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Lévy Flights in Quantum Transport in Quasiballistic Wires
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Conductance fluctuations, localization, and statistics of Lyapunov exponents are studied numeri
in pure metallic wires with rough boundaries (quasiballistic wires). We find that the correlation ene
of conductance fluctuations scales anomalously with the sample dimensions, indicating the role of L
flights. Application of a magnetic field deflects the Lévy flights which reduces the localization leng
This deflection also breaks geometrical flux cancellation and restores the usual Aharonov-Bohm
magnetoconductance fluctuations. [S0031-9007(98)06794-5]
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During recent years theoretical interest in mesoscop
systems has started to divert from studies of universal pro
erties of ergodic systems, such as disordered metals,
wards structures which are nonergodic [1]. Ergodicity o
diffusive conductors is provided by effective mixing of
the phase space corresponding to the classical counter
of quantum mechanics—due to quantum scattering at
short-range random potential. In nonergodic systems, h
mogeneous mixing of classical phase space does not oc
before the quantum state is formed. Although issues
nonergodicity are usually addressed in a context of spe
tral and wave function statistics in closed systems, such
partly chaotic billiards [2–4], one may extend the notio
of nonergodicity to open systems and study its implica
tions in quantum transport effects such as localization a
conductance fluctuations. We distinguish below a cla
of disordered objects where a large part of classical pha
space is not mixed [5] since the particle motion through it
not diffusive. These systems are pure metallic wires wi
rough edges corrugated at the length scale of the elect
wavelength (quasiballistic wires) [6–13], where the exis
tence of anomalously long grazing ballistic paths is know
to lead to noticeable effects even in classical transpo
properties [14].

In the theory of dynamically generated random walks
ballistic paths with lengths very much exceeding the ave
age have the name Lévy flights [15,16], and when the la
ter occur with a relatively high probability they determine
a superdiffusion character of random motion. In diffusiv
wires with static short-range bulk impurities, the probabi
ity of finding a ballistic pathh longer than the mean free
pathl is exponentially small,,exps2hyld. This leads to
the normal diffusion relation between the variance of th
lengths of random walk paths and the system size and giv
the “ergodic” form for the correlation energy of conduc
tance fluctuations,Ec , hDyL2 [1]. A natural example
of a classically superdiffusive system with static disorde
is a pure metallic wire with corrugated edges, where Lév
flights are just those grazing ballistic trajectories whic
cross it at a small angle,a ø 1, to the wire axis. In wires
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with only edge disorder, ballistic segmentsh ­ Wy sina

much longer than the sample width appear with the prob
bility ,h22 for h ¿ W . Below we report the results
of numerical simulations of quantum transport in quas
ballistic wires with edges which are rough on an atom
scale. We analyze the effects of superdiffusion on th
correlation properties of mesoscopic conductance fluctu
tions, dGse, Bd, and the effect of a magnetic field on the
localization length,Lc. To anticipate a little, the corre-
lation energy of conductance fluctuations we found scal
anomalously with the system size asEc ­ 1

2 hWyFL22 3

lns L
1.7W d. Although geometrical flux cancellation [8–10]

hinders the conventional crossover in the localization e
fects between the orthogonal and unitary symmetry class
[17,18], we observe the usual Aharonov-Bohm magnet
conductance fluctuations due to the deflection of Lév
flights by a magnetic field (which transforms part of them
into skipping orbits). This deflection breaks the flux can
cellation rules and also determines the magnetic field d
pendence of the localization length which is different from
that obtained in ergodic (with bulk impurities) disordere
systems.

The results presented below are based upon numeri
solution of a two-dimensional Anderson Hamiltonian o
a square lattice,H ­

P
i jileikij 2 V

P
kijl jil k jj, where

kijl denotes nearest neighbor sitesi andj. The structure
considered consists of two ideal leads of widthW attached
to a scattering regionW sites wide andL sites long (all
lengths are in units of the lattice constanta). In the ab-
sence of a magnetic field, the off-diagonal matrix elemen
V ­ 1 determine the width of the energy band. Within
the leads and in the center of the scattering region (wh
modeling clean wires with rough boundaries), the diago
nal matrix elements wereei ­ e0 (with e0 . 1, which
keeps the Fermi level away from the van Hove singula
ity in the band center). For simulating bulk disorder, th
ei in the scattering region are taken uniformly from th
interval 2Uy2 , ei 2 e0 , Uy2 whereU is the disor-
der strength. For sites on the boundary,ei ­ e0 1 eB

whereeB ­ 104. The rough structure of the boundary wa
© 1998 The American Physical Society
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ed
generated by having an equal probability of either 0, 1,
2 sites at each edge with on-site potentiale0 1 eB [19].
To simulate the effect of a magnetic field, we incorpora
a Peierls phase factor intoV in the scattering region. Nu-
merical decimation techniques [20] were used to compu
the Green’s function for each given realization of disorde
From these the transmission matrixtty was found and di-
agonalized. Its eigenvalues,Tn, were analyzed statistically
and used to compute the conductanceG ­

P
n Tn, which

we measure in units ofe
2

h . Note that numerical results
presented here describe a model system without any de
herence (i.e., without any inelasticity).

