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Abstract

Background: Ubiquitin-dependent protein degradation is a critical step in key cell cycle events, such as
metaphase-anaphase transition and mitotic exit. The anaphase promoting complex/cyclosome (APC/C) plays a
pivotal role in these transitions by recognizing and marking regulatory proteins for proteasomal degradation. Its
overall structure and function has been elucidated mostly in yeasts and mammalian cell lines. The APC/C is,
however, a multisubunit assembly with at least 13 subunits and their function and interaction within the complex
is still relatively uncharacterized, particularly in metazoan systems. Here, lemming (lmg) mutants were used to study
the APC/C subunit, Apc11, and its interaction partners in Drosophila melanogaster.

Results: The lmg gene was initially identified through a pharate adult lethal P element insertion mutation expressing
developmental abnormalities and widespread apoptosis in larval imaginal discs and pupal abdominal histoblasts. Larval
neuroblasts were observed to arrest mitosis in a metaphase-like state with highly condensed, scattered chromosomes
and frequent polyploidy. These neuroblasts contain high levels of both cyclin A and cyclin B. The lmg gene was cloned
by virtue of the lmg03424 P element insertion which is located in the 5’ untranslated region. The lemming locus is
transcribed to give a 2.0 kb mRNA that contains two ORFs, lmgA and lmgB. The lmgA ORF codes for a putative protein
with more than 80% sequence homology to the APC11 subunit of the human APC/C. The 85 amino acid protein also
contains a RING-finger motif characteristic of known APC11 subunits. The lmgA ORF alone was sufficient to rescue the
lethal and mitotic phenotypes of the lmg138 null allele and to complement the temperature sensitive lethal phenotype
of the APC11-myc9 budding yeast mutant. The LmgA protein interacts with Mr/Apc2, and they together form a binding
site for Vihar, the E2-C type ubiquitin conjugating enzyme. Despite being conserved among Drosophila species, the
LmgB protein is not required for viability or fertility.

Conclusions: Our work provides insight into the subunit structure of the Drosophila APC/C with implications for its
function. Based on the presented data, we suggest that the Lmg/Apc11 subunit recruits the E2-C type ubiquitin
conjugating enzyme, Vihar, to the APC/C together with Mr/Apc2 by forming a ternary complex.

Background
Chromosome separation at anaphase onset and exit from
mitosis are regulated by ubiquitylation and subsequent
degradation of key regulatory proteins, the securins and
mitotic cyclins [1]. The ubiquitylation of these proteins is
catalyzed by a cascade of E1, E2 and E3 enzymes, the

crucial factor being the cell cycle regulated E3 ubiquitin
protein ligase, the anaphase-promoting complex or cyclo-
some (APC/C) that provides the platform for the ubiqui-
tylation reaction and determines substrate specificity.
The APC/C contains at least 13 different subunits in

the budding yeast, Saccharomyces cerevisiae, and most of
these subunits appear to be conserved in all eukaryotes
with the exception of Apc9 to which no homologs have
been identified in multicellular eukaryotes. In contrast,* Correspondence: deakp@bio.u-szeged.hu
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the Apc7 and Apc16 homologs have been identified in
multicellular, but not in unicellular, eukaryotes [2,3].
An architectural analysis of the budding yeast APC/C

revealed two subcomplexes that are held together by the
largest subunit, Apc1 [4]. Apc1, together with subunits
Apc4 and Apc5 serves as a scaffold for the whole com-
plex. One of the subcomplexes connects through the
Apc4 and Apc5 subunits and contains three subunits
(Cdc16, Cdc23 and Cdc27), with tandem arrays of multi-
ple tetratricopeptide repeats (TPR). Since the TPR motifs
are generally involved in protein-protein interactions,
they are thought to contribute to substrate binding. The
other APC/C subcomplex contains Apc2, Apc10/Doc1
and Apc11 subunits, and connects to Apc1 through Apc2
[4]. It has been proposed that in yeast and in human
cells, either the RING finger Apc11 subunit alone [5,6],
or together with the cullin homolog Apc2 defines the
minimal ubiquitin ligase activity of the APC/C, depend-
ing on the type of ubiquitin conjugating enzyme (E2)
used in these reactions [7]. The gene encoding Apc11 has
been cloned from the nematode, Caenorhabditis elegans.
RNAi analysis in this species has shown that in the
absence of APC11, zygotes arrested before the onset of
cleavage. The absence of polar bodies in these zygotes
indicates arrest during the first meiotic division of the
oocyte [8]. In Arabidopsis thaliana APC11 interacts with
APC2 and form a heterodimer complex [9]. In HeLa cells
hydrogen peroxide induces zinc release from APC11, and
impairs the interaction between APC11 and the E2
enzyme Ubc4 and therefore inhibits the ubiquitin ligase
activity of APC11 [10]. The functions of other subunits
remain obscure, though some of them, like Apc13 and
Cdc26 were implicated in stabilizing the complex [11].
To understand the role of APC/C subunits in Droso-

phila, we previously undertook detailed genetic and mole-
cular analyses of the genes coding for several subunits. We
have shown that the Mákos/Cdc27, Cdc16 and Cdc23 TPR
subunits and the Apc10/DOC1 subunit were essential and
required to mediate progression through metaphase. The
fourth TPR subunit, Apc7 is a nonessential component of
the Drosophila APC/C with unknown function [12-14]. In
this paper we present mutational and molecular analysis of
the Drosophila lemming (lmg) gene and show that it has an
unusual dicistronic mRNA. The upstream open reading
frame (ORF), lmgA is an essential gene that encodes a
functional homologue of the S. cerevisiae small APC/C
subunit, Apc11. The downstream ORF, lmgB is dispensable
without causing any detectable phenotype. Phenotypic ana-
lysis of hypomorphic and null lmg alleles revealed prometa-
phase cell cycle arrest and apoptosis, consistent with loss of
APC/C function. Interacting partners of Lmg/Apc11 were
also investigated by yeast two-hybrid analysis and their
possible function will be discussed.

