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It is well known that large Hubble-induced supergravity corrections to the inflaton field can ruin the

flatness of the potential, thus creating a tension between slow-roll inflation and supergravity. In this paper

we show that it is possible to obtain a cosmologically flat direction, embedded within the minimal

supersymmetric standard model, despite very large super-Hubble corrections. As an illustration, we show

that a flat direction which is lifted by an n ¼ 6 operator matches the current cosmic microwave

background data for a wide range of the Hubble parameter, 105 GeV & Hinf & 108:5 GeV. Our approach

can be applied to any F-term inflationary model.
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I. INTRODUCTION

Inflation is perhaps the most popular paradigm for creat-
ing the observed initial perturbations in the early universe
[1]. A typical inflationary potential requires a flat direction
along which slow-roll inflation can take place. However
there are a number of effects beyond the standard model
which can lift the flatness of the potential at energies below
the Planck scale; for a review on inflation, see [2]. One
such prominent effect is due to gravity, especially within a
supersymmetric model of inflation, known as Hubble-
induced supergravity (SUGRA) corrections [3–7]. These
corrections are known for spoiling the flatness of the
potential and therefore the success of F-term models
within supersymmetry, for instance hybrid models [8];
for reviews, see [2,9]. (This SUGRA ‘‘�-problem’’ has
also been addressed within the paradigm of warm inflation
[10].)

The inflaton potential generically obtains large correc-
tions from a minimal choice of the Kähler potential,
Kð�y�Þ ¼ �y�, where � is the inflaton field. This can
spoil slow-roll and prematurely end inflation. The source
of this correction can arise from a large vacuum energy
density present in the early universe. It is well known that
besides the inflaton energy density there are many sources
which contribute to the total energy density [2].

In this paper, we will show that if inflation is driven near
a point of inflection in the potential [11–15] it is possible to
tame these SUGRA corrections within F-term inflation,
without invoking any symmetry or ad-hoc choice of Kähler
potential. Wewill illustrate this by considering a bottom-up
approach, in an effective field theory of a gauge-invariant
flat direction of minimal supersymmetric standard model
(MSSM) which are also lifted by nonrenormalizable op-
erators. Within the MSSM there are many such D-flat
directions—e.g., [7,16], for a review see [17]. Although
we consider a particular model of inflation within the

MSSM, our analysis can be followed for other supergravity
models of inflation.

II. SUPERGRAVITY CORRECTIONS

From a low-energy point of view the flat directions of
the MSSM are lifted by the F-term of the superpotential.
Without loss of generality, let us consider one such D-flat
direction lifted by a nonrenormalizable superpotential
term1

W ¼ �
�n

Mn�3
P

; (1)

where � is flat direction superfield, ��Oð1Þ, and MP ¼
2:4� 1018 GeV. For the rest of the paper we will set
� ¼ 1, because rescaling � simply shifts the vacuum ex-
pectation value of the flat direction, which is perfectly
acceptable as long as � is below MP. The � field obtains
a soft SUSY-breaking mass term m� �Oð100 GeVÞ.
Together with the nonrenormalizable operator, this gives
a potential for � which is determined by n and m�.

In addition, there are many possible contributions to the
vacuum energy. It is conceivable that at high energies the
universe is dominated by large cosmological constant aris-
ing from a string theory landscape [18]. Our own patch of
the universe could be locked in a false vacuum within an
MSSM landscape [19,20], or there could be hidden sector
contributions [21,22], or there could be a combination of
these effects. For simplicity we may attribute such a vac-
uum energy to a hidden sector. A hybrid model of inflation
[23] also provides a source of vacuum energy density
during inflation. For the purpose of illustration, let us

1For example � could be udd, or LLe, where u, d correspond
to the right-handed squarks, and L, e correspond to the left
handed slepton and right-handed selectron. With R-parity invari-
ant MSSM, both udd and LLe are lifted by dimension 6 operators
[17].
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consider a simple example of the hidden sector superpo-
tential,

W ¼ M2I;

where M is some high scale which dictates the initial
vacuum energy density, and I is the superfield. One could
also consider:

W ¼ �ðI2 �M2Þ:
Our conclusions remain unchanged and do not depend on
what sources the vacuum energy.2

The total Kähler potential can be of the form [6,7]:

K ¼ IyI þ�y�þ �K; (2)

where the nonminimal term �K can be any of these func-
tional forms:

�K¼fð�y�;IyIÞ; fðIy��Þ; fðIyIy��Þ; fðI�y�Þ
(3)

(see also [24]), though one could also concoct more
complicated scenarios. We will always treat the fields I,
� � MP, and we always assume VðIÞ to dominate over
Vð�Þ. The higher order corrections to the Kähler potential
are extremely hard to compute. It has been done within a
string theory setup [25] but only in very special circum-
stances, and not for MSSM fields. Therefore, we account
for the uncertainty arising from such corrections by intro-
ducing a simple phenomenological coefficient, as we shall
discuss below.