The effect of Lévy flights can be easily identified in
our numerical results of quantum transport in pure wire
with edge disorder. Rather than consider the statistics
the Tn ’s it is more useful to introduce the parametriza
tion Tn ­ 1y cosh2sLyjnd and consider the distribution,
Psj21d, of inverse localization lengths or Lyapunov ex
ponents. This is shown in Fig. 1(a) for four series o
quasiballistic wire samples withW ­ 15 (giving a mean
width of 13) and lengthsL ­ 52 (A), 104 (B), 208 (C),
and 416 (D), and a series of samples (U) with bulk “de-
fects.” As pointed out by Tesanovichet al. [7] and veri-
fied numerically in Ref. [11], the length of Lévy flights,
hmax, is limited in quantum systems. This is because u
certainty in the transverse momentum,dk' , h̄yW , in a
wire with a finite width sets a quantum limit to the angle
Wyh , a . da , dk'ykF , lyW which can be as-
signed to a classically defined ballistic segment [10]. Th
sets the cutoffhmax ­ W2ylF , and a finite localization
lengthLc , pW2

lF
. Samples from the seriesA andB meet

the criterionL , Lc, and the distribution of the Lyapunov
exponents obtained in them has a pronounced peak at sm
j21 corresponding to eigenvaluesTn ø 1. This should be
compared to the plateauxlike [21] distributionPsj21d re-
produced using the same numerical procedure in a sam
from the seriesU. Note a finite width of the ballistic
peak inPsj21d and thatPs0d ­ 0. The enhanced den-
sity of smallj21 can be identified even in samples from
the seriesC and D with L ø Lc, wherePsj21d starts to
show a periodic modulation specific to the localized re
gime where the spectrum of Lyapunov exponents tends
crystallize [18,22].

The distribution of the eigenvalues of the transmissio
matrix results in a finite-width distribution of conduc-
tances and, hence, conductance fluctuations. The statis
of conductance fluctuations,PsGd, for wires with edge
disorder is shown in Fig. 1(b) (for the case of zero ma
netic field) for the seriesA, W ­ 15, L ­ 52 , Lc ,
pW2ylF , 200, kGl ø 2.0 (the distribution is almost
Gaussian), andC, W ­ 15, L ­ 208 , Lc, kGl ø 0.71.
The distribution functionPsGd is the result of the analysis
of various realizations of disorder. We shall denote su
averaging over realizations byk· · ·l. When calculating
correlation functions, we also add averaging over energ
The sample length dependence of the correlation ener
EcsLd, of the fluctuation pattern found from the half-
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FIG. 1. (a) Distribution functionPsLyjd for four quasiballis-
tic samples withW ­ 15 and L ­ 52 (A), 104 (B), 208 (C),
and 416 (D) and for one wire (U) with on-site bulk disor-
der U ­ 2.0 (nominal mean free pathl ø 8.5, W ­ 15, and
L ­ 52). (b) Shows PsGd for the two quasiballistic struc-
tures A and C. (c) ShowsEcsLd for quasiballistic wires with
e0 [ f1.5, 1.7g (circles) ande0 [ f1.0, 1.2g (diamonds) and for
a wire from theU series (squares). Also shown is the analyti-
cal result [Eq. (2), solid curve] withhyf ­ 12.3 andW ­ 9.3
[15]. The dashed curve is the ergodic lawEc , hDyL2 with
hD ­ 62.5.

height of the correlation functionkdGseddGse 1 dedl is
shown in Fig. 1(c). For comparison,EcsLd , L22 is also
shown for bulk-disordered samples (U), which serves us
as a reference case.

In wires with edge disorder ballistic segmentsh ­
Wy sina much longer than the sample width appear with
the probabilityp21j

dhsad
da j21 , h22 for L . h ¿ W ¿

lF , and this gives rise to a difference of the correlation
energy sample length dependence from the aforemention
ergodic law. The correlation energy is determined by
1275
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the lowest eigenvalue in the relaxation spectrum of t
diffusion operator. In the anomalous case, the diffusio
process is described by the integral equation

P

µ
t
t

; x, x0

∂
­

1
2

Z Ly2W

2Ly2W

3
Ps t

t 2
p

1 1 sx 2 yd2; y, x0d
f1 1 sx 2 yd2g3y2 dy

with initial conditionsPst ­ 0; x, x0d ­ dsx 2 x0d. The
correlation functionPstyt; x, x0d describes the probability
density to find a particle at the diffusively scatterin
edge of a sample symmetrized over both wire edges, a
it is represented in the coordinates along the wire ax
normalized by the wire width. The time is normalize
by the ballistic time,t ­ WyyF . The solution of this
equation in a long system can be found by taking th
Fourier transform,

Psv, qd ­

"
1 2

Z `

2`

expsiqx 1 iv
p

1 1 x2 d
2f1 1 x2g3y2 dx

#21

.