Results
Disruption of lemming results in pupal lethality and
widespread apoptosis
The l(2)03424 mutant stock was originally identified dur-
ing a screen of the Berkeley Drosophila Genome Project
(BDGP) collection of P element insertion lines for pha-
rate adult lethal mutants with defective abdomens. l(2)
03424 homozygotes die at pharate adult stage P15(i)
(Table 1) [15] and additionally have reduced eyes and
wings, as well as bristle defects. Acridine orange and
TUNEL staining of imaginal discs showed that a likely
cause of these defects was apoptosis of imaginal cells
(data not shown). The gene containing the P element
insertion was re-named lemming (lmg) and its first
mutant allele was designated lmg03424. The P element
was confirmed as the cause of the lmg03424 mutation, as
precise excisions reverted to a wild type phenotype. A
stronger allele, lmgJ023 was established by imprecise exci-
sion of the P element by crossing to a Δ2-3 transposase-
source strain. Most of the lmgJ023 homozygotes die as P5
(i) stage pupae (Table 1). Orcein and acridine orange
staining of larval brains and imaginal discs revealed wide-
spread apoptosis (Figure 1). In addition, a non-comple-
menting P element insertion allele, lmgEY11317, identified
by the BDGP, showed P4(ii) lethality, and the imprecise
excision of its P element yielded the strongest lemming
allele, lmg138, with a lethal phase in P4(i) (Table 1). The
lmg138 mutation proved to represent a small deletion
removing almost the entire coding region of the gene
(Figure 2A); therefore it is considered a null allele of lem-
ming. Dissected tissues showed that the optic lobes and
imaginal discs of lmg138 homozygotes were substantially
reduced in size compared to wild type (Figure 1F).

lemming mutants show metaphase-like delay with
overcondensed chromosomes
The apoptotic phenotype of lmg mutants is restricted to
mitotically active cells suggesting that it may be caused
by mitotic defects. We examined orcein-stained brain
squash preparations for mitotic abnormalities from lmg
mutant third instar larvae. Examples of mitotic figures in
lmg neuroblasts are shown in Figure 3. Chromosomes
appeared normal during prophase, but overcondensation
was readily apparent at prometaphase and/or metaphase
(Figure 3D-K). The proportion of cells in mitosis was
much higher in the mutant preparations compared to
wild type, most of the dividing cells being in a prometa-
phase- or metaphase-like stage. Cells in anaphase were
rare and most of them appeared abnormal with highly
condensed (Figure 3N and 3O), lagging chromosomes
(Figure 3L and 3M). Polyploid cells with overcondensed
chromosomes were frequently observed (~ in 30% of
cells in mitosis; Figure 3G, K and 3O).
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Larval brains of lmg03424, lmgEY11317 and lmgJ023 had a
high mitotic index (4.1 for lmg03424, 5.8 for lmgEY11317 and
4.4 for lmgJ023, n = 135, 170 and 167 respectively), com-
pared to w1118 (1.6), (Table 1). The high mitotic index and
the extent of chromosome overcondensation are indicative
of metaphase arrest. This is further supported by the high
metaphase to anaphase ratios (4.5 for lmg03424, 6.2 for
lmgEY11317 and 6.3 for lmgJ023). It should be mentioned
that though anaphase still occurs at a lower rate in lmg
mutants, true metaphase figures with chromosomes fully
aligned to the metaphase plate were never observed, in
spite of the fact, that such an alignment could be identified
in wild type preparations in about 4-6% of mitotic cells.
Instead, the cells persisted in a prometaphase- or meta-
phase-like state with scattered, highly condensed
chromosomes.

lemming mutants accumulate cyclin A and B
Mitotic cyclins are one of the prime APC/C substrates.
The APC/C targets the mitotic cyclins for degradation in
late mitosis, thereby permitting mitotic exit [16]. We
have shown previously, that Apc3/Cdc27, Apc6/Cdc16
and Apc10 mutants show elevated levels of cyclin A and
cyclin B [12-14]. Therefore we tested if this function was
affected in lmg mutants by monitoring cyclin levels in
wild type and lmg mutant neuroblasts in immunostaining
experiments with polyclonal antibodies against cyclin A
and cyclin B. In wild type, a high level of cyclin A could

be detected in prophase and early prometaphase cells
(Figure 4A and 4D), identifiable on the basis of weaker
and somewhat diffuse DNA signal, but it disappeared
during metaphase (Figure 4B and 4E). Cyclin B was
highly visible in prometaphase (Figure 5A and 5D), it
started to disappear in metaphase (Figure 5B and 5E),
and was undetectable in anaphase cells. Only 14% and
17% of cells with bright DNA staining retained cyclin A
(n = 29) and cyclin B (n = 24) signals respectively. Both
antisera gave strong staining in lmg mutant preparations
as well. However, in contrast to wild type, more than 80%
of lmgJ023 neuroblasts that showed intense DNA staining
around the middle of the spindle, indicating arrest in a
metaphase-like state, also showed visible accumulation of
both cyclin A (n = 17; Figure 4C and 4F) and cyclin B
(n = 20; Figure 5C and 5F), most abundantly around the
mitotic spindle. This phenotype was similar in all lmg
mutants, and indicates that the Lmg protein is required
for cyclin A and cyclin B degradation.

