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Abstract

Forecasts of demand are crucial to drive supply chains and enterprise resource plan-
ning systems. Usually, well-known univariate methods that work automatically such
as exponential smoothing are employed to accomplish such forecasts. The traditional
Supply Chain relies on a decentralised system where each member feeds its own Fore-
casting Support System (FSS) with incoming orders from direct customers. Never-
theless, other collaboration schemes are also possible, for instance, the Information
Exchange framework allows demand information to be shared between the supplier
and the retailer. Current theoretical models have shown the limited circumstances
where retailer information is valuable to the supplier. However, there has been very
little empirical work carried out. Considering a serially linked two-level supply chain,
this work assesses the role of sharing market sales information obtained by the re-
tailer on the supplier forecasting accuracy. Weekly data from a manufacturer and
a major UK grocery retailer have been analysed to show the circumstances where
information sharing leads to improved forecasting accuracy. Without resorting to
unrealistic assumptions, we find significant evidence of benefits through information
sharing with substantial improvements in forecast accuracy.
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1. Introduction and Background

Since the beginning of the 20th century, one of the main problems that Supply
Chain Management has had to face is the bullwhip effect [1]. The phenomenon
consists of demand variability amplification when moving upwards in the supply
chain [2]. Among the consequences of this amplification, for instance, we might find
excess inventory, poor customer service and poor product forecasts. Demand signal
processing, rationing gaming, order batching, and price variations are the four main
sources of the bullwhip effect sources identified by Lee et al. [3].

In order to avoid the bullwhip effect some authors suggest supply chain collabora-
tion as a mean to ameliorate it, see [4] and references herein. The idea behind supply
chain collaboration is to find a global optimal solution for all supply chain members
instead of different sub-optimal solutions for each one [5]. Information sharing is a
way to accomplish such collaboration [6], [7], [8]. In fact, information transparency
based on sharing customer demand as well as other variables such as inventories
and orders is one of the ten principles proposed in [1] to achieve bullwhip reduction.
However, there has been little empirical evidence on the benefits of collaboration as it
affects forecasting accuracy and therefore supply chain demand variability amplifica-
tion. The aim of this paper is to suggest models for incorporating downstream sales
information and provide evidence of the improved accuracy that such information
sharing can achieve.

Holweg et al. in [7] suggest a classification of four different supply chain collabora-
tions depending on the extent of the collaboration in planning and inventory control.
According to that scheme, we may find: i) The traditional supply chain, where no
collaboration is established; ii) Information exchange, the supplier and retailer agree
a planning collaboration; iii) Vendor Managed Replenishment, here supply chain
members collaborate in terms of inventory; and iv) Synchronised supply, where an
integrated planning and inventory collaboration is put in place. In this paper, we
will be focused on analyzing the benefits of planning collaboration, thus, only the
first two types will be considered.

Among the benefits of a planning collaboration, an improvement in forecasting
accuracy is expected by reducing uncertainty and removing delays in translating the
demand signal [7]. However, there is no general agreement in the literature at this
point. In fact, some authors, based on analytical models claim that the information
available in the market retail sales can be translated up the stages of a supply chain
based only on the orders received [9]. Thus, a chain echelon might retrieve such infor-
mation by means of an appropriate filter of the downstream information. Here, the
term “filter” refers to the mathematical equation that is used to model the demand
structure in order to separate valuable information from noise [10]. For instance, as-
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suming that the customer demand can be described by an Autoregressive Integrated
Moving Average (ARIMA) filter [11], in particular, a first-order Autoregressive pro-
cess AR(1) and the inventory management follows an Order-Up-To policy, the resul-
tant order signal is a first order Autoregressive-first order Moving Average process
ARMA(1,1). Thus, the second echelon player can obtain the available information
on the market sales by filtering the order signal with an ARMA(1,1) structure, and
consequently, avoiding the necessity of investing in interorganisational systems for
information sharing [9], [12], [13], [14].

