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a b s t r a c t

In managing an inventory network, two approaches to the pooling of stock have been proposed. Reactive
transshipments respond to shortages at a location by moving inventory from elsewhere within the net-
work, while proactive stock redistribution seeks to minimize the chance of future stockouts. This paper is
the first to propose an enhanced reactive approach in which individual transshipments are viewed as an
opportunity for proactive stock redistribution. We adopt a quasi-myopic approach to the development of
a strongly performing enhanced reactive transshipment policy. In comparison to a purely reactive
approach to transshipment, service levels are improved while a reduction in safety stock levels is
achieved. The aggregate costs incurred in managing the system are significantly reduced, especially so
for large networks. Moreover, an optimal policy is determined for small networks and it is shown that
the enhanced reactive policy substantially closes the gap to optimality.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Lateral transshipments (LTs) are stock movements between
locations in the same echelon of an inventory system. They provide
a valuable tool to supply chain managers who are looking to reduce
the penalties associated with a lack of stock at one or more inven-
tory points. By strategically reallocating excess stock it can be pos-
sible to improve the system wide service levels and/or lower the
cost of operating the system. These goals have traditionally been
sought within spare part networks, where there is a high penalty
attached to a shortage. However the benefits of LTs have also been
realized in sectors ranging from retail to energy generation. The
challenge that LTs bring is in managing when and where it is ben-
eficial to instigate a stock movement. An LT may reduce the short
term shortage risk at the receiving location but it inevitably in-
creases the longer term risk at the sending location. A transship-
ment policy must therefore balance these contrasting risks and
decide when the cost of transshipment is outweighed by the ben-
efit it is expected to deliver.

The suitability of a given LT policy will often depend on the
attributes of the inventory system in which it is employed. How-
ever, a key distinction within the literature on LTs is that between
reactive and proactive policies. Reactive LTs are performed when a
shortage or potential shortage occurs, by shipping either the whole
ll rights reserved.
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customer demand or the number of units short from a different
location. Proactive transshipments are performed periodically to
rebalance the whole system’s stock levels. This paper’s principle
motivation is in considering an enhanced reactive policy which
falls between these two distinct sets so as to maximize the benefit
each transshipment can deliver. Rather than merely looking to
meet the excess demand, the proposed policy views each triggered
transshipment as an opportunity to proactively rebalance the two
interacting locations’ inventory.

Often when a transshipment occurs the cost associated with the
stock movement will primarily be a fixed cost, independent of the
size of the transshipment. The reason for this is that regardless of
whether one item is transported or several, the costs such as using
a vehicle and the associated fuel cost of instigating the journey will
be highest for the first item. The marginal cost for subsequent
items will typically be much lower. When such cost structures ex-
ist it is important to know how best to carry out transshipments.
Economies of scale are considered throughout inventory manage-
ment, from ordering in batches to centralizing warehouses. It is
therefore natural to want to know how best to operate a transship-
ment policy when the opportunity to extract similar benefits
exists.

Within the existing literature Reactive LTs have been studied
under both a periodic and continuous inventory review setting.
For periodic review models, Krishnan and Rao (1965) develop opti-
mal transshipments in a single period for a system with two loca-
tions. This is expanded to a multi-location, multi-period setting by
Robinson (1990), although here the optimal reactive solution can
only be determined for either two locations or multiple identical
locations and when the transshipment cost structure does not
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include a fixed element. This highlights the complexity of deter-
mining optimal transshipment policies. These papers perform LTs
once all demand is known but before it has to be satisfied. In con-
trast, Archibald (2007) and Archibald et al. (2009, 2010) develop
approximately optimal policies which can respond to continuous
demand within each period. The former proposes heuristics to deal
with the transshipment decision process, while the latter papers
look to improve upon this and relax some of the restrictions using
dynamic programming policy improvement techniques. The re-
sults obtained from these policies show them to be reasonably
close to optimal when used in small networks. This method of val-
idation is one which this paper looks to emulate. The above models
focus on single echelon centralized models. However, additional
research in the periodic setting considers the benefit of LTs within
two echelon models (e.g. Dong and Rudi, 2004), decentralized
models (e.g. Rudi et al., 2001) and production based models (e.g.
Zhao et al., 2008). The latter of these is closely related to this paper
as it also considers an enhanced transshipment policy. However, it
considers a production model where stock can be reallocated upon
production whilst also allowing reactive transshipments. It there-
fore falls between a production allocation model and a reactive
transshipment model.