The lemming locus is dicistronic and its upstream ORF,
lmgA, codes for the Apc11 subunit of the Drosophila
APC/C
The P element insertions of lmg03424 and lmgEY11317

mutants were both mapped to the left arm of chromo-
some 2, to the cytogenetic location 29D4-5. Remobiliza-
tion of these insertions resulted in frequent reversion of
the mutant phenotype to wild type, suggesting that these

Table 1 Quantitative analysis of lethal and mitotic phenotypes of lmg mutants

Genotype Lethal phase Preparations per fields Mitotic index M:A ratio Polyploid % Apoptotic index

A

w11118 Viable 7/183 1.6 ± 0.2 2.9 ± 0.3 0 0.5 ± 0.1

lmg03424 Pharate adult P15(i) 6/135 4.1 ± 0.8 4.5 ± 0.7 19.6 ± 5.6 1.4 ± 0.3

lmgJ023 Pupal stage P5(i) 7/167 4.4 ± 0.9 6.3 ± 0.1 29.1 ± 7.4 1.2 ± 0.2

lmgEY11317 Prepupal stage P4(ii) 6/170 5.8 ± 0.7 6.2 ± 0.4 26.6 ± 3.1 1.5 ± 0.4

lmg138 Prepupal stage P4(i) 10/194 5.9 ± 0.5 - 50.7 ± 7.9 1.8 ± 0.5

lmg138;lmgA- pUAST/daGAL4 Viable 6/180 1.5 ± 0.2 3 ± 0.6 0 0.5 ± 0.1

lmg138;lmgA + B- pUAST/daGAL4 Viable 4/100 1.4 ± 0.2 3.1 ± 0.3 0 0.6 ± 0.2

lmg138;lmgB- pUAST/daGAL4 Prepupal stage P4(i) 5/100 4.9 ± 0.9 - 43.7 ± 6.2 1.7 ± 0.2

B

mr2 Female sterile 6/174 1.4 ± 0.1 3.3 ± 0.4 0 1.2 ± 0.3

lmg03424, mr2 Prepupal stage P4(ii) 6/106 4.5 ± 0.7 4.4 ± 0.3 31.8 ± 3.9 1.3 ± 0.4

C

viharS110501 Pharate adult P15(i) 7/196 2.1 ± 0.3 3.7 ± 0.6 4.2 ± 0.4 0.9 ± 0.3

lmg03424, viharS110501 Bubble prepupa 6/116 6.1 ± 0.6 3.9 ± 0.7 44.3 ± 8.4 1.8 ± 0.3

stage P3

mr2; viharS110501 Early L3 larvae n.d. n.d. n.d. n.d. n.d.

mr2; viharKG02013 Early L3 larvae n.d. n.d. n.d. n.d. n.d.

The number of preparations and the total number of optical fields analyzed are given. Mitotic index is given as the average number of mitotic cells in an optical
field (± sd). Polyploid% represents the percentage of mitotic cells (± sd) with higher than two sets of chromosomes. Apoptotic index is given as the mean
number of apoptotic cells in a microscope field (± sd).
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insertions were directly responsible for disrupting gene
function. Genomic DNA flanking the lmg03424 insertion
was recovered by plasmid rescue and used to probe larval
cDNA libraries. Several overlapping clones were identified
and their nucleotide sequences determined. BLAST
searches of the Berkeley Drosophila Genome Project
(BDGP) collection of ESTs revealed a number of embryo-
nic cDNA clones which shared nucleotide sequence with
the putative lmg cDNAs. One of these (LD20119) was
completely sequenced and comparison with genomic
sequence showed that the lmg locus is intronless. The 2.0
kb transcript contains two ORFs separated by 92 bases
(Figure 2A). Sequence data of 423 cDNA clones for this
locus are reported in FlyBase. They identify two cDNA
classes based on size, a 2.0 and a 2.9 kb, both of which
appear to be dicistronic. The 5’-ends of 230 cDNA clones
identifies the transcription start site at 192 (± 4) bps
upstream of the ORF1 start codon [17]. To better charac-
terize the transcription profile of the lemming locus,

RACE analyses were performed, using total RNA isolated
from embryos and L3 larvae. Regardless of RNA source,
the 5’-end of the transcript (using the ORF1 inner primer)
could be placed at 180 (± 15) bases upstream of the ORF1
start. However, 5’-RACE analysis with the 5’ ORF2 inner
primer on embryonic RNA revealed two different 5’-ends:
one extending 107 bases upstream of the ORF2 translation
start site and the other one matching the 5’-end of ORF1
(Figure 2A). Similar 5’-RACE analysis (with the 5’ ORF2
outer primer) on L3 larval RNA resulted in only one
mRNA 5’-end that matched the 5’-end of embryonic
mRNA upstream of ORF1, thus representing dicistronic
mRNA. The 3’ RACE experiments using ORF1 primers
yielded an mRNA end located in the intercistronic region
56 bases downstream of the stop codon of ORF1. The
determination of the 3’-end using ORF2 primers was
ambiguous by 3’ RACE, but sequencing the 3’-end of the
cDNA clone identified in the yeast two hybrid experiments
(see later) revealed the 3’-end at 1231 bases downstream of

Figure 1 Loss of lmg leads to elevated apoptosis in larval brain and imaginal discs. Orcein-stained preparations of wild-type (A) and
lmg138 (D) larval brain squashes. lmg mutants show small, rounded cells with uneven nuclear staining. Acridine Orange staining also highlights
the high incidence of dying cells in lmgJ023 mutant wing imaginal disc (E) and lmg138 larval brain (F) relative to wild-type tissues (B and C). Green
dots indicate apoptosis. The lmg138 null mutant (F) has reduced brain and optic lobes compared to wild-type (C).
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Figure 2 Schematic representation of the lmg locus. The molecular map of the lmg locus represents the ~2.0 kb cDNA sequence available in
FlyBase (A). It indicates the two ORFs (rectangles), transcription start sites (TSS1 and 2), P element insertion sites (triangle), the extension of
deletion in the lmgJ023 and lmg138 alleles and the 3’-end of the monocistronic transcript identified by RACE. It also shows the relative location of
RACE primers used in this work. The primer pairs used for developmental RT-PCR experiments and their relative locations are also displayed (B).