However, in order to make the problem mathematically tractable those works
rely on restrictive assumptions that tend to be highly constrained versions of reality
[15]. For instance, they do not include the influence of promotions, price reductions
and advertisements even when price variation is one of the four causes that generate
demand amplification [3]. In addition, since those factors are difficult to include in
statistical models, they are usually introduced into the forecasting process by man-
agers that judgmentally adjust forecasts provided by a Forecasting Support System,
[16], [17]. In the work led by Fildes and Goodwin in [18] a survey of 149 forecasters
was conducted. It was found that, on average, 75 percent of the forecasts involved
management judgment. In fact, according to the company-based research in [16] and
[19] adjustments were common and may be made in between 60 and 90 percent of
forecasts, respectively. Therefore, insights obtained from theoretical developments
that do not include the aforementioned circumstances can be limited [15].

On the other hand, some authors based on real customer demand datasets, state
that information sharing improves forecasting accuracy [15], [20], [12]. Byrne and
Heavey in [15] considered a complex supply chain structure with multiple customers,
distributors and product families. They concluded that information sharing could
lead to potential total supply chain costs savings of up to 9.7%. They chose as
forecasting techniques Single Moving Average and Double Exponential Smoothing.
Kelepouris et al. in [20] analyzed the impact of information sharing on the bullwhip
effect on the basis of a simulated two-stage supply chain, between a warehouse and
store of the same company, using real demand data. In this particular case, forecasts
were computed using single and double exponential smoothing and information shar-
ing was captured by substituting the orders observed by the warehouse with those
observed at store level. The results concluded that information sharing resulted in
21% warehouse order variability reduction. In [12], an attempt to minimize the gap
between theory and practice was done by analyzing the influence of supply chain
collaboration employing real Electronic Point of Sales (EPOS) data and the orders
generated by the retailer in a two-stage supply chain. Three SKUs with different
level of sales and without promotions were considered. Assuming that real customer

3



demands follow an AR(1) structure, they concluded that sharing EPOS data could
reduce the supplier’s Standard Deviation of the Prediction Errors by between 8%
and 19% and that the noise element contained in the EPOS data might be the major
source of the information sharing benefit. However, given the small sample and the
restrictive assumptions, more empirical work is required to extend those results.

In general, works focused on theoretical analyses assume that the demand struc-
ture is known, usually represented as an ARIMA model [12]. Nonetheless, the iden-
tification process might not be a trivial step, particularly, when price variations are
introduced in the process via judgmental adjustments and there is a high number
of SKUS as happens in the grocery retailer industry. As a consequence, empirical
work ([5], [26]) show that companies use simpler methods such as single moving av-
erage and exponential smoothing techniques. In addition, a question remains open:
How information sharing affects forecasting methods selection? For instance, in [22]
it is shown that the supplier’s demand structure in case no information is shared
is an ARMA(1,1), however, if information sharing is enabled and market sales is
used instead of retailer’s orders, its demand structure follows an ARX model, where
the market sales information is the exogenous variable. Nonetheless, case studies
presented in [5] and [26] use the same forecasting techniques regardless of whether
the information is exchanged. In this sense, as Lapide in [21] has remarked, the
problem remains of integrating market sales information in forecasting processes. In
other words, the fact of sharing information does not imply that there is an effective
integration of such information into the supplier’s planning processes [7].

In this article, automatic system identification procedures are proposed to select
the adequate structure for the supplier shipments integrating the retailer sales in-
formation. The aim of this methodology is twofold: i) to relax the assumption of
a known demand structure; and ii) to propose an automatic technique that permits
the retailer’s sales information to be integrated into the supplier’s planning process.
In order to evaluate the benefits of information sharing, real data from a serially
linked two-level supply chain was collected. In contrast to previous research, in this
study we do not impose any assumptions regarding the data generation process of
the demand patterns observed on different levels of the supply chain, thus we model
the data using a wide variety of forecasting models in order to identify the most
appropriate. Firstly, linear and nonlinear AR models that use the retailer’s sales in-
formation as an explanatory (exogenous) variable (ARX) are defined to forecast the
supplier’s demand. Secondly, other univariate techniques such as ARIMA, exponen-
tial smoothing, Moving Averages and Neural Networks are employed as benchmarks
representing the case where no information is shared between supplier and retailer.