From the low-energy perspective, at the lowest order the
effective potential for a � field will have only one inter-
mediate scale, which will be determined by the Hubble
parameter. SinceH � m� �Oð100 GeVÞ, the potential is
(for the derivation, see [6,7,17])

Vð�Þ ¼ Vc þ cHH
2

2
j�j2 � aHH

nMn�3
P

�n þ j�j2ðn�1Þ

M2ðn�3Þ
P

; (4)

where Vc � 3H2M2
P, and the second term is the celebrated

Hubble-induced mass correction to the inflaton potential
[3,6,7]. The coefficient cH depends on the exact nature
of the Kähler potential and it can also absorb the higher
order corrections [6]. This term ruins the flatness, as
m2

� � cHH
2. For large cH �Oð1Þ, the potential is V �

3H2M2
P þH2�2 þ . . . , which leads to the slow-roll pa-

rameter � ¼ M2
PV

00=V ¼ cH �Oð1Þ, and therefore ena-
bles the field to roll fast, without allowing sufficient time
for the universe to inflate. The third term is the Hubble-
induced A-term, where the coefficient aH is dimensionless
and of order �cH.

The form of Eq. (4) differs from the original MSSM
inflation models discussed in Refs. [11,12,15,26]. In these

models it was assumed that Vc ¼ 0, and the soft-
supersymmetry breaking mass of the MSSM inflaton was
bigger than the Hubble expansion rate during inflation,
i.e. m� � 100–1000 GeV � Hinf . Therefore the Hubble-

induced SUGRA corrections are small in these models, as
was shown explicitly in Ref. [11]. However, they suffer
from a different problem of fine-tuning between the soft
SUSY-breaking terms [11,21,22]. In the current paper, we
have an additional source of vacuum energy density as
discussed above, so this condition is not satisfied. As
shown in [14], such a large vacuum energy density can
ameliorate the fine-tuning problem faced by the original
models of MSSM inflation. However, that paper did not
consider the effect of supergravity corrections, as we do
here.

III. INFLECTION-POINT INFLATION

In this paper we make the observation that in fact there is
a range of field values for which such a potential can be
sufficiently flat for inflation to occur. In general such a
potential admits a point of inflection which was first ana-
lyzed in Refs. [11,12]. The condition for this inflection
point to be suitable for inflation is a2H � 8ðn� 1ÞcH. We
characterize the required fine-tuning by the quantity �
defined as

a2H
8ðn� 1ÞcH

¼ 1� ðn� 2Þ2
4

�2: (5)

When j�j is small, a point of inflection �0 exists such that
V00ð�0Þ ¼ 0, with

�0 ¼
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cH

2ðn� 1Þ
s

HMn�3
P

1
A1=ðn�2Þ

: (6)

In order to simplify our analysis of the motion of � in the
vicinity of the inflection point, we Taylor expand the
potential about the point of inflection �0

Vð�Þ¼V0þ�ð���0Þþ�

6
ð���0Þ3

þ �

24
ð���0Þ4þ . . . ; (7)

where the following relationships hold [13–15]:

V0 ¼ Vc þ ðn� 2Þ2
2nðn� 1Þ cHH

2�2
0; (8)

� ¼ ðn� 2Þ2
4

�2cHH
2�0 þOð�4Þ; (9)

� ¼ 2ðn� 2Þ2 cHH
2

�0

; (10)2The source of large vacuum energy density can also arise
within MSSM as shown in Ref. [20].
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� ¼ 6ðn� 2Þ3 cHH
2

�2
0

; (11)

and Vc ¼ 3H2M2
P as discussed above.3

As can be seen, higher order derivatives fall off as
powers of ��1

0 and so the series can safely be truncated

at this point. However, for the parameter values considered
in this paper, the fourth-order term �ð���0Þ4=24,
although small, is not always negligible and hence our
analysis differs slightly to that followed earlier in Ref. [14].