Figure 3 Mitotic abnormalities of lmg alleles in orcein stained larval neuroblasts. Wild-type mitotic cells in prometaphase (A), metaphase (B)
and anaphase (C). Neuroblast cells from different lmg mutants show prometaphase- or metaphase-like arrest with overcondensed chromosomes
and polyploidy (D-K). Chromosome overcondensation could also be observed in anaphase figures (N and O), together with scattered chromosome
segregation (L and M). Many cells appear polyploid (G, K and O), and they invariantly have overcondensed chromosomes.
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Figure 4 Mitotic cyclinA is not degraded in lmg mutants. Images show cyclin A (red in A, B, C, monochromatic in D, E, F), and tubulin
(green in A, B, C, monochromatic in G, H, I) localizations as well as DNA staining (blue in A, B, C, monochromatic in J, K, L) in mitotic cells. In
wild-type cells (n = 29) the cyclin A staining is visible in prophase or prometaphase (A and D), but undetectable in metaphase cells (B and E). In
metaphase-like lmgJ023 cells (n = 17) cyclin A staining is intense (C and F).
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Figure 5 CyclinB is not degraded in lmg mutants. Colours are the same as in Figure 4. The level of Cyclin B is high in wild-type (n = 24)
prophase and prometaphase cells (A and D) and it starts to disappear at or after the onset of metaphase (B and E). Cyclin B staining is quite
pronounced in most of the lmgJ023 (C and F) cells (n = 20) arrested in metaphase.
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the stop codon closing ORF2. Based on this analysis, we
concluded that the lmg locus gives rise to a bona fide
dicistronic message and designated ORF1 and ORF2 as
lmgA and lmgB respectively. The presence of monocistro-
nic mRNAs could be explained by processing of the dicis-
tronic messages, although it is still possible that original
monocistronic mRNAs may be made.
The lmgA ORF encodes a small, putative polypeptide of

85 amino acids (~ 10 kDa), that contains a RING-finger
motif characteristic of known APC11 subunits, and shows
more than 80% sequence similarity with the APC11 subu-
nit of the human APC/C. The lmgB ORF (corresponding
to CG34441 in FlyBase) codes for a putative polypeptide
of 365 amino acids, with no apparent functional domains.
In a more detailed bioinformatic analysis of the lemming
locus, the evolutionary conservation of lmgA, the 92 bp
intercistronic sequence (ICS), lmgB and the 3’ untranslated
region (3’-UTR) of 12 Drosophilidae species were deter-
mined and compared. As Table 2 illustrates, the topology
of the locus is maintained in these species, but the conser-
vation of the different regions shows considerable varia-
tions. The amino acid sequence of LmgA shows the
highest conservation (96% at minimum), while LmgB
shows only 66% identity between the most widely diverged
species. Though the ICS region varies in length (92-165
bps), together with the 3’-UTR, they still demonstrate a
significant level of conservation among the Drosophila
species analysed. Although the LmgB protein sequence is
conserved in Drosophilidae, homologous sequences could
not be found in other species.

The developmental transcription pattern of lmgA and
lmgB is very similar
Dicistronic genes are often products of a duplication event
and related functionally. However, neither the nucleotide,

nor the amino acid sequence of ORF1 and ORF2 showed
any similarity. Nonetheless, the existence of mono- and
dicistronic mRNAs raised the possibility of coordinated
expression. To investigate this, total RNA was isolated
from isogenized w1118 embryos (0-12 hours), L1, L2, early
L3, late L3 larvae, early pupae, late pupae, males and
females. These samples were then used to analyze the
expression pattern of monocistronic and dicistronic mes-
sages by semi-quantitative RT-PCR, using lmgA, lmgB and
lmgAB (spanning the intercistronic region) specific primer
pairs (Figure 2B and Materials and Methods). As Figure
6A shows, the expression patterns of these transcripts are
very similar. In each case, lowest expression occurs in
embryos, followed by a significant increase in first instar
larvae. Low expression could be detected in second and
early third instar larvae, and then it intensifies in late third
instar larvae and early pupae. Late pupae show the highest
expression level for these transcripts that then stays steady
in male and female adults. This result implies that the
dicistronic message is the main product of lmg transcrip-
tion. If monocistronic lmgA or lmgB messages are present,
their expression profile does not differ significantly from
that of the dicistronic message.

The lmgB ORF is not efficiently translated
Translation usually starts at the AUG codon of the
upstream cistron, and it is suggested that translation of
the second cistron of a dicistronic mRNA is initiated at
an internal ribosome entry site (IRES) or by some kind
of reinitiating processes [18]. Our in silico sequence ana-
lysis did not identify predicted IRES sites in the intercis-
tronic region. In order to test the translation of the two
ORFs, the dicistronic cDNA was cloned into a Gateway
expression vector, in which a hemagglutinin (HA) tag
was inserted in frame to the 5’-end of lmgA, and a Flag

Table 2 Bioinformatic analysis of the lemming locus in Drosophilidae species

Species LmgA (aa%) 92 ICS(bp) % LmgB (aa%) 3’-UTR (bp%)

D. simulans 100 (92) 97 145 aa, 90
143 aa, 99

92

D. sechellia 100 (92) 100 98 96

D. yakuba 100 (83) 88 98 91

D. erecta 100 (83) 86 97 91

D. ananassae 98 (96) 53 84 67

D. pseudoobscura 98 (111) 41 77 58

D. persimilis 98 (111) 41 76 59

D. willistoni 97 (157) 28 69 47

D. mojavensis 97 (165) 33 67 47

D. virilis 96 (162) 31 66 47

D. grimshawi 97 (150) 36 67 46

aa% and bp% represent amino acid and nucleic acid sequence similarities in different regions of the lemming locus from 11 species compared to D.
melanogaster sequences.

ICS: intercistronic sequence; 3’-UTR: 3’-untranslated region
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tag was ligated to the 3’-end of lmgB. Schneider 2 (S2)
cells were transfected with this construct and, after pro-
pagation, total protein extract was prepared and ana-
lyzed by Western blots using anti-Flag and anti-HA
monoclonal antibodies. As Figure 6B illustrates, while
HA-tagged LmgA was produced, no LmgB-Flag protein
could be detected. Thus, while the expression pattern of
the dicistronic mRNA could be monitored throughout
development and it was expressed in S2 cells, the trans-
lation of the downstream lmgB ORF could not be
detected. However, it cannot be excluded that LmgB
might be produced below detection sensitivity. It is also
possible that by unfortunate coincidence, the LmgB-Flag
protein migrates with a lower electrophoretic mobility
than expected, resulting in comigration with the band
recognized by anti-Flag nonspecifically (Figure 6B).

