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Numerical regularization of electromagnetic quantum fluctuations
in inhomogeneous dielectric media
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Electromagnetic Casimir stresses are of relevance to many technologies based on mesoscopic devices such
as microelectromechanical systems embedded in dielectric media, Casimir induced friction in nanomachinery,
microfluidics, and molecular electronics. Computation of such stresses based on cavity QED generally requires
numerical analysis based on a regularization process. The scheme described below has the potential for wide
applicability to systems involving realistic inhomogeneous media. From a knowledge of the spectrum of the
stationary modes of the electromagnetic field the scheme is illustrated by estimating numerically the Casimir
stress on opposite faces of a pair of perfectly conducting planes separated by a vacuum and the change in this result
when the region between the plates is filled with an incompressible inhomogeneous nondispersive dielectric.
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I. INTRODUCTION

Electromagnetic interactions between electrically neutral
isolated polarizable sources such as atoms or molecules are
often referred to as Van der Waals forces. In a quantum
field theoretical description they give rise to Casimir forces,
particularly when some of the sources are replaced by a
neutral continuum. Such a continuum may be restricted to
interfaces between different regions of space and some regions
may contain polarizable media with conducting or dispersive
properties. In such cases one is confronted with the problem
of calculating quantum induced stresses in such regions and
the resulting pressures on the surrounding interfaces [1,2].
In situations where the sources are idealized to occupy
perfectly conducting surfaces, it is possible to estimate the
induced Casimir stresses on the surfaces in terms of quantum
fluctuations of the electromagnetic field in the vacuum [3].
For a pair of approximately parallel conducting planes such
integrated stresses have been detected experimentally and
their dependence on the separation between the planes has
been measured. However, the analytic derivation of vacuum
induced Casimir stresses on conducting surfaces with nonpla-
nar geometries is notoriously difficult [4] to ascertain with
confidence. These difficulties are compounded in situations
where such surfaces bound dielectric media that may be
dispersive [5,6] or contain inhomogeneous [7,8] magnetic and
electric susceptibilities [9,10]. Furthermore, the conceptual
basis on which such calculations are expected to be reliable
depends on whether it is reasonable to treat polarizable systems
as a continuum when quantum effects become significant.
However, one expects a continuum model of rigid dielectric
media to be reasonable in mesoscopic systems where bounding
geometries cannot resolve molecular detail. In such cases,
the response of the medium to electromagnetic fluctuations is
given in terms of piecewise smooth susceptibility tensors with
components that may depend nonlinearly and nonlocally on
space and time. For media with linear piecewise homogeneous
nonconducting response functions, Lifshitz [11–13] developed
a phenomenological scheme based on the analytic properties
of Green tensors. Since its inception, this theory has not
been significantly refined to deal with more general physical
systems that are now of relevance in a number of modern

technologies. These include the influence of Casimir stresses
due to complicated geometries in microelectromechanical
system devices embedded in inhomogeneous or nonlinear
dielectric media, Casimir induced friction [14] in nanomachin-
ery, microfluidics, and molecular electronic devices. Perhaps
the most significant feature of the Lifshitz theory limiting
its applicability to such systems is its reliance on a detailed
knowledge of a Green tensor (and its analytic structure) leading
to a viable regularization scheme. All attempts to apply the
methods of cavity QED to mesoscopic systems containing
dielectrics with inhomogeneous permittivities also rely on a
knowledge of the quantum Hamiltonian of the electromagnetic
field in the medium in order to calculate finite quantum
expectation values of “observables” that can be compared with
experiment. Since any quantum field is an infinite dimensional
dynamical system, such values need to be determined by a
regularization process that discards unobservable self-forces
between sources [15]. When canonical dynamical variables
can be chosen so that the Hamiltonian for the electromagnetic
field has a discrete angular frequency spectrum {ωr} and
the same structure as the Hamiltonian describing an infinite
number of simple harmonic oscillators at each point in the
medium, the regularization of the (zero temperature) ground-
state energy 1

2h̄
∑

r ωr is often defined by continuing to s = −1
the function 1

2h̄ζ (s), where

ζ (s) =
∑

r

ω−s
r = 1

�(s)

∫ ∞

0
dt ts−1

∑
r

e−ωr t ,

with s > s0 for some s0 that renders the integral convergent.
However, there are a few cases in which the sum

∑
r e−ωr t

can be performed analytically and so the analytic continuation
becomes difficult and recourse to numerics is often inevitable
[16]. Alternative regularization schemes [17] bypass the
ground-state energy and employ point-splitting techniques
on components of the electromagnetic stress-tensor prior
to numerical analysis. Such approaches are not universally
applicable [1] and where used often employ the truncation of
an infinite series whose radius and rate of convergence is rarely
known.
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II. LAURENT REGULARIZATION

