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Abstract 

Techniques based on the perturbation of cavity resonators are commonly used to measure the 

permittivity and permeability of samples of dielectric and ferrite materials at microwave 

frequencies. They are also used to measure the local electric and magnetic field strengths in 

microwave structures including the shunt impedances of cavity resonators and the coupling 

impedances of slow-wave structures. This paper re-examines the assumptions made in the 

theory of these techniques and provides estimates of the errors of measurement arising from 

them. 

1. Introduction 

When a small object is introduced into a microwave cavity resonator the resonant frequency 

is perturbed [l, 21. Because it is possible to measure the change in frequency with high 

accuracy this provides a valuable method for measuring the electric and magnetic properties 

of the object if the properties of the cavity are known, or for characterising the cavity if the 

properties of the perturber are known. Techniques based upon this principle are in common 

use for measuring the dielectric and magnetic properties of materials at microwave frequencies 

[3]. They also used for measuring the local electric and magnetic field strengths within 

microwave structures and, especially, for finding the shunt impedances of cavity resonators 

for use in klystrons and particle accelerators and the coupling impedances of slow-wave 

structures for use in travelling-wave tubes and linear accelerators [.4, 5, 61. The theoretical 

basis of these measurements is well-established but involves some simplifications. This paper 

re-examines these assumptions and approximations to show the effect which they have on the 

accuracy of the measurements. 

‘R.G. Carter is with the Engineering Department, Lancaster University, Lancaster LA1 
4YR, U.K. 

1 



2. Theory 

The theory of the perturbation of cavity resonators has been given by a number of authors. 

The treatment given here is essentially that presented by Waldron [l] but with some 

differences which maintain the symmetry of the equations. We shall study the properties of 

two identical cavity resonators containing non-conducting perturbing objects. Let the fields 

in the two cavities be E, exp jo,t and Ho exp jw,t and E, exp jqt and H, exp jqt. Making 

use of Maxwell’s curl equations we obtain 

V x E. = -jw,B, (1) 

V x HI = jwlD, (2) 

Taking the scalar product of H, with eq.1 and E, with eq.2 and subtracting gives 

H,.(V x E,) - E,.(V x H,) = -jo$ll.Bo - jwlEo.D1 (3) 

But 

V.(Eo x HI) = H,.(V x E,) - E,.(V x H,) (4) 

Therefore 

V.(Eo x H,) = -jo,H,.B, - jolEo.D, 

Integrating eq.5 over the volume of the cavity, and making use of Gauss’ Theorem 

sss 
V.A dv = 

ss 
A.dS 

yields 

U 
s (E, x H,).dS = JJJ, ( -jaoH,.Bo - jolEo.D, ) dv 

1 

(5) 

(6) 

(7) 

Where S is the surface of the cavity and V its volume. By a similar argument, exchanging the 

subscripts, we obtain 

u s (El x H,).dS = 
sfs 

y ( -jalHo.B, - jwoEl.D, ) dv (8) 
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If the walls of the cavity can be regarded as perfectly conducting then E is normal to the wall 

and H is tangential to the wall. The vector products are thus tangential to the wall and the left 

hand sides of equations 7 and 8 are zero. Equating the right hand sides of eqs.7 and 8 and re- 

arranging gives 

j“, j-_/j+, ( E,.D, - H,.B, ) dv = _b, /J[, ( Eo.D, - Ho.B, ) dv (9) 

If we now assume that the cavity with subscript 0 is empty and let o, = o,, + AU eq. 9 can 

be re-arranged to give 

&L sss V 
[ ( El.Do - Eo.D, ) - ( H1.Bo - Ho.B, ) ] dv 

fss 

\ I 

v ( EO.4 - f&B, ) dv 
(101 

The integrand in the numerator of this equation is zero everywhere outside the volume of the 

perturbing object. We may therefore restrict the volume of integration to the volume of the 
? 