Expression of lmgA alone rescues the lethal,
morphological and mitotic phenotypes of the lmg138

mutant
In order to determine if one or both ORFs were
required for essential lemming functions, transgenic
lines were established in a lmg138 mutant background
expressing either dicistronic (lmgAB) cDNA, or the
lmgA or lmgB ORFs alone under control of the yeast
transcription factor Gal4 [19]. The ability of these trans-
genes to rescue the lethal, morphological and mitotic
phenotypes of lmg138 was investigated. As Table 1
demonstrates, ubiquitous expression of the lmgAB or

lmgA transgenes by the da-Gal4 driver was sufficient to
rescue fully the lethal and mitotic phenotypes of lmg138,
and to restore the normal development of imaginal discs
and larval brain. In contrast, the ubiquitous expression
of lmgB rescued neither the lethal nor the mitotic
mutant phenotype in several independent transgenic
lines, despite the fact that its expression at mRNA level
could easily be detected by RT-PCR. These data demon-
strate that the developmental and mitotic defects
observed in lmg mutants reflect essential functions of
lmgA. On the other hand, lmgB appears to be dispensa-
ble without any detectable effect.

Heterologous expression of LmgA complements a S.
cerevisae apc11 mutant
Since the predicted LmgA protein showed a very high
degree of similarity to yeast and human Apc11 proteins,
we wanted to test if LmgA was able to function as an
Apc11 substitute in budding yeast cells defective in their
endogenous APC11 function. For this, we introduced a
lmgA expression construct under the control of the con-
stitutively active alcohol dehydrogenase promoter into
APC11-myc9 cells and tested for complementation of
their temperature sensitive proliferation defect [11]. As
Figure 7A and 7B show, APC11-myc9 cells grow well at
30°C but are unable to do so at 37°C, though the W303
control cells are quite capable of growing at the higher,
restrictive temperature (Figure 7B). The ability of
APC11-myc9 cells to grow at 37°C was restored

Figure 6 Expression pattern of different lmg gene products. Semi-quantitative RT-PCR was used to monitor the lmg-specific transcripts in
total RNA samples from animals at different developmental stages (A). Western blots of total protein extracts from S2 cells transfected with the
dicistronic lmgAB construct treated with anti-HA or anti- FLAG monoclonal antibodies (B). Even after overloading the anti-FLAG track, no FLAG-
tagged LmgB could be detected. The arrow indicates the predicted molecular weight of LmgB. Bands labeled with asterisks are polypeptides
nonspecifically recognized by anti-FLAG and anti-HA antibodies. Ctrl: Total protein extract from non-transfected cells treated with anti-FLAG or
anti-HA antibodies.
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following transformation with the pRS426-lmgA plas-
mid, which expresses LmgA constitutively. In parallel
experiments, the APC11-myc9 cells failed to grow at the
restrictive temperature when transformed with the
empty vector (pRS426), or with the pRS426-mks plasmid
expressing the Apc3 subunit of the Drosophila APC/C
(Figure 7B). This result proves that the LmgA protein
functionally complements the APC11 subunit in yeast
and it suggests that the function of the Apc11 homolo-
gues is evolutionarily conserved.

LmgA interacts with Apc2, and together, they bind Vihar
As it is known that the yeast and human APC2 protein
interacts with APC11 and together they form the

catalytic subcomplex of the APC/C [4], we examined if
the Drosophila proteins interacted similarly. In a yeast
two-hybrid (Y2H) assay, apc2-pBTM116 served as bait
to screen a Drosophila embryo cDNA library cloned
into the pACT2 vector (Clontech Laboratories, Inc.,
USA). Originally, this experiment served to identify
Apc2 interacting proteins. A strong interaction was
found with a clone that was purified and characterized.
Sequence analysis showed that it contains two tandem
ORFs in different frames matching the dicistronic
mRNA of the lemming gene. To identify the region of
the lmg cDNA required for apc2-pBTM116 interaction,
the two segments corresponding to lmgA and lmgB
were cloned into pGAD424 and examined in two-hybrid
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assays. Only LmgA showed strong interaction with
Apc2, even if the fusions to the activation and binding
domains were reversed (Figure 8A). A yeast two hybrid
screen was also performed to find interacting partners
for the hypothetical protein coded by lmgB. Using lmgB-
pBTM116 as bait, no interacting clone could be identi-
fied in the cDNA library mentioned above.
It has been shown that Ubc4 and E2-C type E2s bind

in vitro either to the Apc2 or Apc11 subunit of the cata-
lytic subcomplex [7]. However, genetic analysis of E2
mutants in yeast and Drosophila suggests that, in vivo,
the E2-C type enzymes are required for physiological
APC/C function [20,21]. There is only one E2-C enzyme
in Drosophila, encoded by the vihar gene [21]. Since the
binding partner of Vihar and the nature of its interac-
tion were not known, we used yeast two-hybrid assays
to test for physical interactions between Vihar and
either Apc2/Mr, or Apc11/LmgA. Though fusions of
vihar, Apc2/mr and Apc11/lmgA coding sequences were
made to all possible activation and binding domain
combinations, no interactions could be detected. A pos-
sible explanation of this result is that the Apc2/Mr and
Apc11/LmgA subunits jointly create a binding site for
Vihar, so the three proteins could form a ternary com-
plex. To assess this possibility, we used yeast three-
hybrid assays in which interactions between lmgA-
pBTM116, vihar-pGAD424 and the methionine-regu-
lated apc2-pRS416 (see Materials and Methods) were
analyzed. In this setting, interaction among these pro-
teins was clearly observed (Figure 8B and 8C), indicating
that both Apc2/Mr and Apc11/LmgA are required for
Vihar binding.

