis  In wires with edge disorder ballistic segments=
of various realizations of disorder. We shall denote suctV/ sine much longer than the sample width appear with
averaging over realizations by--). When calculating the probabilityw“ld?,—f)l“ ~n2forL > np > W >
correlation functions, we also add averaging over energyAr, and this gives rise to a difference of the correlation
The sample length dependence of the correlation energgnergy sample length dependence from the aforementioned
E.(L), of the fluctuation pattern found from the half- ergodic law. The correlation energy is determined by
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the lowest eigenvalue in the relaxation spectrum of thélhis effect is present both in the averaged (over disorder)
diffusion operator. In the anomalous case, the diffusiorconductance for samples from seri@sand B shown in

process is described by the integral equation Fig. 2(a) and in the suppression of a peak at s@all in
; | (LW P(£71)in Fig. 2(b) for samples from the same series, as in
P(—;x,x’) = —f Fig. 1(a). The conductand&) decreases up to the field
T 2 J-Lpw where the electron cyclotron radiks becomes commen-
P(z =1+ (x = y)%y,x) 4 surable with the wire widtiw. At such a field,Beom =
[1 4+ (x — y)2]P/2 Y 0.55% [14], the magnetoconductance has a minimum fol-

lowed by a rise and formation of the quantum Hall effect
correlation functionP(¢/7; x, x') describes the probability ggﬁe?eusxf?;ﬁrt\évglgg a:g;'ifirosniﬁﬁgogﬁge?,rt?'t;'gr',erggéh
density to find a particle at the diffusively scattering%“k?em 23] 9 P P y 9

I8 represented in the coordinates along the wire axis T SOrening of the ength of Lévy fights reduces the
normalized by the wire width. The time is normalized?ocahzatlon length In a wire. In samplgs from the series
by the ballistic time,r = W/vs. The solution of this < 2ndD [alsoshown in Fig. 2(b)], localization appears to
- ; . be stronger in a field than & = 0: The crystallization
equation in a long system can be found by taking them the spectrum of~! prevails, which reflects the fact,
Fourier transform, . . supported by the analysis of longer wires (up to=
P(w.q) = [1 _ f expligx + ioV1 + x?) dx:| 1040), that the localization length is shortened by a field.
’ o 2[1 + x2]3/2 ) This tendency, illustrated in Fig. 2(c) (solid curve), is

To study the low-lying spectrum ab(w, q), we expand opposite to the behavior of..(B) [17,18] in diffusive
P ! overw < 1, and find that in the limit ofy < 1

with initial conditionsP(r = 0;x,x’) = 8§(x — x'). The

1 2 1/2—y 5.0
Pilz—i1w+—q2|n< ¢ ) (1) 4.0
2 2 q A
For a sample of length, we takegmin, = #W /L and get % 28
Q 2.
E. ~ hva|n(L/cW)’ e T2 17, 10"
212 2 0.0 ‘ ‘ ‘ ‘
(2) 000 0.02 0.04 006 0.08 0.10
wherewy is Euler's constant. The anomalous dependence B (‘Po/az)
in this analytical result describes a faster escape of a par- 0.4
ticle from a quasiballistic wire, as compared to a bulk-
diffusive one, and it is represented by the solid curve in 0.2
Fig. 1(c). Note that to relate the above semiclassical analy- 0.0
sis to purely quantum numerical simulations, we use anef- %
fective sample widtiW) — Ag. In addition, it is possible T 0.0

to calculate the variance of conductance fluctuations in a

guasiballistic case(ﬁGéb) This has been done by evalu- 0.0

ating the probabilities of two paths to encounter each other

at two scatterers, which uses the result of Eqg. (1). Such 0'00.

a calculation shows thatdG,)/(8G2,) = % = 0.66,

whereas the numerical result obtained for a system with 400

W = 15andL = 104 is(3G4y)/(8GZ,) = 0.72.

Another feature of quasiballistic wires is flux cancella- 300 /\M

tion [8—10], which is an exact geometrical fact in ballistic 200} mmem———————=======——-2 (C)

systems with parallel edges. Because of this cancellation, /

no Aharonov-Bohm flux can be encircled by loops com- 100 1

posed of a sequence of ballistic flights between sample 0 : : :

boundaries. In the metallic regimg, < L., the curving 0.000  0.005 0-0%0 0.015  0.020

of an electronic trajectory by a magnetic field reduces the B (@/a)

length of the !ongest ballistic paths, so that thg conduchG_ 2. (&) The ensemble averaged conductance as a function

tance(G) declines when the transverse deflection of they 5 magnetic field for wires from tha andB series. (b) The

Lévy flights,8x, =~ 3(evpB/mc)(L/vp)* ~ BL*Ar/do  same curvesi)—(D) as for Fig. 1(b) but at finite magnetic field

becomes larger than the wire widiby, = W, at B = 0.02¢/a*. (c) The localization length for quasiballistic
(solid curve) and disordered (dashed curve, bulk mean free path

B > Bger1 ~ poW/(ArL?) ~ (L./L)(WL) '¢po. (3) I = 8.5) wires.
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