The results show that the supplier can improve its forecasting accuracy substan-
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tially by integrating the sales data from the retailer into its forecasting process. Fore-
casting accuracy is directly connected to inventory management, lower errors result
in reduced stock keeping without compromising the service level. In fact, research
has shown that forecast errors can increase organization costs from 10% to 30% de-
pending on the organizational environment (see [22]). These results provide evidence
that the additional organizational effort and cost to start-up and maintain informa-
tion transparency in the supply chain may lead to improvements in operations. In
addition, this work opens up the door for designing more advanced Forecasting Sup-
port Systems able of adding multivariate models among their statistical forecasting
techniques in order to incorporate efficiently the retailer’s sales information.

The remainder of our article is organized as follows: Section 2 introduces the
case study. Section 3 gives a brief description of the models considered in the paper.
Section 4 discusses the empirical experiments. Finally, main conclusions are drawn
in Section 5.

2. Case study

The supply chain system consists of a serially linked two-level supply chain; see
Figure 1. This supply chain consists of a flow of information represented by a dashed
line from the market towards the manufacturer and a reverse one regarding materials
represented by a solid line, [7]. Market sales and shipments from the manufacturer are
the measured variables, indicated by the sensors in Figure 1. There is also a switch
that represents the option of sharing information. When the switch is off it means
that we are considering the traditional supply chain case, i.e., sales information is not
available for the Manufacturer. When it is on, market sales information is available
for the manufacturer. Note that in the latter case, the manufacturer has two sources
of information: i) the retailer orders; and ii) the market sales information

Data from a manufacturing company specialized in household products has been
collected. The data has been sampled weekly between October 2008 and October
2009. This manufacturing company provides products to one of the largest retailers
in the UK with a lead-time equal to one week. The data consist of two time series
per SKU, the first one corresponds to the shipments received by the retailer from
the manufacturer. The second one, is the customer demand measured by the retailer
sales.

It should be noted that previous works use the retailer’s order data as input to
the forecasting methods [9],[12]. Ideally, volume of shipments received by the retailer
should be a delayed version of the retailer orders and such an assumption is usually
made in simulation models [23]. Nevertheless, volume and delayed orders might
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not match due to the “backlash” effect, which refers to the resulting impact of the
“bullwhip” effect on shipments downstream [24]. In the analysed case study, we use
shipments instead of orders because this variable is what managers employ as input
to the company’s Forecasting Support System.

The dataset under study comprises 43 Stock Keeping Units (SKU) with 52 ob-
servations per SKU. An example is depicted in Figure 2.

2.1. Exploratory Data Analysis

In Figure 2 we can clearly see the demand variance amplification phenomenon.
A possible way to measure the bullwhip effect is to use the ratio of the coefficients
of variation between the output supplier sales and the input retailer sales [25]. Let
the Bullwhip Ratio (BWR) be denoted by:

BWR =
σsupplier/µsupplier

σretailer/µretailer

. (1)

where σi is the standard deviation and µi is the mean for i equal to supplier
shipments or retailer sales. Other conventional bullwhip measures use the ratio of
the variance (or standard deviations) instead of the coefficient of variation [23]. In
this same reference, Dejonckheere et al. propose two other bullwhip measures based
on the frequency response plot. However, in order to compute the frequency response
plot it is necessary to model the replenishment rule and calculate the corresponding
transfer function between the customer demand and retailer orders. For the sake of
generality, the replenishment rule used by the retailer is assumed unknown. Thus,
in this article we will measure the BWR as defined in (1).

Figure 3 shows the histogram of BWR according to our dataset of 43 SKUs. In
this figure we can see that the resulting histogram is bimodal. The first peak is
located around BWR=1.5 and the second one is placed at BWR=3.5 and BWR=4
approximately. Note that some SKUs can reach a BWR greater than 4.

Figure 4 plots the relationship between the mean of both the retailer and supplier
sales for the SKUs of our database. Given that the relationship is linear with a re-
gression coefficient equal to 1 approximately, we can conclude that the replenishment
rule is focused on following the level of the real customer demand. It is interesting
to note that usually the BWR is measured by the ratio of standard deviations rather
than coefficients of variation by assuming that the means are equal. Figure 4 verifies
that in our dataset such an assumption is valid.

However, we can also analyse the relationship between variances instead of means.
Figure 5 is a scatter plot between the variance of supplier and retailer sales. In con-
trast to the previous figure, the linear relationship is not so clear and the regression
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coefficient is 1.6, that is greater than 1. This observation also illustrates the Bullwhip
Effect (BE).