It is the aim of this Brief Report to offer a more robust nu-
merical algorithm that has the potential for wider applicability
than existing regularization schemes. It will be illustrated by
estimating numerically the original Casimir stress on opposite
faces of a pair of perfectly conducting planes separated by a
vacuum and the change in this result when the region between
the plates is filled with an inhomogeneous nondispersive
dielectric. It requires for its implementation a knowledge of the
spectrum of the stationary modes of the electromagnetic field
between the plates. Such a spectrum will in general arise as the
infinite number of roots of a system of transcendental equations
obtained from imposing the appropriate boundary conditions
for the modes of the electromagnetic field. This involves
solving a classical boundary value problem for stationary
states. For a simply connected bounded rigid rectangular
cavity with perfectly conducting walls such modes can be
classified as either TE or TM with, in general, different spectra.
They are used to construct a Fock space of electromagnetic
modes in a gauge in which the quantum Hamiltonian is
quadratic in creation and annihilation operators for each
mode. For a stationary system there is no ambiguity in
the classical Maxwell stress tensor for the electromagnetic
field in a dielectric, so one can write down the ground-state
expectation value of any component of this tensor in the
medium. Evaluated on one side of any plane surface this
yields, after regularization, the quantum stress on that side.
In an inhomogeneous dielectric, such stresses will in general
be different on different faces of the cavity. The simplest
realistic situation is to suppose that the permittivity varies
smoothly in only one direction in a rigid three-dimensional
rectangular box with perfectly conducting boundaries. If the
dimensions of the box are such that two opposite pairs of
end planes have much smaller areas than the pair separated
by the direction of the inhomogeneity it can be shown that
the difference in end pressures in this direction requires the
regularization of a couple of double integrals, each of the
form

∫ ∞
0

∫ ∞
0 F(x,y) dx dy. Each F(x,y) is determined by a

spectrum-generating function chosen so that each integral

J (s) =
∫ ∞

y0

∫ ∞

x0

e−s(x+y)F(x,y) dx dy

regarded as a function in the complex s plane is analytic in
an annular region centered on s = 0. As such, it admits a
representation as a Laurent expansion in this domain. The
regularized value of J (0) is then defined to be the term c0 in
this Laurent expansion that is independent of s and corresponds
to discarding the principal part of the Laurent series before
taking the limit as s tends to zero. The problem is how to
determine numerically c0 from a numerical computation of
J (s) when neither the principle part of its Laurent expansion
about s = 0 nor its domain of convergence is known a priori.
When J (s) is meromorphic with a pole of order N1 at s = 0,

J (s) =
∞∑

n=N1

cns
n (1)

for real s ∈ [εs,sR], finite negative integer N1, and constants
0 < εs � 1 and sR > 0. The algorithm for estimating c0 pro-

ceeds first by discretizing the range s ∈ [εs,sR] for some sR to
generate the setS = {sj | 1 < j < J } and then evaluatingJ (s)
numerically at S to generate the set I = {Jj = J (sj ) | 1 <

j < J }. Let A denote a matrix where each element represents
a truncated Laurent series of the form

Ln2
n1

(s) =
n2∑

n=n1

cn(n1,n2)sn, n1 < n2, (2)

for some positive integer n2 and negative integer n1. To effect
a numerical fit of J (s) to the “appropriate” Laurent series, one
first determines the matrix elements in any submatrix of A by
fitting the data I and S to each Ln2

n1
(s) by linear regression.

Thus, for all integer ranges from n1 to n2 with N1 < n1 �
−1 and 1 � n2 < N2 one may calculate the set {cn(n1,n2)}
associated with each matrix element. We seek criteria such
that c0 in (1) is approximated by some c0(n1,n2) in A, for an
“optimal” choice of the integers N1 and N2 defining the size of
the submatrix. The strategy is then to prune the principal part of
each matrix element by filtering out of each truncated Laurent
series those terms with coefficients cn(n1,n2) with n < 0 that
satisfy

|cn(n1,n2)|
Mn(n1,n2)

< εc

for some tolerance 0 < εc � 1, where the average
Mn(n1,n2) = 1

|n|
∑j=−1

j=n1
cn(j,n2). After this filtering process,

one has a sequence of truncated Laurent series {L̂n2
n1

(s)} whose
principal parts contain only the coefficients

Cn2
n1

=
{
cn(n1,n2)

∣∣∣∣ |cn(n1,n2)|
Mn(n1,n2)

> εc

}
.