Discussion
The APC/C belongs to the cullin-RING family of multi-
subunit ubiquitin ligases. Previous studies of the bud-
ding yeast and human APC/C indicated that the cullin-
related Apc2 and the RING-finger-containing Apc11
subunits together form the minimal ubiquitin ligase
module [4,7]. We show in this paper that, in Drosophila
melanogaster, the Apc11 subunit is encoded by the
dicistronic lemming locus. The upstream ORF, lmgA,
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encodes a putative protein containing a RING-finger
motif characteristic of known APC11 subunits and
shows more than 80% sequence similarity with the
APC11 subunit of the human APC/C. Since the Apc11
subunit is proposed to play a role in the catalytic center
of the APC/C, mutations in lmg are expected to lead to
loss of APC function, and therefore to aberrant cell
cycle progression. The lmg mitotic phenotype presented
in this paper is consistent with the Lmg protein being a
subunit of the APC. The mitotic defects we observe in
lmg larval neuroblasts, including metaphase-like arrest,
chromosome overcondensation and polyploidy, in addi-
tion to widespread apoptosis of mitotically-active cells,
are very similar to those reported for loss of other subu-
nits of the Drosophila APC/C [12-14]. A role of LmgA
in the APC/C is further supported by the elevated levels
of cyclin A and B observed in lmg neuroblasts. Another
line of supporting evidence comes from the synergistic
genetic interaction between lmgA and mr/Apc2 and
lmgA and vihar (Table 1B and 1C) and from the physi-
cal interactions among these proteins, since it is known
that, in yeasts and vertebrates, these proteins form the
catalytic module of the APC/C. These data, together
with its ability to complement the mutant phenotype of
yeast Apc11-deficient cells support the designation of
lmgA as a true Apc11 orthologue.
The APC/C requires special E2 enzymes for activity

and has been demonstrated to function with Ubc4/5
and E2-C type E2 enzymes in vitro [22,23]. Whereas in
yeast and human cells the E2 enzymes bind to either
Apc2 or Apc11, our data suggest that in Drosophila,
both of these subunits are required for effective E2
binding. This could represent an architectural variation
in the catalytic subcomplex of different APC/C ligases.
The dicistronic nature of the lmg locus is a notable

but puzzling fact. Whereas the upstream lmgA ORF
encodes the Apc11 subunit of the Drosophila APC/C,
the existence and function of the predicted downstream
lmgB ORF product remains unknown. We could not
find any sequence or functional relationship between
lmgA and lmgB, though such relationships are character-
istic of many dicistronic genes [24]. Genomes of other
species from Drosophilidae (especially in the melanoga-
ster group) contain both these ORFs and the intercistro-
nic sequence in a similar arrangement (data not shown).
Moreover, the high evolutionary conservation of LmgA
and LmgB and significant conservation of both ICS and
3’-UTR suggest functional relevance. However, we found
that the putative LmgB is dispensable for the organism
and lacks known protein motifs. In addition to this, no
apparent LmgB interaction partners could be found in
yeast two hybrid screen and LmgB could not be effi-
ciently translated from the dicistronic mRNA in S2
cells. lmgA contains three in-frame AUG codons in

addition to its initiating AUG codon. It has been shown
for two Drosophila dicistronic transcripts, of the stoned
and snapin loci, that such in-frame AUG codons effec-
tively attenuate the translation of the second ORF [25].
However, the rationale for the dicistronic arrangement
of the lmgA and lmgB cistrons and the function of the
lmgB ORF remains obscure.
The mechanism by which loss of APC/C function

leads to apoptosis is unknown but it may be significant
that lmg mutant cells entered apoptosis directly, and
rapidly, from arrested cells, without a return to the
interphase state (data not shown). There is accumulating
evidence that mitosis and apoptosis share components
[26]. It has been suggested that apoptosis is a default
pathway and proteins such as survivin are required to
counteract this pathway during mitosis [27,28]. Cells
treated with drugs which alter microtubule dynamics,
such as paclitaxel (Taxol) also undergo mitotic arrest
and enter apoptosis rapidly, and directly, from mitosis
[29]. Since these drugs are thought to trigger the spindle
assembly checkpoint which in turn acts by inhibiting the
APC/C [30-32], it is possible that loss of APC/C activity
is responsible for triggering apoptosis. Inactivation of
the APC/C by cleavage of the CDC27 component by
caspases has also been shown to occur during apoptosis
triggered by Fas ligand in Jurkat cells, contributing to an
increase in Cdk activity [33]. There have been several
reports of increased Cdk activity during apoptosis
[34-36], suggesting that these enzymes form part of the
apoptotic pathway. Increased mitotic cyclin levels, and
Cdk activity, may therefore play a role in apoptosis trig-
gered by loss of APC/C function. Apoptosis, however,
does not normally occur when cyclin levels are high at
metaphase. This may be because of protective factors
such as survivin [27,28]. A loss of protective activity
during anaphase may allow cells to respond to abnor-
mally high levels of Cdk activity and undergo apoptosis.
Alternatively, if the APC/C itself plays a protective role,
simultaneous loss of this protection and elevated Cdk
levels would result in apoptosis.
The polyploid cells we observed in larval brain

squashes may be cells that have escaped apoptosis,
exited mitosis without cytokinesis, and then duplicated
their chromosomes before re-entering mitosis again. If
so, some cells can clearly repeat the process several
times, as we observed cells that were highly polyploid.
Furthermore, we did not observe any G2-arrested
interphase larval abdominal histoblasts undergoing
apoptosis (data not shown). This suggests that there is
a phase, during mitosis, when cells are particularly sen-
sitive to loss of lmg function and respond by under-
going apoptosis. This might be expected if loss of
APC/C function is playing a relatively direct role in
triggering apoptosis.
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Conclusions
The data presented in this paper demonstrate that the
upstream member of a dicistronic gene, lmgA codes for
the Apc11 subunit of the APC/C in a multicellular
metazoan species, Drosophila melanogaster. Its genetic
and physical interactions with Mr/Apc2 and the E2-C
type ubiquitin-conjugating enzyme, Vihar, suggest that
their ternary complex represents the same catalytic
module of the APC/C that was identified in yeast and
mammalian cells by functional means.