The slow-roll parameters are defined by 	 � ðM2
P=2Þ�ðV 0=VÞ2; � � M2

PðV 00=VÞ, and from the form of the poten-
tial in Eq. (7) we may write these explicitly as

	ð�Þ ¼ M2
P

2V2
0

�
�þ �

2
ð���0Þ2

�
2ð1þ�	Þ2 (12)

�ð�Þ ¼ ��M2
P

V0

ð�0 ��Þð1þ ��Þ; (13)

where �	 and �� are small quantities defined as

�	 ¼ �ð���0Þ3
6ð�þ �

2 ð���0Þ2Þ
; �� ¼ �ð���0Þ

2�
: (14)

If the perturbations relevant to the cosmic microwave
background (CMB) spectrum observed today were gener-
ated at a field value� ¼ �CMB, the amplitude of the power
spectrum and the scalar spectral index are given by:

P R ¼ 1

24
2M4
P

V0

	ð�CMBÞ (15)

ns ¼ 1þ 2�ð�CMBÞ; (16)

where we have used the fact that 	 � j�j when inflation
occurs about an inflection point. Now we use these ex-
pressions to compare this model to WMAP data.

IV. COMPARISON TOWMAP DATA

The WMAP 7-year data suggest a power spectrum with
P R ¼ ð2:43� 0:11Þ � 10�9 at the pivot scale kpivot ¼
0:002 Mpc�1, and a spectral index of ns¼0:967�0:014
for models with no ‘‘running’’ of the spectral index [1].
Given these constraints Eqs. (15) and (16) may be inverted
to obtain the values 	best and �best that will produce the
required best-fit power spectrum, and the range of 	 and �
values that lie within the 95% confidence limits.

Having obtained the values of 	best and �best, one can
then in principle invert Eqs. (12) and (13) to solve for the
field value �CMB and the fine-tuning parameter � [or,

equivalently, � calculated using Eq. (9)] for which these
values are obtained [14]. However in this instance this
procedure is complicated by the presence of the terms �	

and ��, so we use an iterative bootstrapping procedure, as

follows.
The zeroth-order approximation is ��;0 � �	;0 � 0, so

that Eq. (13) can be solved for �CMB,

�CMB;0 ¼ �0 � V0j�bestj
�M2

P

: (17)

Defining ��CMB;0 � ð�CMB;0 ��0Þ, we obtain the

zeroth-order approximation for �,

�CMB;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2	best

p
V0

MP

� �

2
��2

CMB;0: (18)

Given the ith order approximation, we can move to
(iþ 1)th order using the following equations:

�	;iþ1 ¼
���3

CMB;i

6ð�CMB;i þ �
2 ��

2
CMB;iÞ

; (19)

��;iþ1 ¼ ���CMB;i

2�
; (20)

�CMB;iþ1 ¼ �0 þ ��CMB;0

ð1þ��;iþ1Þ ; (21)

and

�CMB;iþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2	best

p
V0

MPð1þ �	;iþ1Þ �
���2

CMB;iþ1

2
: (22)

This iterative procedure can be continued to obtain the
values of �CMB and �CMB to any desired accuracy. For
our purposes, two iterations proved to be sufficient to
ensure that further refinement did not produce any notice-
able change in the results. Slow-roll ends at the field value
�e at which j�j � 1. This can be calculated to the same
order of accuracy as the other parameters,

�e;i ¼ �0 � V0

�M2
Pð1þ ��;iÞ

: (23)

Inflationary expansion itself will end within a fraction of
an e-fold after the field attains the value�e. The number of
e-folds of inflation produced as� rolls from�CMB to�e is

given by N ð�CMBÞ ¼
R�e

�CMB

Hd�
_�
, and can be approxi-

mated to the relevant order of accuracy by the numerical
integration of

N ð�CMBÞ ¼ V0

M2
P

Z �CMB;i

�e;i

ð1þ�	;iÞ�1d�

ð�CMB;i þ �
2 ��

2Þ : (24)

An upper bound on the maximum number of e-foldings
between the time when the observationally relevant per-
turbations were generated and the end of inflation can be

3Although we retain n in these expressions for generality, for
the numerical analysis in this paper we take n ¼ 6, which is the
case for the flat directions udd, LLe [15], and the flat direction
involving the MSSM Higgses HuHd [27]. The only renormaliz-
able inflaton candidate is given in [26].
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derived [14,28], under the assumption that the energy scale
of inflation is roughly constant during inflation (which is
valid as 	 � j�j � 1):