object denoted by s/, Thus 

AA!= sss VI 
( E,.D, - E,.D, > - ( Hl.Bo - Ho.B, ) dv 

wO 
sss V 

( Eo.D, - Ho.B, ) dv 
(11) 

The only assumption which has been made so far is that the cavity walls are perfectly 

conducting. There is no restriction on the size or shape of the perturbing object, or of its 

material provided that it is not conducting. The symmetry of eq.11 ensures that its validity 

is independent of the magnitudes of the fields in the two cavities. For a non-magnetic object 

the second bracket in the numerator of eq.11 is zero and 

.!SL sss 
Vl 

( E,.D, - Eo.D, ) dv 

OO sss V 
( Eo.D, - Ho. B, ) dv 

(12) 

If we set E, = E, + e and similarly for the other variables eq.11 becomes 
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A0 sss 
( e.D, - E,.d ) - ( LB, - H,.b ) dv 

(13) 
OO sss V 

( Eo.Do - HoJo ) + ( E,.d - Ho.6 ) dv 

Equations 11, 12 and 13 cannot be applied directly because it is not normally possible to find 

closed-form expressions for the fields in the perturbed cavity. In order to derive useful 

formulae certain approximations must be made. 

Assmption I: The perturber is made of homogeneous isotropic material so that D and 

B can be expressed in terms of E, H and the permittivity and 

permeability of the material. Equation 11 becomes 

60= sss v, E ~~(1 - QEo.E1 - cr,(l - p,)H,.H, I dv 
(14) 

OO sss V 
( E,.D, - Ho.B, ) dv 

Assmption 2: The perturbation is small so that the second term in the denominator of 

eq. 13 can be neglected. Equation 14 becomes 

Assumption 3: 

&L sss V‘ 
[ ~~(1 - EJE~.E~ - po(l - p,)Ho.H1 ] dv 

sss V 
( Eo.Do - Ho.Bo ) dv 

(15) 

This assumption has removed the symmetry of the equation so that the 

frequency perturbation is dependent on the relative amplitudes of the 

fields in the empty and perturbed cavities. The denominator is 

recognised as 4W, where V, is the the stored energy in the empty 

cavity. 

The perturber is small enough for E and H to be effectively constant 

within it so that the numerator is equal to the integrand multiplied by 

the volume of the perturber. Equation 15 becomes 



Assumption 4: 

_&= 1 sJ1 - QEo.E, - P,U - I.@,.H, 1 VI 

4 wo (16) 
wO 

The E and H fields outside the pet-turber are unchanged by its presence 

and those within the perturber can be determined from the boundary 

conditions at its surface. This enables simple expressions for the 

frequency perturbation to be derived in two cases: 

a) Long thin cylindrical dielectric rod aligned parallel to E,,: 

Since the tangential electric field is continuous at the surface of the rod ( Y = b ) it follows 

that E, = E,:, and, since K = 1, equation 16 reduces to the usual approximate formula for 

perturbation of the frequency by a thin dielectric rod: 

AAL 
~~(1 - EJ IEooj2 xb2L 

OO 4 J-6 

where E,], is the magnitude of Eti on the axis and L is the length of the rod. 

(17) 

b) Dielectric sphere: 

Under the quasi-static approximation the electric 

uniform external electric field E, is given by [7] 

field within a dielectric sphere placed in a 

E, = _?!%_ 
E, + 2 

(18) 

Substitution of this expression into equation 16 and taking ~1, = 1 yields the usual expression 

for the perturbation of the frequency by a small dielectric sphere: 

ALio _ = - 
0 

(19) 

where R is the radius of the sphere. 



It is generally assumed that these approximate expressions are accurate enough for most 

purposes but the range of validity of the assumptions has not been checked. In the sections 

which follow we examine this problem by comparing the approximate solutions with those 

obtained by direct application of eq.12. 

