
van der Waals Interactions between Thin Metallic Wires and Layers

N. D. Drummond and R. J. Needs
TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

(Received 30 May 2007; published 16 October 2007)

Quantum Monte Carlo (QMC) methods have been used to obtain accurate binding-energy data for pairs
of parallel thin metallic wires and layers modeled by 1D and 2D homogeneous electron gases. We
compare our QMC binding energies with results obtained within the random phase approximation, finding
significant quantitative differences and disagreement over the asymptotic behavior for bilayers at low
densities. We have calculated pair-correlation functions for metallic biwire and bilayer systems. Our QMC
data could be used to investigate van der Waals energy functionals.
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One-dimensional conductors such as carbon nanotubes
are essential components of many proposed nanotechno-
logical devices, and they are currently the subject of nu-
merous experimental and theoretical studies. It has
recently been demonstrated [1] that the van der Waals
(vdW) interaction between pairs of distant parallel thin
conducting wires assumed in many current models of
metallic carbon nanotubes is qualitatively wrong. In this
Letter we provide the first accurate binding-energy data for
pairs of thin metallic wires and layers, which can be used
as a benchmark for subsequent theoretical studies or to
parametrize model interactions between 1D and 2D
conductors.

Thin electrically neutral wires are attracted to one an-
other by vdW forces. The standard method for calculating
the vdW interaction between objects is to assume there are
pairwise interactions between volume elements with an
attractive tail of the form UPP�r� / �r

�6, which is appro-
priate for the vdW interaction between molecules.
Summing these interactions for a pair of 1D parallel wires
separated by a distance z gives a vdW binding energy of
U�z� / �z�5. Such pairwise vdW models have been used
in studies of single-walled carbon nanotubes [2,3].
However, a recent investigation [1] of the interaction be-
tween pairs of thin, metallic wires modeled by 1D homo-
geneous electron gases (HEGs) within the random phase
approximation (RPA) found that the binding energy falls
off (approximately) as [4]

 U�z� � �
����

rs
p

16�z2�log�2:39z=b��3=2
; (1)

where b is the wire radius and 2rs is the length of the wire
section containing one electron on average. The pairwise
vdW model is clearly appropriate for an insulator or for a
metallic wire whose radius is greater than the screening
length but is inappropriate for a thin conductor such as a
single-walled carbon nanotube [1].

Likewise, the binding energy per particle of a pair of thin
parallel metallic layers can be shown to decay as

 U�z� �
�0:012 562

����

�
p

rs
2z5=2

(2)

within the RPA [1,5], compared with U�z� / �z�4 within
the pairwise vdW theory, where z is the layer separation.
(In a 2D HEG rs is the radius of the circle that contains one
electron on average.) At very large separations the vdW
attraction is dominated by the Casimir effect [5,6], in
which the zero-point energy of photon modes between
the metallic layers gives rise to an attractive force.
However, we restrict our attention to the range of separa-
tions in which vdW effects are dominant.

Within the RPA, the binding energy may be calculated
as the change in the zero-point energy of plasmon modes as
a function of separation [1]. However, the RPA is poor in
low-dimensional systems and ceases to be valid at low
densities, where correlation effects become dominant. We
have therefore performed quantum Monte Carlo [7,8]
(QMC) calculations of the binding energies of pairs of
thin, metallic wires and layers modeled by 1D and 2D
HEGs with neutralizing backgrounds. In particular, we
have used the variational and diffusion quantum
Monte Carlo (VMC and DMC) methods as implemented
in the CASINO code [9]. DMC is the most accurate method
available for studying quantum many-body systems such
as electron gases. We have also calculated pair-correlation
functions (PCFs), enabling us to examine the correlation
hole responsible for the vdW attraction between pairs of
wires and layers.

In our QMC calculations we use the full Coulomb
potential, so that for 1D HEGs the many-electron wave
function must go to zero at both parallel- and antiparallel-
spin coalescence points for electrons in the same wire. The
nodal surfaces for paramagnetic and ferromagnetic 1D
HEGs are therefore the same, and so the fixed-node
DMC energy—which is equal to the exact ground-state
energy because the nodal surface is exact—is independent
of the spin polarization. This conclusion does not violate
the Lieb-Mattis theorem [10] because the 1D Coulomb
interaction is pathological in the formal sense of Lieb
and Mattis [11]. For convenience, we choose to work

PRL 99, 166401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 OCTOBER 2007

0031-9007=07=99(16)=166401(4) 166401-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.166401


with ferromagnetic 1D HEGs, because a Slater determi-
nant wave function produces the correct nodal surface in
this case. Our QMC studies of 1D HEGs will be published
elsewhere [12].

