Lancaster EPrints

Discrimination of gaze directions using low-level eye image features

Zhang, Yanxia and Bulling, Andreas and Gellersen, Hans (2011) Discrimination of gaze directions using low-level eye image features. In: Proceedings of the 1st international workshop on pervasive eye tracking 38; mobile eye-based interaction. PETMEI '11 . ACM, New York, pp. 9-14. ISBN 978-1-4503-0930-1

Full text not available from this repository.

Abstract

In mobile daily life settings, video-based gaze tracking faces challenges associated with changes in lighting conditions and artefacts in the video images caused by head and body movements. These challenges call for the development of new methods that are robust to such influences. In this paper we investigate the problem of gaze estimation, more specifically how to discriminate different gaze directions from eye images. In a 17 participant user study we record eye images for 13 different gaze directions from a standard webcam. We extract a total of 50 features from these images that encode information on color, intensity and orientations. Using mRMR feature selection and a k-nearest neighbor (kNN) classifier we show that we can estimate these gaze directions with a mean recognition performance of 86%.

Item Type: Contribution in Book/Report/Proceedings
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Departments: Faculty of Science and Technology > School of Computing & Communications
ID Code: 56937
Deposited By: ep_importer_pure
Deposited On: 16 Aug 2012 11:29
Refereed?: No
Published?: Published
Last Modified: 10 Apr 2014 01:20
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/56937

Actions (login required)

View Item