3. Perturbation of a pill-box cavity by a dielectric rod 

Consider a pill-box cavity, excited in the TM,,, mode, which is perturbed by a cylindrical 

dielectric rod placed along its axis as shown in fig. 1 a. The general solutions for the electric 

field inside and outside the rod are 

El = El = AJ,(fik,r) 

El = Ez = BJ,(k,r) + CY,(k,r) 

(20) 

(21) 

where A, B and C are constants, J, and Y,, are the Bessel functions of the first and second 

kinds and k, = o, / c where c is the velocity of light in vacuum. We can choose A = 1 

without loss of generality. The constants B and C are determined by requiring that E, and 

i3Ez / & are continuous at the surface of the rod so that 

c = -B.J,(k,u) / Y,(k,a) 

The requirement that E, is zero at r = a yields the, determinantal equation 

(23) 

(24) 

(25) 

This equation can be solved numerically* to obtain k, and o, for given values of a, b and E,. 

The results presented in this paper were obtained using Mathcad,8. 
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For the empty cavity we note that 

q, = koc = 2.405( c/a ) (26) 

Since the solutions scale directly with the dimensions we can display the ratio O,/CO, against 

b/d for various values of E, as shown in fig.2. 

In the empty cavity the electric field is given by 

E. = EL = Jo&t) 

and the magnetic field by 

Ho = He = j 

In the perturbed cavity the magnetic field ig 

HI = He = j & I-- % J,(JiSrkor) 

inside the rod, and 

HI = He = j 1 BJJk,r) + CYJk,r) 1 

outside the rod. 

(27) 

(28) 

w 

When the fields defined by these equations are substitufed into eq. 12 the results are identical 

to those obtained from eq.25.. 



The stored energy in the empty cavity is given by 

a 

W. = xeOL 
J 

J,(k,r)“rdr 
0 

Substituting this expression into eq. 17, and noting that E,, = 1, we obtain 

(31) 

.&L 
wO 

1.856( 1 - ~,)(W2 (32) 

The frequency ratios computed from eq.32 for relative permittivities of 2, 5 and 10 are 

compared with the exact results in figure 2. It is seen that there is good agreement between 

the two sets of results if b/a I 0.1 and that the agreement deteriorates as b/a increases and as 

the relative permittivity increases. The accuracy is revealed more clearly in figures 3a and b 

which show the error in the approximate solutions for the ranges 0 < b/a < 0.1 and 0 < b/a 

< 0.2 respectively. If the normalised rod diameter is less than 0.1 the approximate solution 

is accurate to better than 1% for E, I 10. If E, = 2 the difference between the exact and 

approximate formulae is negligible. But these results conceal possible sources of error which 

make it unwise to assume that the same accuracies will apply to other shapes of the 

perturbing object. 

Figure 4 shows comparisons between the numerators and denominators of the exact and 

approximate expressions (equations 12 and 17). From these it is clear that the apparent 

accuracy of eq.17 is a consequence of the balancing of approximately equal errors in the 

numerator and the denominator. These errors lie in the range 1% - 30% for the cases 

investigated. Thus the assumption that the second term in the denominator of eq. 13 can be 

neglected is not as valid as has been generally supposed. The physical explanation of this 

result is that the electric field within the rod is over;estimated by assumption 3 since the 

radial variation of the field within the rod has been neglected. The field outside the rod is 

reduced by the presence of the rod so that assumption 2 causes the denominator to be over- 

estimated. It is fortuitous that the errors compensate each other in this case but it is not safe 

to assume that a similar cancellation will occur in other cases. It is therefore possible that 

measurements made using perturbation methods may be in error by several percent. 
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One of the main uses of this theory is to determine the relative permittivities of samples of 

dielectric material in the form of rods. Since the method relies on the frequency perturbation 

caused by the rod it is sensitive to quite small errors in the value of the perturbed frequency. 

This is illustrated in fig.5 in which values of the frequency perturbation obtained from the 

exact theory have been used to obtain the relative permittivity from eq.32. It can be seen that 

appreciable errors occur when the relative permittivity is calculated by the approximate 

method. 