Fermionic symmetry is imposed in 2D via the fixed-
node approximation [13], in which the nodal surface is
constrained to equal that of a trial wave function. We
expect a very high degree of cancellation of fixed-node
errors when the binding energy is calculated. It has already
been shown that fixed-node DMC is able to describe vdW
forces between helium [14] and neon atoms [15].

We have verified that time-step and population-control
biases in our DMC energies are negligible by repeating
some of the calculations using different time steps and
populations. Finite-size errors are a more serious problem,
although most of the bias cancels out when the energy
difference is taken to obtain the binding energy. Twist
averaging [16] or the addition of finite-size corrections
are unlikely to reduce the bias in the binding energy. We
expect our binding-energy results to be valid so long as the
wire or layer separation is small compared with the length
of the 1D or 2D simulation cell; for larger separations the
system resembles a pair of insulators and the binding
energy is expected to fall off more steeply (in accordance
with the pairwise vdW model).

We have used Slater-Jastrow-backflow trial wave func-
tions [8,17]. For our 2D bilayer calculations the Slater part
of the wave function consists of a product of four determi-
nants of plane-wave orbitals for spin-up and spin-down
electrons in each of the two layers. For our 1D biwire
calculations the Slater part consists of a product of two
determinants of plane-wave orbitals for the electrons in
each wire (recall that each wire is ferromagnetic in our
calculations). Slater determinants for a 1D HEG are of
Vandermonde form and could therefore be rewritten as
polynomials and evaluated in a time that scales linearly
with system size; however, other parts of the QMC algo-
rithm such as the evaluation of the two-body Jastrow terms
and backflow functions take up a significant fraction of the
computer time, so for convenience we have continued to
employ the usual determinant-evaluating and updating
machinery of QMC calculations [18].

Our Jastrow factors consist of polynomial and plane-
wave two-body terms [19] satisfying the Kato cusp con-
ditions [20]. In spite of the fact that the nodal surface is
exact in 1D, two-body backflow correlations [17] were

found to make a very significant improvement to the
wave function, as can be seen in Table I. Backflow func-
tions were used in all of our 1D calculations and in our 2D
calculations at rs � 1 a:u:. Free parameters in the trial
wave function were optimized by minimizing the unre-
weighted variance of the local energy [21,22].

Each wire or layer is accompanied by a neutralizing
background. When studying biwires (bilayers) we need
to add the interaction between the electrons in each wire
(layer) and the background of the opposite wire (layer),
plus the interaction of the two backgrounds. This contri-
bution to the energy is Ecap � log�z�=�2rs� for a biwire and
Ecap � z=r2

s for a bilayer.
The binding energies of pairs of 1D and 2D HEGs are

shown in Figs. 1 and 2. The approximate RPA binding
energy shown in Fig. 1 was obtained using b � rs=10 in
Eq. (1). The wire radius b is therefore small compared with
the other length scales in the system. We have included
DMC results at several different system sizes in Figs. 1 and
2. In 1D, half the length of the simulation cell is Lrs;N �
Nrs, where N is the number of electrons per wire, and in
2D the size of the simulation cell is Lrs;N �

����

N
p

rs. The
binding energy falls off more steeply once z becomes a
significant fraction of Lrs;N , as expected. Clearly the bind-
ing energies enter the asymptotic regime when z� rs. We
have therefore fitted the RPA asymptotic binding-energy
forms to our QMC data in the range rs 	 z	 Lrs;N . We
believe the errors in the fitted exponents are about 0.1–0.2.

The fits to the DMC biwire binding-energy data shown
in Fig. 1 are

 U1�z� � �0:0815z�2:28�log�27 000z���3=2 (3)

 U3�z� � �0:0225z�1:98�log�1:95z���3=2 (4)

 U10�z� � �0:0967z�2:17�log�0:492z���3=2; (5)

where Urs�z� is the binding energy at density parameter rs.
The DMC binding-energy data are clearly in much better
agreement with the RPA [Eq. (1)] than with the pairwise
vdW theory [U�z� / z�5]. It is not meaningful to compare
the prefactors because of the arbitrariness of our choice of
the wire radius b in the RPA theory.