Methods
Yeast strains and techniques
Standard yeast media and yeast techniques were used
[37]. S. cerevisiae L40 strain (MATa ade2 his3Δ200
leu2-3,112 trp1Δ1 ura3::lexAop-lacZ LYS2::lexAop-HIS3)
was used for two hybrid, and the Tat7 strain (MATa
ura3-52 ade2 his3Δ200 leu2-3,112 trp1Δ1 ura3::lexAop-
lacZ LYS2::lexAop-HIS3, generously provided by Jacques
Camonis) for three hybrid analysis. W303 (MATa ade2-
1 tpr1-1 can1-100 leu2-3, 112 his3-11,15 ura3) and an
APC11-myc9 strain (MATa APC11myc9-TPR1 ade2-1
tpr1-1 can1-100 leu2-3, 112 his3-11,15 ura3, kindly pro-
vided by Wolfgang Zachariae) were used for the hetero-
logous complementation experiments.

Yeast two and three hybrid experiments
A Drosophila embryonic cDNA library cloned into the
pACT vector (Clontech Laboratories, Inc., USA) was
screened using apc2-pBTM116 as bait as described by
the manufacturer (Clontech Laboratories, Inc., USA).
The lmgA and lmgB sequences were cloned into
pGAD424 and pACT2 respectively, and then co-trans-
formed with apc2-pBTM116 into L40 strains to confirm
their interaction. The cDNA library was also screened
with the lmgB-pBTM116 clone as bait. Yeast three
hybrid analyses were performed using lmgA-pBTM116,
apc2-pRS416 (kindly provided by Jacques Camonis) and
vihar-pGAD424 which were co-transformed into the
Tat7 strain. His+ colonies were selected and tested for
their b-galactosidase activity.

b-galactosidase assay
Colony-lift filter assays were performed as described in
the Yeast Protocols Handbook (Clontech Laboratories,
Inc., USA). For quantification of b-galactosidase activ-
ity, single colonies were grown until mid-log phase in
liquid minimal medium containing 1 mM 3-Amino-
1,2,4-triazole, and in the presence or absence of 1 mM
methionine. Liquid cultures were used for Pellet X-Gal
(PXG) assay [38] and for Beta-Glo® Assay according to
the manufacturer’s protocol (Promega Corporation,
USA).

Yeast heterologous complementation test
The lmgA cistron was cloned into the pRS426 yeast
expression vector (kindly provided by Ildikó Unk). As a
control the mks/Apc3 gene was also cloned into pRS426.
APC11-myc9 temperature sensitive mutant cells [11]
were transformed with lmgA-pRS426, mks-pRS426 and
empty pRS426 plasmids. Single Ura+ colonies were
selected on minimal medium then inoculated into 3 ml
YEPD (BIO 101, Inc., Canada) media and incubated
overnight at 30°C in a water bath. Overnight cultures
were diluted to OD600 = 0.1, and divided into 6 glass
tubes, 3 ml each. 3 tubes were incubated at 30°C and 3
tubes at 37°C in water baths for 10 hours. The W303
strain was used as a control. Optical density was mea-
sured every hour using a WPA Biowawe CO8000 Cell
Density Meter. Data were analyzed and densitometric
growth curves were made using Microsoft Office
Excel™. For the colony forming dilution, single colonies
were inoculated and grown overnight at 30°C. Cultures
were diluted to OD600 = 0.1 and then two-fold serially
diluted five times. 5 μl of each dilution was spotted onto
YEPD plates which were incubated at 30°C and 37°C for
1 day.

Drosophila stocks and genetic techniques
Fly stocks were reared on standard yeast/dextrose med-
ium at 25°C. Stocks were obtained from the Blooming-
ton Drosophila Stock Center. In all experiments a w1118

isogenic stock was used as the control. All genetic mar-
kers used are described in Flybase http://flybase.org.
To determine the lethal phase, chromosomes carrying

the mutations were balanced over CyO, actGFP or
TM6C, Tb, Sb chromosomes. From each line 20-30
pairs of flies were placed into chambers on agar plates
containing yeast extract. 400-600 first instar homozy-
gous and heterozygous larvae were collected and put
into vials, 50-50 each. Metamorphosis was staged
according to Bainbridge and Bownes [15].

P-element remobilization
Originally, both the P{PZ}03424 and P{EPgy2}EY11317
mutant stocks carried second site mutations which were
removed by recombination before experimental use.
Imprecise excisions of the P{PZ}03424 and P{EPgy2}
EY11317 elements were generated by crossing to flies
carrying the Δ2-3 transposase. Chromosomes which had
lost the ry+ or w+ genes in the P element were selected
and balanced over CyO, actGFP. For deletion mutant
screening, genomic DNA was extracted from candidate
lines as by Gloor et al [39] and PCR was performed
using the lmg specific 5’-CTCCCGCCAAGGATCGA-
TATCTTT-3’ and 5’-TATGTTGGGGATGTTGGTGT-
GAATG-3’ primers. The P{PZ}03424 remobilization
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generated the lmgJ023 allele that carries a 1543 bp dele-
tion, while the P{EPgy2}EY11317 imprecise excision
yielded two independent lines carrying deletions in the
lmg gene. In this study we used the lmg138 null mutant
which carries an 1120 bp deletion downstream from the
P-element insertion site.