3. Models

Two kind of models have been analysed to find out whether retailer sales infor-
mation is useful for the supplier to improve its forecasting accuracy. On the one
hand, we employ univariate models, such as Single Exponential Smoothing (SES),
Autoregressive (AR), Moving Average (MA) and Autoregressive Integrated Moving
Average (ARIMA) models, a univariate Neural Network and a Näıve method. These
methods only rely on past information of supplier sales to forecast and so, no infor-
mation sharing is accomplished. We employ both linear and nonlinear methods in
order to capture potential nonlinearities in the data and produce adequate bench-
marks. In addition, a multivariate ARX model and multivariate Neural Networks
have also been used, where suppliers sales and retailer sales are used as dependent
and explanatory variables, respectively. We summarize the methods below.

3.1. Näıve and Moving Average

A forecasting method is an algorithm that provides a prediction of the value at a
future time period [26]. Many forecasting algorithms are based on the identification
of an underlying pattern in a data series, that pattern can be distinguished from ran-
domness by smoothing (averaging) past values. After eliminating that randomness,
the algorithm projects the pattern into the future to generate the forecast. A well
know method to reduce the time series random variation is the moving average [27].
A moving average forecast of order k, or MA(k), is given by:

Ft+1 =
1

k

t
∑

t−k+1

yi. (2)

The order has been identified by minimizing the sum squared error of the one-
step-ahead errors. Note that the Näıve approach used in this paper is a MA(1), since
the last known data point (yt) is taken as the forecast for the next period, which is
the well known Random Walk.

3.2. Single Exponential Smoothing

Since around 1950 the use of Exponential Smoothing for forecasting has been the
most popular forecasting method used in business and industry [28, 29]. Basically,
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the Single Exponential Smoothing (SES) consists of adjusting the previous forecast
by weighting the forecast error, i.e:

Ft+1 = Ft + α(yt − Ft), (3)

where α is a constant between 0 and 1. This parameter may be set on a priori

grounds that usually is between 0.05 and 0.3, [30]. However, if a reasonable number
of observations are available, α can be estimated by minimizing the sum of the one-
step-ahead in-sample squared forecast errors, [31].

3.3. AR and ARIMA processes

Box et al. in [11] propose a general framework based on an autoregressive inte-
grated moving average (ARIMA) process of order (p,d,q) to model stationary and
nonstationary time series. The process can be expressed by:

φ(B)(1−B)dyt = θ(B)at, (4)

where yt is an observable time series and at is a white noise process having
mean zero and variance σ2

a. The backward shift operator is denoted by Bzt = zt−1.
The Autoregressive and Moving Average operators are defined by φ(B) and θ(B)
polynomials of order p and q respectively and d denotes the order of differencing
that is required to make the time series stationary.

The automatic identification procedure consists of selecting the best ARIMA
model from a full range of possibilities according to the Akaike Information Criterion
(AIC), [32]. The AIC combines the fit of the model with the number of parameters
used in order to avoid over parameterisation, and can be expressed normalized by
sample size n as follows:

AICp,q ≈ ln(σ̂2

a) + r
2

n
, (5)

where r = p + q. The models estimated include orders: i) p=1,2,3; ii) q=1,2,3;
and iii) d=1,2, since higher p, q, d values are not generally used in practice, [11]. The
preferred model is the one with the minimun AIC value.

A simpler form of the model involves only the identification of the autoregressive
part, which is essentially a dynamic regression on past lags of the time series. The
identification of the AR order is done again by AIC optimisation and the model
assumes stationarity of the time series.
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3.4. ARX models

An ARX model structure can be expressed by a linear difference equation:

yt + a1yt−1 + . . .+ ana
yt−na

= b1ut−nk
+ . . .+ bnb

ut−nk−nb+1 + at, (6)

where AR refers to the autoregressive part and X to the extra input, sometimes
called the exogenous variable. The parameters na and nb are the orders of the ARX
model, and nk is the number of input samples that occur before the input affects the
output, also called the dead time in the system [33]. The variables yt and ut stand
for the volume received and retailer sales, respectively. Model orders na, nb and nk

have been chosen by minimizing the AIC. Model selection and the estimation of the
unknown parameters ai, i = 1, . . . , na and bj, j = 1, . . . , nb have been done by means
of the routines implemented in the System Identification toolbox (MATLABTM)