4. Perturbation of a pill-box cavity by a dielectric sphere 

When a dielectric sphere is place in a uniform electric field the field within the sphere is 

given by eq. 18 and the additional electric field components outside the sphere produced by 

the polarisation of the sphere are [7]: 

E, = E. (5) R3 (y+) (33) 

in spherical polar co-ordinates. 

We will assume that the dielectric sphere is placed on the axis of a pill-box cavity as shown 

in fig. 1 b. In order to be able to compute the frequency perturbation from eq. 12 it is necessary 

to make two assumptions: 

Assumption 5: The sphere is small enough for the field in which it is placed to be 

effectively constant. If we require the variation of the field to be not 

more than 1% over the space occupied by the sphere then kJ? = 0.2 

and thus R/a < 0.083. For a 5% field variation R/a I 0.19. 



Assumption 6: The sphere is small enough for the perturbation of the external field to 

be effectively zero on the boundary of the cavity. If we set a limit of 

1% on the perturbation then R/a and 2RIL 50.2. Thus for most cavities 

the second condition will be satisfied whenever the first condition is 

true. 

The field components outside the sphere are given, in cylindrical polar co-ordinates, by: 

(35) 

-j aElz qe = -- 
Pool ar 

P-3 

where CD, is the, as yet unknown, perturbed frequency. The remaining field components are 

not required because their inner products with the unperturbed field components are zero. 

Within the sphere, for consistency, we must take E,, = E,, and H,, = 0. Equation 12 can then 

be evaluated numerically to obtain values for the frequency perturbation which are exact for 

small spheres. Figure 6 shows how the ratio of the perturbed to the unperturbed frequency 

depends upon the radius and the relative permittivity of the sphere as found from the 

approximate and exact calculations. Since we have used the same expression for the electric 

field inside the sphere for both the approximate and exact calculations it follows that fig.6 

shows the effect of neglecting the second term in the denominator of eq.13 in this case. The 

error introduced by this assumption is much less than in the case of perturbation by a rod 

because of the much smaller change in the fields outside the perturber. 

Perturbation measurements using a dielectric sphere are commonly used to determine the 

electric field distribution within a microwave structure. By substituting the frequency 

perturbation computed from eq. 12 into eq. 19 we can’ find the error in the determination of the 

field. The results of this calculation in fig.7 show that the error is less than 1% for typical 

sizes of sphere. 

5. Conclusions 

The results presented in this paper have shown that the assumptions made in the approximate 
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theory of the perturbation of cavities by dielectric objects are not always valid. In particular 

we have seen that the figures for the relative permittivity of dielectric rods may be in error 

by 5% for typical rod sizes. If the method is used to find the relative permittivity of rods 

having a uniform, but non-circular, cross-section it is likely that similar accuracies will be 

obtained. When perturbation methods are used to characterise cavity resonators and other 

microwave structures it is likely that the relative permittivity of the perturber will have been 

obtained by a perturbation measurement. In that case the errors in measurement should be 

small provided that the same assumptions were made in interpreting both measurements and 

that the assumption that the perturber is located in a region of uniform electric field is 

satisfied to a good approximation. 
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Captions for figures 

Fig. 1 Pill-box cavity resonator perturbed by (a) a dielectric rod, and (b) a dielectric sphere. 

Fig.2 Comparison of the resonant frequency of a pill-box cavity, perturbed by a dielectric 

rod, computed by exact and approximate methods. 

Fig.3 Error in the resonant frequency of a pill-box cavity, perturbed by a dielectric rod, 

computed by the approximate method. 

Fig.4 Comparison between the numerators and denominators of the exact and approximate 

formulae for computing the resonant frequency of a pill-box cavity, perturbed by a 

dielectric rod. 

Fig.5 Error in the calcu$ation of the relative permittivity of a dielectric rod using the 

approximate formula. 

Fig.6 Comparison of the resonant frequency of a pill-box cavity, perturbed by a dielectric 

sphere, computed by exact and approximate methods. 

Fig.7 Error in the magnitude of the electric field in a pill-box cavity, perturbed by a 

dielectric sphere, computed by the approximate method. 
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