Lancaster EPrints

Tracking differential evolution algorithms:an adaptive approach through multinomial distribution tracking with exponential forgetting

Epitropakis, Michael and Tasoulis, Dimitrios and Pavlidis, Nicos and Plagianakos, Vassilis P. and Vrahatis, Michael N. (2012) Tracking differential evolution algorithms:an adaptive approach through multinomial distribution tracking with exponential forgetting. In: Artificial Intelligence: Theories and Applications. Lecture Notes in Computer Science . Springer Verlag, Berlin, pp. 214-222. ISBN 978-3-642-30447-7

Full text not available from this repository.

Abstract

Several Differential Evolution variants with modified search dynamics have been recently proposed, to improve the performance of the method. This work borrows ideas from adaptive filter theory to develop an “online” algorithmic adaptation framework. The proposed framework is based on tracking the parameters of a multinomial distribution to reflect changes in the evolutionary process. As such, we design a multinomial distribution tracker to capture the successful evolution movements of three Differential Evolution algorithms, in an attempt to aggregate their characteristics and their search dynamics. Experimental results on ten benchmark functions and comparisons with five state-of-the-art algorithms indicate that the proposed framework is competitive and very promising.

Item Type: Contribution in Book/Report/Proceedings
Subjects: H Social Sciences > HB Economic Theory
Departments: Lancaster University Management School > Management Science
ID Code: 55866
Deposited By: ep_importer_pure
Deposited On: 13 Jul 2012 14:30
Refereed?: No
Published?: Published
Last Modified: 10 Apr 2014 01:15
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/55866

Actions (login required)

View Item