The fits to the DMC bilayer binding-energy data shown
in Fig. 2 are

TABLE I. Energy, energy variance, and fraction of correlation energy retrieved using different levels of theory and wave function for
a 15-electron 1D ferromagnetic HEG at rs � 15 a:u: ‘‘HF’’ stands for Hartree-Fock theory, ‘‘SJ’’ denotes a Slater-Jastrow trial wave
function, and ‘‘SJB’’ a Slater-Jastrow-backflow trial wave function.

Method Energy (a.u. per electron) Variance (a.u.) Percentage correlation energy

HF �0:215 943 040 112 
 
 
 0%
SJ-VMC �0:231 966 8�4� 0.000 036 0(2) 99.974(3)%
SJB-VMC �0:231 971 0�3� 0.000 004 6(1) 100.000(3)%
SJB-DMC �0:231 970 9�3� 
 
 
 100%
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 U1�z� � �0:00637z�2:58 (6)

 U3�z� � �0:0388z�2:64 (7)

 U10�z� � �0:882z�3:16; (8)

where Urs�z� is the binding energy at density parameter rs.
At high densities (rs � 1 and 3 a.u.) our results clearly
show the �z�2:5 behavior predicted by Eq. (2). At low
density (rs � 10 a:u:) the binding energy falls off more
steeply than predicted by the RPA, although the asymptotic
behavior is clearly better described by the RPA than the

pairwise vdW theory [U�z� / �z�4]. DMC and the RPA
give similar prefactors for the asymptotic binding energy at
rs � 3 a:u:, but the DMC prefactor is somewhat lower at
rs � 1 a:u:

PCFs were accumulated by binning the interparticle
distances in the electron configurations generated by the
VMC and DMC algorithms. The error in the VMC and
DMC PCFs gVMC and gDMC is first order in the error in the
trial wave function, but the error in the extrapolated PCF
gext � 2gDMC � gVMC is second order in the error in the
wave function [8]. PCFs for biwires and bilayers are shown
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FIG. 2 (color online). Binding energy per particle of a 2D
HEG bilayer as a function of layer separation for rs � 1 a:u:
(top panel), rs � 3 a:u: (middle panel), and rs � 10 a:u: (bottom
panel). The DMC time steps were 0.007, 0.05, and 0.5 a.u. at
rs � 1, 3, and 10 a.u., and the target configuration populations
were 1024, 320, and 1024.
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FIG. 1 (color online). Binding energy per particle of a 1D
HEG biwire as a function of wire separation for rs � 1 a:u:
(top panel), rs � 3 a:u: (middle panel), and rs � 10 a:u: (bottom
panel). The DMC time steps were 0.04, 0.2, and 2.5 a.u. at rs �
1, 3, and 10 a.u., and the target configuration population was
2048 in each case.
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in Figs. 3 and 4, respectively. The correlation holes be-
tween the electrons in opposite wires or planes are exceed-
ingly shallow, although they extend over a distance roughly
equal to the separation. It can be seen that the interwire
PCF has the long-ranged oscillatory behavior exhibited by
1D HEG PCFs.

In conclusion, we have used QMC to obtain the first
accurate binding-energy data for pairs of thin parallel
metallic wires and layers. Our results are in broad agree-
ment with recent RPA calculations of the binding energy
and complete disagreement with the standard pairwise
vdW model. However, there are significant differences
between the DMC and RPA results for bilayers: at high
densities the asymptotic behavior of the binding energy as
a function of separation is the same but the prefactor is
different, and at low densities the DMC binding energy
falls off more rapidly, implying that correlation effects

neglected in the RPA are important in this regime. Our
data can serve as a benchmark for future theoretical studies
of the binding energies of 1D and 2D HEGs, and they can
also be used to parametrize model interactions between
thin conductors. Together with our results for biwire and
bilayer PCFs, our data could be used to investigate energy
functionals that incorporate vdW effects for use in density-
functional calculations.
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FIG. 3 (color online). VMC PCF for a 1D HEG biwire at rs �
3 a:u: and wire separation z � 3 a:u: The inset shows the inter-
wire correlation hole in greater detail. It was verified for smaller
system sizes that the DMC and VMC PCFs were in excellent
agreement (as expected due to the accuracy of the trial wave
function illustrated in Table I).
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FIG. 4 (color online). Extrapolated PCF for a 2D HEG bilayer
at rs � 1 a:u: and layer separation z � 2 a:u: The inset shows
the interwire correlation hole in greater detail. The VMC and
DMC PCFs are in excellent agreement, implying that the ex-
trapolated PCF is reliable.
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