Rescue of the lmg mutant phenotype
Dicistronic lmgAB, and the lmgA and lmgB cistrons
alone were cloned into the pUAST vector. The resulting
plasmids were sequenced and injected into w1118

embryos according to standard protocols [40]. Homozy-
gous transgenic flies carrying one of the lmgA-pUAST,
lmgB-pUAST and lmgAB-pUAST constructs on the
third chromosome were crossed to lmg mutants and w/
w; lmgX/CyO, actGFP; Y-pUAST lines were established,
in which X represent one of the lmg03424, lmgEy11317,
lmgJ023, lmg138 alleles and Y stands for the different lmg-
pUAST constructs in all combinations. To express lmg
in these constructs, w/w; lmgX/CyO, actGFP; Y-pUAST
flies were crossed to w/w; lmgX/CyO, actGFP; da-GAL4/
da-GAL4 flies and resulting progeny of w/w; lmg/lmg;
pUAST/da-GAL4 were tested for lethal and mitotic
phenotypes.

Semi-quantitative RT -PCR
Total RNA was isolated using a Tri Reagent extraction kit
(Sigma-Aldrich, USA). RNA samples were treated with
RQ1 RNase-Free DNase (Promega Corporation, USA).
Reverse transcription was carried out using a Fermentas
cDNA synthesis kit using 5 μg RNA and random hexamer
primers. cDNA amounts were normalized in 20 cycle PCR
using rpL17A primers (rpL17A upper, 5’-GTGAT-
GAACTGTGCCGACAA-3’; rpL17A lower, 5’-CCTTCA
TTTCGCCCTTGTTG-3’). PCR products were separated
by electrophoresis in a 1.2% agarose gel. To analyze the
expression pattern of the lmg locus during development,
semi-quantitative RT-PCRs were performed. Total RNA
was isolated from 50 mg w1118 0-12 hours embryos, L1,
L2, early L3, late L3 larvae, early pupae, late pupae, males
and females. The following primers were used in 25 cycle
PCRs: ORF1 RT primers: 5’-GCAAAGCGGCGACAAAC-
3’ upstream and 5’-CAGCTCTGGCGGCACAT-3’ down-
stream; ORF2 RT primers: 5’-AATGATGGAGAACAGC
AGCAACGAT-3’ upstream and 5-TATGTTGGGGA
TGTTGGTGTGAATG-3’ downstream; Dicistronic RT
primers: 5’-CCGCTGGTGTGGGGTGTATG-3’ upstream
and 5’-TTTGGCAGTGGCGGCAGAC-3’ downstream.

Cytological analysis and Immunohistochemistry
Orcein staining of larval brain preparations was carried
out and analyzed as described previously [14]. Prepara-
tions were examined under an Olympus BX51 micro-
scope using phase contrast. Photos were taken by a DP70

digital color camera. Mitotic index was determined as the
number of cells in mitosis in an optical field. Apoptotic
index was defined as the number of rounded cells with
picnotic nuclei in an optical field. Apoptosis was also
analyzed by acridine orange staining of dissected brains
and wing imaginal discs. Heads of third instar larvae
were removed in PBS and transferred into a drop of 1.6
μg/μl acridine orange solution (C.I. 46005 Molar Chemi-
cals Ltd) for five minutes in the dark, then rinsed in PBS.
Brains and wing imaginal discs were then dissected and
transferred to a drop of PBS on a microscope slide.
Before transferring, two cellotape cushions were made on
the slide to prevent excess compression. Preparations
were covered with a cover-slip, sealed with nail-polish
and examined under an Olympus BX51 upright micro-
scope, or with an Olympus FV 1000 confocal microscope.
For immunohistochemistry, brains were dissected from

w1118 and lmgJ023 wandering third instar larvae. Immunos-
taing preparations, primary and secondary antibodies and
image analysis were performed as described in Pál et al.
[14].

RACE Experiments
Rapid Amplification of cDNA ends was performed using a
First-Choice™ RLM-RACE kit (Ambion, USA) according
to the protocol provided by the manufacturer. Total RNA
was isolated from 50 mg 0-12 hour embryos with Tri
Reagent (Sigma-Aldrich, USA). To obtain the 5’ end of
mRNAs gene specific primers were designed to ORF1 (5’-
TCCGGGCAGGTGCTCTCG-3’ inner and 5’-CAGCTCT
GGCGGCACAT-3’outer) and ORF2 (5’-TTTGGCAGT
GGCGGCAGAC-3’ inner and 5’-CTGGAAGCGCGACT
GTGC-3’ outer). To obtain the sequence of the 3’ end of
the ORF1 mRNA, PCR was carried out with specific pri-
mers for ORF1 (5’-GCAAAGCGGCGACAAAC-3’ outer
and 5’-CCGCTGGTGTGGGGTGTATG-3’ inner). All
PCR products were cloned into pTZ57R (Fermentas, Vil-
nius, Lithuania) and sequenced.

Epitope construct and Western Blots
To test the expression of the two lmg ORFs, an N-terminal
Hemagglutinin tag was attached to ORF1, and a C-term-
inal Flag tag was made for ORF2. The 5’-TCGAGATTA-
CAAGGACGATGACAAGTAG-3’ and 5’-CTACTTGTC
ATCGTCGTCCTTGTAATC-3’ oligonucleotides were
ligated into the EcoRV-XhoI sites of pENTR1A, and trans-
formed into DB3.1 competent cells. The lmgAB sequence
was then ligated into the pENTR1A-Flag tagged construct.
The pENTR1A-lmgAB-Flag was recombined into the
pAHW destination vector, which contains three HA epi-
tope tags 5’ in its Gateway cassette, using Gateway LR clo-
nase II Enzyme Mix (Invitrogen Corporation, USA).
Recombinant clones were selected by ampicillin resistance
and sequenced before transfection.
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Schneider 2 (S2) cells were transfected with the FLAG-
lmgAB-HA plasmid using Cellfectin (Invitrogen Corpora-
tion, USA) in serum-free S2 cell medium. Total protein
was extracted from transfected cells using standard proto-
cols [41] and analyzed by Western blots using anti-Flag
and anti-HA monoclonal antibodies.
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