N 	 N pivot � 64:7þ ln

�
V1=4
0

MP

�
: (25)

At this point, one must ensure that the vacuum energy
density which generated the large cosmological constant
in the first place vanishes by the end of slow-roll inflation.
In the string landscape [18], or in the case of MSSM [20],
this can happen through bubble nucleation, provided the
rate of nucleation is such that �nucl � H. In the latter case
all the bubbles will belong to the MSSM vacuum—similar
to the first order phase transition in the electroweak sym-
metry breaking scenario. In the former case, one has to
make sure that the cosmological constant disappears in the
MSSM vacuum right at the end of inflation [29]. The
bubble collisions would generate inhomogeneities similar
to the electroweak first order phase transition—whose
imprints could be found in remnants of high frequency
gravitational waves [30]. One can as well envisage that
there could be a smooth transition of the vacuum energy
triggered by the other fields, or possibly by the inflaton
itself, similar to the case of hybrid inflation [8,23], and as
discussed in [13,14,31]. In either scenario the predictions
for the initial seed perturbations for the large scale struc-
tures would not be affected.

The time scale for the transfer of energy from � to the
radiation and the MSSM relativistic species can be com-
puted exactly as in [32]. This happens within one Hubble
time and thus the inequality in Eq. (25) is saturated. This
provides a constraint on the model: the values obtained for
�CMB and �CMB (or �CMB) from the WMAP7 power
spectrum constraints, will only allow N ð�CMBÞ �
N pivot for certain combinations of the free parameters

cH and H.
In Fig. 1, we plot the contour of allowed values of cH

and H for which inflation driven by the Hubble-induced
corrections can produce a power spectrum of density
perturbations consistent with the WMAP7 results,
while simultaneously satisfying the e-fold constraint
N ð�CMBÞ � N pivot to within an uncertainty of �1

e-fold. Also plotted are contour lines of the parameter
j�CMBj, which provide an indication of the level of fine-
tuning required in Eq. (5). It can be seen that values of the
Hubble parameter H are allowed in the range 105 GeV &
H & 108:5 GeV, where the limits are set simply by the
range of values of cH that we chose to consider. AsOð1Þ 	
cH 	 Oð103Þ, it is seen that the coefficient cH can take on
large values cH � Oð1Þ without spoiling inflation. This is
the main highlight of our paper. Further note that for
cH �Oð1Þ, the required fine-tuning between cH and aH
is less severe, �� 10�2. Interestingly this tuning arises
only during inflation, but will go away at low energies

where the predictions for squarks and sleptons will be
made at LHC.

V. DISCUSSION AND CONCLUSION

A curious reader might wonder what happens if the
vacuum energy were made to vanish—as can be arranged
in SUGRA. A very similar plot is obtained when the
cosmological constant Vc ¼ 0 in Eq. (4), while keeping
the Hubble-induced mass and the A-term. The parameter
space for this case is quite similar to that originally
considered in Refs. [11,12], where the SUGRA corrections
are negligible by virtue of m� � H during inflation.

Our numerical findings suggest that we can satisfy the
WMAP 7-year constraints for: cH ¼ Oð1� 104Þ and
H� 1–103 GeV.
To summarize, we have provided a simple alternative

solution to the SUGRA-� problem which plagues F-term
models of inflation. We show that in this case there is no
need to make Kähler corrections small in order to make the
potential flat enough for inflation. Instead, from the low-
energy point of view it is always possible to find a point of
inflection with a vacuum expectation value below the
Planck scale, and a region of field values where the poten-
tial is sufficiently flat for successful slow-roll inflation,
even in the presence of large Kähler corrections. As an
offshoot, we also find that the SUGRA corrections can
greatly ameliorate the original fine-tuning problem of
MSSM inflation [11,15].
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FIG. 1 (color online). Regions of parameter space for the
potential in Eq. (4) that satisfy the WMAP 7-year constraints
on the amplitude and spectral index of the power spectrum and
also match the e-fold constraint. We minimize jN �N pivotj
over the range of � allowed by the 95% C.L. constraints on
PR and ns. The shaded contour shows the region for which
ðjN �N pivotjÞmin 	 1. Contour lines of j�CMBj are shown in

black, for the values of j�CMBj indicated. We have taken n ¼ 6.
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