Much of the literature on reactive LTs in a continuous order re-
view setting is motivated by applications in the spare parts indus-
try. Here, practical settings include electronic component
manufacturing and electricity generation companies. Building on
the METRIC repairs model of Sherbrooke (1968), Lee (1987) pro-
poses a model which uses complete pooling within preset groups
of identical locations. This shows the benefit of LTs within the area
and the model is expanded by Axsäter (1990) to allow non-identi-
cal locations. Several papers have been written which further ex-
pand these ideas by relaxing or tightening some constraints such
as making repair capacity finite (Jung et al., 2003), using lost sales
rather than backordering (Dada, 1992) or considering a model
where backorders have to be minimized rather than costs
(Sherbrooke, 1986). In addition to this, inventory systems that sup-
ply more than one type of item are investigated by papers such as
Wong et al. (2006b) and Kranenburg and van Houtum (2009). The
latter examines the benefits of partial pooling, where only certain
transshipments are performed. All of these papers assume an or-
der-up-to replenishment policy for each location. Wijk et al.
(2009) consider a single item system where parts are repaired at
each location and use dynamic programming to determine an opti-
mal transshipment policy. Kukreja and Schmidt (2005) consider a
more general (s,S) policy, but have to resort to a simulation based
approach to determine the optimal order policy.

Away from spare parts, Archibald et al. (1997) shows that in a
periodic review model without fixed order costs, an order-up-to
policy is optimal. However, positive order costs or minimum order
quantities often suggest that an (R,Q) policy is more appropriate in
practice. Several papers take this approach. Evers (2001) and Min-
ner et al. (2003) develop heuristics that can be used to determine
when and how much to transship for systems with lost sales. Axsä-
ter (2003) does the same, but for a model with backorders. He pro-
poses a decision rule which is constructed to make optimal
decisions under an assumption that no further transshipments will
be made. This assumption enables the exact myopic benefit of
transshipping to be calculated and optimized. A related model by
Axsäter et al. (2010) considers an (R,Q) inventory system in prac-
tice. They determine approximately optimal replenishment policy
parameters when transshipments are sourced from a support
warehouse.

Research on proactive LTs explores their use to rebalance an en-
tire system’s stock on hand. This rebalancing is done at a set point
during a review period and before all demand has been realized.
Allen (1958) and Agrawal et al. (2004) consider this problem
independently of replenishment decisions. Allen (1958) looks to
perform the transshipments at the start of the demand period,
whilst Agrawal et al. (2004) devise a method to calculate the best
time to redistribute stock during the period.

Other authors study proactive transshipment and replenish-
ment decisions together. However, due to the periodic nature of
proactive redistribution all known studies only consider their use
alongside a periodic review replenishment policy. Gross (1963)
provides optimality results for a two-location system, where both
ordering and redistribution decisions take place at the beginning of
the review period. This idea is further developed by Das (1975),
who allows the redistribution point to occur at an arbitrary time
during the review period. Gross and Das both assume negligible
transshipment times. Jönsson and Silver (1987) and Bertrand and
Bookbinder (1998) allow positive transshipment times. The main
difference between these two studies is that Jönsson and Silver
(1987) consider how best to meet service levels whilst Bertrand
and Bookbinder (1998) examine the goal of cost reduction.

For a detailed overview of the literature we refer to Paterson
et al. (2011). However, the highlighted literature shows that both
reactive and proactive LTs provide cost benefits, but the cost ben-
efits of proactive LTs have only been exploited in a periodic review
setting. In this study, we analyze the first ‘hybrid’ transshipment
policy which tries to secure the benefits of both under a continuous
review replenishment policy by enhancing a traditional reactive
approach. Our policy can quickly react to shortages by allowing
transshipments at any time when they occur, as for previously pro-
posed reactive LT policies. However, the policy also seeks to proac-
tively redistribute stock between the sending and receiving
locations whenever such an LT is triggered. This will allow maxi-
mum benefit to be extracted from each transshipment instance
and will be especially beneficial in systems where there is a signif-
icant fixed cost involved in carrying out a transshipment.