3.5. Neural Networks

Artificial Neural Networks (NN) have been successfully applied in both univari-
ate and multivariate time series forecasting [34]. It has been long proposed that
their use can be beneficial to supply chain modelling and specifically for forecasting
[35]. In [36] NN were shown to be more accurate than MA and regression, however
with no statistically significant differences, when applied to supply chain forecasting
problems. The motivation for using NN in this study arises from their assumption-
free modelling. They do not require imposing any assumptions regarding the data
generating process of the time series or interactions, if any, between variables. The
mapping between inputs and outputs is data-driven, limiting the modelling deci-
sions required by the human expert [34], thus allowing us to identify empirically any
existing nonlinearities in the dataset.

The most widely employed architecture is the multilayer perceptron (MLP), which
we will be employing in this study. These are well researched regarding their proper-
ties and have been shown to be able to generalise any linear or nonlinear functional
relationship between the inputs and the outputs, to any degree of accuracy without
any prior assumptions about the underlying data generating process [34, 37]. In
principle these can be seen as nonlinear extensions of AR and ARX models.

MLPs are feed-forward networks that are organised in layers of nodes, that control
the information flow within the model. The first layer is the input layer. This is
followed by any number of hidden layers, where the main part of the processing is
performed. A hidden layer is made of any number of hidden nodes. A hidden node
can be linear or nonlinear. If it is linear then each node is identical to a multiple
linear regression, however typically they are nonlinear, but able to approximate both
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linear and nonlinear behaviours. It has been argued that a single hidden layer is
adequate for most forecasting purposes and the modeller has to identify the correct
number of hidden nodes [34]. The last layer of the network, the output layer, adds
the information from the preceding layers to the required output. Typically this is
done through a linear combination of the outputs of the nodes of the previous layers.
An example of the architecture of a MLP with three inputs, a single hidden layer
with four nodes and a single output can be seen in Figure 6.

Given a time series y, at a point in time t, a one-step ahead forecast Ft+1 is
computed using p = I inputs that can be lagged observations of yt or explanatory
variables, lagged or not. I denotes the number of input units pi of the NN. The
functional forms is

Ft+1 = β0 +
H
∑

h=1

βhg

(

γ0i +
I
∑

i=1

γhipi

)

. (7)

where w = (β, γ) are the network weights and β = [β1, . . . , βH ], γ = [γ11, . . . , γHI ]
are for the output and the hidden layers respectively. The β0 and γ0i are the biases
of each neuron, which are identical in function to the constant in linear regression.
I and H are the number of input and hidden nodes in the network and g(·) is a non-
linear transfer function, which is usually either the sigmoid logistic or the hyperbolic
tangent function [38] and provides the nonlinear capabilities to the model. MLPs
offer extensive degrees of freedom in modeling for prediction tasks. The modeler
must choose the appropriate data and its pre-processing, the NN architecture, the
signal processing within nodes, the training algorithm and the cost function. For a
detailed discussion of these issues and the ability of NNs to forecast time series, the
reader is referred to [34].

In this analysis we develop both univariate and multivariate networks. The net-
works use the inputs identified for the AR and ARX models discussed before. The
rest of the parameters of the networks are identified through simulation and are pro-
vided in Table 1. The univariate model is named NAR and the multivariate is named
NARX. Furthermore, we provide the results for model NARX-Lin which involves di-
rect connections of the inputs to the output layer, as well as through the hidden
node, thus achieving direct modelling of both linear and nonlinear information. The
model is formulated as:

Ft+1 = β0 +
H
∑

h=1

(

βhg

(

γ0i +
I
∑

i=1

γhipi

))

+
I
∑

i=1

δipi, (8)

where δi are the connecting weights between the inputs and the output node,
which is linear. Results for a univariate NAR-Lin model are not provided since
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there was no accuracy gains over the NAR model. Note that NARX is in theory
able to approximate NARX-Lin [37], however in practice formulating explicitly the
shortcut connections between the input and the output layer, as in NARX-Lin, aids
significantly the training of the model.