To study the low-lying spectrum ofPsv, qd, we expand
P21 overv ø 1, and find that in the limit ofq ø 1

P21 ø 2i
p

2
v 1

1
2

q2 ln

µ
2e1y22g

q

∂
. (1)

For a sample of lengthL, we takeqmin ­ pWyL and get

Ec ,
hyFW lnsLycWd

2L2 , c ­
p

2
eg21y2 ø 1.7 ,

(2)

whereg is Euler’s constant. The anomalous dependen
in this analytical result describes a faster escape of a p
ticle from a quasiballistic wire, as compared to a bulk
diffusive one, and it is represented by the solid curve
Fig. 1(c). Note that to relate the above semiclassical ana
sis to purely quantum numerical simulations, we use an
fective sample widthkWl 2 lF . In addition, it is possible
to calculate the variance of conductance fluctuations in
quasiballistic case,kdG2

qbl. This has been done by evalu
ating the probabilities of two paths to encounter each oth
at two scatterers, which uses the result of Eq. (1). Su
a calculation shows thatkdG2

qblykdG2
ergl ­

64
p4 ø 0.66,

whereas the numerical result obtained for a system w
W ­ 15 andL ­ 104 is kdG2

qblykdG2
ergl ø 0.72.

Another feature of quasiballistic wires is flux cancella
tion [8–10], which is an exact geometrical fact in ballisti
systems with parallel edges. Because of this cancellati
no Aharonov-Bohm flux can be encircled by loops com
posed of a sequence of ballistic flights between sam
boundaries. In the metallic regime,L , Lc, the curving
of an electronic trajectory by a magnetic field reduces t
length of the longest ballistic paths, so that the condu
tancekGl declines when the transverse deflection of th
Lévy flights,dx' ø 1

2 seyFBymcd sLyyFd2 , BL2lFyf0
becomes larger than the wire width,dx' $ W , at

B . Bdefl , f0WyslFL2d , sLcyLd sWLd21f0 . (3)
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This effect is present both in the averaged (over disorde
conductance for samples from seriesA and B shown in
Fig. 2(a) and in the suppression of a peak at smallj21 in
Psj21d in Fig. 2(b) for samples from the same series, as in
Fig. 1(a). The conductancekGl decreases up to the field
where the electron cyclotron radiusRc becomes commen-
surable with the wire widthW . At such a field,Bcom ­
0.55

h̄kf

eW [14], the magnetoconductance has a minimum fol
lowed by a rise and formation of the quantum Hall effect
plateaux after which any electron cyclotron orbit either de
couples from the edges or skips independently along eac
of them [23].

The shortening of the length of Lévy flights reduces the
localization length in a wire. In samples from the series
C andD [also shown in Fig. 2(b)], localization appears to
be stronger in a field than atB ­ 0: The crystallization
in the spectrum ofj21 prevails, which reflects the fact,
supported by the analysis of longer wires (up toL ­
1040), that the localization length is shortened by a field
This tendency, illustrated in Fig. 2(c) (solid curve), is
opposite to the behavior ofLcsBd [17,18] in diffusive
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FIG. 2. (a) The ensemble averaged conductance as a functi
of a magnetic field for wires from theA andB series. (b) The
same curves (A)–(D) as for Fig. 1(b) but at finite magnetic field
B ­ 0.02f0ya2. (c) The localization length for quasiballistic
(solid curve) and disordered (dashed curve, bulk mean free pa
l ø 8.5) wires.
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FIG. 3. (a) Conductance for one quasiballistic wire (soli
curve) from the B series and one disordered wire (dashe
curve, mean free pathl ø 16). (b) Variance varfGsBdg for
quasiballistic wires from theB series (solid curve) and
disordered wires (dashed curve, mean free pathl ø 16).

samples from theU series (dashed curve). The relevan
scale of magnetic fields at which the tendency of th
localization length to shorten in quasiballistic wires start
f0lFyW3, can be obtained fromBdefl by replacing the
sample lengthL with Lc, which formally gives a similar
scale as a field which would provide the Aharonov-Bohm
type of a crossover inLc between two symmetry classes
so that the latter is hindered by the deflection effect.

Deflection of Lévy flights atB . Bdefl also breaks the
geometrical flux cancellation and restores the ability of
pair of electron paths to encircle a magnetic flux,LWB.
At this field the longest ballistic flights, which still domi-
nate transport, transform into skipping orbits so that th
electron path inside a sample acquires segments which
not cross the wire: They start and end on the same ed
On the one hand, the positive magnetoconductance wh
could result from the suppression of the weak localizatio
correction at the field scale ofB , Bdefl is mostly hin-
dered by a larger negative classical effect. On the oth
hand, the breakdown of geometrical flux cancellatio
manifests itself in pronounced magnetoconductance flu
tuations dGsBd ­ GsBd 2 kGl illustrated in Fig. 3(a)
(solid line), which shows the conductanceGsBd of a
single sample, along with results from a sample from
the U series (dashed line—this has been shifted by
vertically for clarity). The variance of fluctuations is
shown in Fig. 3(b). From analyzing the autocorrelatio
function we deduce the sample length dependence
the correlation fieldBc in quasiballistic samples. It
corresponds to the magnetic field flux through the samp
area equal to2.5f0, in comparison with1.5f0 that we
get in the bulk-disordered case. This seems to explain
earlier experimental observation [24].
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