Let CN (n1,n2) denote the coefficient of the most singular term
in each {L̂n2

n1
(s)} where by hypothesis N < 0. By examination

of this coefficient for all N1 � n1 � −1 and 1 � n2 � N2

in the selected submatrix, one may discover a new submatrix
whose elements contain truncated Laurent series with the same
fixed value of N . Next, for each positive integer n2, define the
data set

Î(n2) = {Ĵj (n2) | 1 < j < J },
where Ĵj (n2) = Jj − CN (N ,n2)sNj , and use linear regression
again to fit this to a sequence of a new truncated Laurent series,

Ln̂2
N (s,n2) =

n̂2∑
n=N

Ĉn(N ,̂n2,n2)sn,

with 1 � n̂2,n2 � N2. If, for such a fixed N , one connects the
points obtained by plotting Ĉ0(N ,̂n2,n2) against n̂2 for each
n2 in the range 1 � n2 � N2, curves are generated that attain
turning points (or asymptotes) with ordinates at c̃0(N ,̂n2,n2) in
close proximity. As a result, an estimate of the required Casimir
coefficient c0(N ) is defined to be 1

N2

∑N2
n2=1 c̃0(N ,̂n2,n2).

III. APPLICATIONS

If F (z) is meromorphic, f (z) entire and well behaved in
the complex z plane where 0 � arg(z) � π/2 and {zr} denotes
simple roots of the equation F (z) = 0, then by Cauchy’s
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theorem ∑
r

f (zr ) = − 1

π

∫ ∞

0
f (iy)�(iy)dy,

where

�(z) = F ′(z, . . .)
F (z, . . .)

.

For the empty rectangular box with sides of length Lx , Ly , and
Lz, the TE and TM spectra in the box are degenerate with

ω2
n

c2
= k2

x + k2
y + n2

zπ
2

L2
z

, where kx = nxπ

Lx

, ky = nyπ

Ly

,

and nx,ny,nz ∈ Z+. With k2
x + k2

y = k2, a suitable spectrum-
generating function is

F (ω,k) = sin

[
Lz

√(
ω2

c2
− k2

)]
.

Then, for Lx,Ly � Lz (i.e., parallel plates) and f (z) = h̄z/2,
the TE Casimir energy 〈ETE〉 is determined from a Laurent
expansion of

ETE(s) = −LxLyh̄c

4π2L3
z

I(s),

where

I(s) = 1

3

∫ ∞

0
r3e−sr coth(r) dr. (3)

For s > 0, the integral (3) can be performed analytically and
for small s determines all coefficients in the Laurent series

I(s) =
∞∑

n=−4

cns
n.

The TE Casimir energy is then taken to be

〈ETE〉 = −LxLyh̄c

4π2L3
z

c0.

In this case, the value of c0 can be determined analytically
since the integral can be written in terms of the third derivative
of the polygamma function �(3,x) as [18]

I(s) = 1

24
�

(
3,

s

2

)
− 2

s4
.

The Laurent expansion of this expression gives the exact value
c0 = π4/360. If the integral (3) is evaluated numerically to
seven significant figures for a range of s in the vicinity of the
origin, one obtains from our algorithm good agreement with
this analytic result. It agrees with the value determined by
Riemann ζ function regularization within 1.2% (see Fig. 1).

The total (TE + TM) Casimir force per unit area on each
face is attractive with magnitude:∣∣∣∣ 1

LxLy

∂

∂Lz

〈2ETE〉
∣∣∣∣ = π2h̄c

240L4
z

,

and hence the force difference between the plates is zero.
Suppose now that the box is filled with an incompressible
dielectric with inhomogeneous permittivity

ε(x,y,z) = ε0 exp(αz/Lz), 0 � z � Lz,
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FIG. 1. For data based on (3), the algorithm determines N = −4
and a collection of [x,y] points [̂n2,Ĉ0(N ,̂n2,n2)] with 1 � n2 � 8.
The eight curves obtained by joining these points are indistinguishable
in this figure and the average of c̃0(N ,̂n2,n2) at their turning points
yields a Casimir coefficient c0(N ) = 0.272 81. The horizontal dotted
line indicates the value of the Casimir coefficient that determines the
observed Casimir attractive pressure between perfectly conducting
plates separated by the vacuum.

for some real inhomogeneity parameter α. A quantization of
the electromagnetic field in the box [10] can be performed in
a gauge where the vector potential A satisfies the condition
∇ · (ε A) = 0. For τ ∈ {TE,TM}, the regularized force dif-
ferences 〈�F (τ )(σ )〉, derived from the quantum expectation
value of relevant components of the electromagnetic-stress-
energy-momentum tensor between the faces at z = 0 and
z = Lz contributed by the TE and TM modes in the dielectric
is, for Lx,Ly � Lz, derived from a Laurent s expansion
of