All networks use for their training Bayesian Regularisation and no validation set
is needed as in typical NN training [39]; therefore we use exactly the same data for
training and evaluating the NNs as for the other models. All models use the sigmoid
logistic function for their hidden layers:

f(p) = 1/(1 + exp−p), (9)

where p is an input. The networks are built using the Neural Network toolbox in
MATLABTM using standard functions.

4. Empirical results

In this section predictive validation is used to compare models. For this purpose,
20% of the data constituted by the last 10 weeks of each SKU are kept for comparing
the performance of the proposed methods, as hold-out sample. These last 10 weeks
are not used for the parameter estimation of the models, but retained to produce
rolling one-step ahead out-of-sample forecasts, without refitting the models, which
are used to evaluate the performance of the alternative forecasting methods. The
results are first analysed by forecasting accuracy, assessing whether the methods that
include downstream information are more accurate or not. Afterwards, encompassing
tests are carried out to identify if the multivariate methods add significantly more
information in comparison to the univariate methods.

4.1. Out-of-sample forecasting performance

Forecast errors are measured across time for each SKU by means of the Mean
Absolute Percentage Error (MAPE) and the Median Absolute Percentage Error
(MdAPE), i.e:

MAPE = mean(|PEt|),

MdAPE = median(|PEt|),

where PEt is the percentage error given by PEt = 100(yt − Ft)/yt, t = 1, . . . , N .
Here, yt stands for the actual value and Ft is the forecast, both of them at time t.
The MdAPE is a more robust implementation of MAPE in presence of outliers, [40].
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These measures are chosen due to their simplicity of interpretation and applicability
to this particular dataset. A rolling origin one-step ahead forecast is produce for each
of the 10 weeks in the out of sample. The percentage errors of these forecasts are
used to calculate the MAPE and MdAPE of each individual SKU across the different
time origins, which are afterwards aggregated in dataset average figures, obtaining
the Mean(MAPE), Mean(MdAPE) as overall error measures over all SKUs. These
latter measures will be used to compare forecasting accuracy between the forecasting
methods.

Table 2 shows the Mean of the MAPE and MdAPE of the considered methods
for the out-of-sample evaluation. In this table the minimum values per measure are
highlighted in bold. We can easily observe that the multivariate methods are more
accurate than the univariate ones. This indicates that information sharing reduces
the forecast errors on average. Note that AR, NAR, MA, SES, and ARIMA obtain
similar error level. Regarding the forecast error variability measured by the standard
deviation provided (St. Dev.) in Table 2, it is apparent that the multivariate models
on average exhibit lower dispersion, with the lowest achieved by ARX. Across the
univariate models the lowest error variability is achieved by the nonlinear NAR. The
same conclusions can be obtained from the forecast error boxplots of the MAPE
and MdAPE across SKUs depicted in Figure 7. We provide the mean error on
the same figure as well. Again, the multivariate models show better performance
in comparison to the rest of the techniques and less dispersion. The percentage of
SKUs that collaboration leads to improvement is 65.1% and 62.8% for MAPE and
MdAPE respectively.

We have performed statistical tests to identify whether the reported accuracy
differences are significant. To avoid any assumptions of normality we employ a series
of non-parametric tests. Initially, we use the one-way Friedman tests, which is the
non-parametric analogous to the ANOVA test; testing if at least one of the methods
is performing significantly different from the rest. For all MAPE, MdAPE and St.
Dev there are significant differences with reported p-values equal to 0. To clarify
which methods perform significantly different we use the Nemenyi post-hoc test.
This is again a non-parametric test, based on calculating the mean rank of each
method. A critical distance for the set of methods compared is computed and any
methods within this critical distance have no significant differences. The reader is
pointed for more information to [41]. The numerical results of the non-parametric
tests are provided in Table 3, whereas a visualisation of the results of the Nemenyi
test is provided in Figure 8.

The statistical tests indicate clearly that that the results can be separated into
two groups of methods; the univariate and the multivariate. There are no statis-
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tically significant differences in accuracy for both MAPE and MdAPE across the
multivariate methods; hence it is impossible to conclude that one of these methods
performs better. Among the univariate methods there is a similar picture, with the
exception of the Näıve method that significantly underperforms compared to NAR,
SES and ARIMA.

