Lancaster EPrints

Soft sensor for predicting crude oil distillation side streams using Takagi Sugeno evolving fuzzy models

Macias-Hernandez, J J and Angelov, Plamen and Zhou, Xiaowei (2007) Soft sensor for predicting crude oil distillation side streams using Takagi Sugeno evolving fuzzy models. In: Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on. IEEE, pp. 3305-3310. ISBN 978-1-4244-0991-4

Full text not available from this repository.

Abstract

Prediction of the properties of the crude oil distillation side streams based on statistical methods and laboratory-based analysis has been around for decades. However, there are still many problems with the existing estimators that require a development of new techniques especially for an on-line analysis of the quality of the distillation process. The nature of non-linear characteristics of the refinery process, the variety of properties to measure and control and the narrow window that normally refinery processes operates in are only some of the problems that a prediction technique should deal with in order to be useful for a practical application. There are many successful application cases that refinery units use real plant data to calibrate models. They can be used to predict quality properties of the gas oil, naphtha, kerosene and other products of a crude oil distillation tower. Some of these are distillation end points and cold properties (freeze, cloud). However, it is difficult to identify, control or compensate the dynamic process behaviour and the errors from instrumentation for an online model prediction. (c) IEEE Press

Item Type: Contribution in Book/Report/Proceedings
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Departments: Faculty of Science and Technology > School of Computing & Communications
ID Code: 56221
Deposited By: ep_importer_pure
Deposited On: 19 Jul 2012 17:18
Refereed?: No
Published?: Published
Last Modified: 03 Jun 2014 16:55
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/56221

Actions (login required)

View Item