−�F (τ )(s,σ )

F0
=

∫ ∞

0
νe−sνdν

∫ ∞

0
�(τ )(iy,ν,σ )e−sydy. (4)

Here σ = eα/2 is a positive inhomogeneity parameter, F0 =
h̄cα4LxLy/64π2L4

z , and

�(τ )(z,ν,σ ) = ∂z ln[F (τ )(z,ν,σ )],

F TE(z,ν,σ ) = Jν(z)Yν(σz) − Jν(σz)Yν(z),

F TM(z,ν,σ ) = J̃μ(z)Ỹμ(σz) − J̃μ(σz)Ỹμ(z),

where μ = √
ν2 + 1 and, for any Bessel function Qν , Q̃ν(z) =

zQ′
ν(z) + Qν(z). The above double integrals involve the

integration of products of modified Bessel functions with
respect to both order and argument and have resisted ana-
lytical evaluation. For s > 0 they can, however, be calculated
numerically (on a laptop) for various σ and fitted by regression
to a truncated Laurent expansion in the vicinity of s = 0.
Our algorithm clearly establishes that the principal part of
the truncated Laurent series corresponds to a pole of order
4 (as is the case for α = 0 when ε is the permittivity of
the vacuum). It also determines the Casimir coefficients and
hence the regularized stress differences between the plate
faces for both the TE and TM modes. For example, with

034103-3



BRIEF REPORTS PHYSICAL REVIEW A 85, 034103 (2012)

1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

0.2

Positive degree of truncated Laurent series n2

C
as

im
ir

co
effi

ci
en

t
c̃ 0

TE curves
TM curves

FIG. 2. For data based on (4) with σ = 8/27 the algorithm deter-
mines N = −4 and a collection of [x,y] points [̂n2,ĈTE

0 (N ,̂n2,n2)]
and [̂n2,ĈTM

0 (N ,̂n2,n2)] with 1 � n2 � 8. The TE curves obtained
by joining the TE points are indistinguishable in this figure and the
average of c̃TE

0 (N ,̂n2,n2) at their turning points yields the Casimir
coefficient cTE

0 (N ) = 0.197 44. The same is true for the TM points
with cTM

0 (N ) = 0.202 31. Each such Casimir coefficient contributes
to the total regularized force difference F0

[
cTE

0 (N ) + cTM
0 (N )

]
,

between opposite z faces of a pair of perfectly conducting plates sep-
arated by an inhomogeneous dielectric with permittivity ε(x,y,z) =
ε0 exp(αz/Lz), where σ = exp(α/2).

σ = 8/27 the TM modes contribute a force difference of
3.547 04 × 10−28 LxLy/L

4
z N. This is 0.272 82 times the value

of the total Casimir force on either plate in the vacuum.
Similarly the TE modes contribute a force difference of
3.461 59 × 10−28 LxLy/L

4
z N. This is 0.266 25 times the value

of the total Casimir force on either plate in the vacuum (see
Fig. 2). The similarity of these mode contributions to each other

is somewhat surprising given the differences in the structure
of the TE and TM spectrum generators.

IV. SUMMARY

A robust numerical scheme for regularizing the quantum
electromagnetic stresses in an inhomogeneous dielectric be-
tween conducting plates has been described. We believe that
it has much wider applicability to more general systems such
as those mentioned in the Introduction. Although the deter-
mination of electromagnetic cavity modes in more complex
geometries and media is in general nontrivial, once this hurdle
is overcome the quantization program can proceed (with
possible thermal corrections [19,20]) and the regularization
method outlined here is then straightforward. However, any
regularization scheme involving fields in media ultimately
depends on the viability of the methods of field quantization in
a nondynamic background. It is therefore of paramount impor-
tance to verify precise results of such a scheme by experiment.

Any confined inhomogeneous material dielectric will sus-
tain stresses induced by electromagnetic quantum fluctuations
if the confining domain is rigid. If the medium remains
static, such stresses induce mechanical (elastic) stresses in the
dielectric to maintain equilibrium. Unlike similarly induced
classical stresses by the classical gravitational field in the
laboratory (that vary with the orientation of the dielectric), the
quantum induced electromagnetic stresses are permanent. In
principle, they could be detected experimentally by noting the
variation of the induced stress field within the dielectric with
variations of the permittivity inhomogeneities. Such variations
might be detected using photoelastic effects on the polarization
of light passing through a transparent medium.
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