Therefore, from these results we can claim that sharing information reduces the
forecast error mean and variability and is beneficial.

4.2. Encompassing tests

A forecast encompassing test allows us to evaluate whether a forecasting method
contains more valuable forecasting information compared to another method, or sim-
ply if a method encompasses another. This way we can test the hypothesis if the
univariate models are encompassed by the multivariate models that make use of the
information sharing, i.e. they contain more valuable information, or not; hence pro-
viding further evidence of the benefits of such a process. There are a number of
models that can be used as the basis of encompassing tests [42]. The test we use is
based on:

yt = α0 + α1F1t + α2F2t + et, (10)

where F1t and F2t are the forecasts of two methods, α0 is a constant that permits the
possibility of bias and yt is the observation at time t. Equation (10) can be examined
either in an unconstrained or a constrained form, where in the latter α1 + α2 = 1.
Here we use the latter, since without the constraint the results show little more than
the possible collinearity of the methods [43].

Table 4 presents the results of the encompassing tests. We provide the p-value of
each combination of models. Combinations of models with insignificant contributions
are in boldface. In this table we want to evaluate whether the multivariate models
offer additional useful information to the univariate models, indicating a beneficial
effect of information sharing and also to examine whether the univariate models cap-
ture additional information, in comparison to the multivariate models. From Table
4 we can conclude that all ARX, NARX and NARX-Lin contribute significantly to
the univariate models, providing further evidence of the importance of information
sharing. Considering the multivariate methods, only NAR, MA and the Näıve meth-
ods contribute to ARX, but not to NARX or NARX-Lin. In closer examination we
can see that the p-values of the univariate models are close to 0.05, implying weak
evidence of contribution to ARX, which we would reject under 1% significance level.
Moreover, this is interpretted as evidence of possible nonlinearities in the supplier
time series that are captured by the nonlinear part of NAR, NARX and NARX-Lin.
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Furthermore, we can observe that the inclusion of the direct linear modelling of in-
formation with the NARX-Lin method allows capturing both linear and nonlinear
components explicitly, thus contributing to ARX, providing further evidence of non-
linearities. From these results we conclude that the univariate methods have not
captured additional significant information over the multivariate, whereas the oppo-
site is true. The multivariate encompass the univariate ones and provide significant
improvements due to their access to downstream information of the supply chain.

5. Conclusions

The utility of information sharing with regards to forecasting performance is a
controversial issue. Theoretical analysis relying on restrictive assumptions claims
that the information available in the market sales can be extracted by the upstream
level in the supply chain by filtering the retailer orders signal. Therefore, market
sales information sharing would not bring significant improvements in terms of fore-
casting accuracy. On the other hand, empirical analysis accomplished in particular
companies reached different conclusions. Mainly, they see a clear benefit of sharing
information. Nonetheless, the number of case studies is still small.

The results of this paper conclude that information sharing improves forecasting
performance, resulting in 6 to 8 percentage points lower forecasting error as measured
by MdAPE and MAPE respectively. That result was based on the benchmarking
of multivariate against univariate models using a real dataset, based on a serially
linked supply chain. Automatic system identification techniques were employed to
model the supplier demand. In addition, no restrictions about either promotions,
replenishment rules or demand were imposed. Statistical tests indicated significant
gains in forecasting accuracy of the multivariate models over the univariate models,
demonstrating a clear benefit of information sharing for reducing forecasting errors.
Furthermore, we employed forecast encompassing tests to identify whether there is
significant information that was missing in either uni- or multivariate models and
concluded that the multivariate models contributed significantly to all univariate
models, while the opposite was not true. This provides further empirical evidence of
the importance of information sharing.

Crucially, this study has added to the research on information sharing by demon-
strating for a range of SKUs that multivariate methods can lead to substantial im-
provements in forecasting accuracy. This gives manufacturers the incentive to explore
the improvements they can achieve within their own supply chain. The gains will of
course depend on the nature of the supply chain and in particular the process and in-
formation through which the retailer collaborates. This raises a wealth of interesting
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questions about the type of information that is most valuable. Furthermore, there
are clear managerial implications. A manufacturer has direct interest in informa-
tion sharing, as it can bring significant monetary savings, enhanced customer service
levels and lower inventory costs. Retailers downstream have indirect benefits from
this collaboration. As the manufacturer enjoys better inventory management, the
retailers can benefit from higher service level and potentially reduced buying costs,
thus providing further incentives for managers at every level of the supply chain to
collaborate.

While the forecast improvements are substantial compared with alternatives as
enhanced statistical forecasting based only on internal company data, they come at a
cost. Implementation issues include enhanced software and better trained staff as well
as a more extensive forecasting process that includes the collection and interpretation
of the valuable downstream information.

This study has focused on providing solid empirical evidence whether informa-
tion sharing affects the upstream forecasting accuracy. Although our findings imply
that information sharing mitigates the Bullwhip Effect (we provide indirect evidence
through the reduction of forecasting errors), this work does not provide a causal con-
nection between Bullwhip, its intensity and the benefits of information sharing and
therefore falls short of showing whether the increase in forecasting accuracy is due to
reduction of the Bullwhip Effect, or part of it, or other unexplored reasons. In other
words, whereas there is a general agreement regarding the harmful consequences of
the Bullwhip Effect to forecasting accuracy in upstream levels, the quantification
and magnitude of that connection is not well defined.

Future studies should quantify the cost reduction achieved by improving fore-
cast accuracy to give more solid reasons to practitioners whether to invest on inter-
organizational information systems and advanced Forecasting Support Systems. More-
over, further research can be addressed on extending the case study to different in-
dustries, particularly for those that experience different degrees of Bullwhip Effect,
providing additional evidence of the connection between forecasting accuracy benefits
and information sharing.
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Table 1: Neural Network models design parameters.

Model Name Hidden Nodes Bias (Hidden, Output) Training Epochs Scaling
NAR 1 No, Yes 2000 [-0.75, 0.75]

NARX 8 Yes, No 2000 [-0.75, 0.75]
NARX-Lin 11, 1 No, No, No 2000 [-0.75, 0.75]
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Table 2: Mean of the MAPE %, MdAPE % and standard deviation of the residuals for all forecasting methods.

Method
Univariate Multivariate

Näıve AR NAR MA SES ARIMA ARX NARX NARX-Lin
MAPE % 47.05 38.20 34.82 36.28 34.43 34.50 26.63 27.61 26.97

MdAPE % 35.46 25.41 23.53 26.50 23.16 22.96 17.35 17.62 17.18

St. Dev. 3183.67 2562.06 2175.20 2555.98 2285.67 2269.31 1880.92 1922.75 1888.70

Lowest figure in each row is in boldface.
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Table 3: Friedman and Nemenyi tests results.

Metric Friedman p-value
Nemenyi Mean Rank*

Näıve AR NAR MA SES ARIMA ARX NARX NARX-Lin
MAPE % 0.000 7.88 6.21 5.14 6.47 5.49 5.44 2.56 3.09 2.72

MdAPE % 0.000 7.76 5.84 5.35 6.52 5.30 5.12 3.23 2.88 3.00
St. Dev. 0.000 8.40 6.63 4.37 7.30 5.60 5.33 2.28 2.84 2.29

*Lowest mean rank is better; Critical distance for Nemenyi test are 2.12, 1.83 and 1.69 for 1%, 5% and
10% significance level respectively.
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Table 4: Encompassing tests results.

p-value
Method II

Näıve AR NAR MA SES ARIMA ARX NARX NARX-Lin

M
et
h
o
d
I

Näıve - 0.001 0.004 0.155 0.314 0.027 0.043 0.267 0.116

AR 0.000 - 0.000 0.000 0.071 0.112 0.864 0.610 0.776

NAR 0.000 0.000 - 0.000 0.005 0.000 0.045 0.490 0.190

MA 0.000 0.000 0.000 - 0.545 0.000 0.021 0.145 0.062

SES 0.000 0.000 0.000 0.000 - 0.000 0.643 0.704 0.374

ARIMA 0.000 0.000 0.000 0.000 0.000 - 0.729 0.721 0.930

ARX 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.002
NARX 0.000 0.000 0.000 0.000 0.000 0.000 0.269 - 0.483

NARX-Lin 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 -

The p-value shows whether method I contributes significantly to method II. Insignificant contributions at
5% level are shown in boldface.
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