The specific setting that we consider is as in Axsäter (2003),
with backordering and an arbitrary number of stocking locations
which all apply (R,Q) ordering policies. Axsäter (2003) derives an
algorithm that determines near-optimal reactive transshipment
decisions. These are shown in a simulation study on small net-
works (with two and three locations) to provide a significant cost
benefit compared to not transshipping at all and to applying a sim-
pler transshipment policy. In this paper, we generalize this algo-
rithm with the goal of determining an approximately optimal
enhanced reactive transshipment policy that allows additional
stock redistribution when reacting to a stock out. The results of a
comparative numerical study show that, for small networks, the
enhanced policy significantly outperforms the original Axsäter
reactive proposal, achieving an average 1.6% cost saving over 600
experiments. Such a recurrent saving is of major practical impor-
tance, considering that inventory costs typically account for a sub-
stantial proportion of a business’s total turnover. To analyze the
closeness to optimality of our enhanced policies, we also develop
a dynamic programming (DP) approach to finding an �-optimal
transshipment policy which also allows for a proactive element
in each transshipment. More significantly we show through
numerical results that the optimality gap is closed by over 95%
on average compared to a policy of not transshipping and by 88%
compared to the original reactive policy. This is strong evidence
that our development of an enhanced reactive approach makes
an important contribution to the application of transshipments
and enables benefits which are close to optimal.

In a further numerical study, we compare the traditional and
enhanced algorithms for larger networks with 5–20 locations.
The exact DP algorithm is too numerically intensive to be applied
in these experiments. The results of a comparison of the policies
show that the improvement of the enhanced reactive policy over
the traditional reactive policy is even larger than for small



C. Paterson et al. / European Journal of Operational Research 221 (2012) 317–327 319
networks, with a cost reduction of over 6.4% on average. It also pro-
vides an average saving of 14.4% over not transshipping at all. A
sensitivity study provides further insights into when the cost
reduction is most significant. The study also highlights the addi-
tional benefits that an improved transshipment policy can deliver.
The average service level within the large network study is im-
proved by 1.5% points by the enhanced policy over the purely reac-
tive policy and the amount of safety stock required is reduced by
over half when compared to a policy of no transshipments.

The remainder of the paper is organized as follows. In the next
section, we describe the model and the algorithm for computing
our approximately optimal enhanced reactive transshipment pol-
icy. The cost benefit of the enhanced reactive policy is tested
numerically in Section 3 for networks with two locations. Section 4
describes the exact DP algorithm, and the optimality gap for small
networks is investigated in Section 5. Larger networks are explored
in Section 6. We end with conclusions and directions for further
research in Section 7.
2. An enhanced transshipment policy

An approximately optimal policy for determining purely reac-
tive transshipment decisions in an inventory system, in which all
locations follow a continuous review (R,Q) ordering policy is de-
rived by Axsäter (2003). The algorithm determining the policy is
constructed by making use of an assumption that the considered
transshipment will be the last one ever made. Whenever a location
experiences a shortage, the algorithm calculates the most cost effi-
cient amount and location to transship from under this assump-
tion. However, the derived policy only looks to react to a
shortage, not to be proactive in future shortage prevention. The
policy proposed in this paper allows more stock to be transshipped
than is needed to meet the immediate shortage. This permits the
two locations which are parties to a transshipment to redistribute
their stock and balance future risk. For the sake of clarity in the
remainder of the paper we refer to the proposed policy as the en-
hanced policy, with the existing policy referred to as the reactive
policy. Table 1 provides a list of notation needed to define the
inventory system.
Table 1
List of Notation.

N Number of demand locations: location i 2 {1, . . . ,N}
Ri Reorder point at i
Qi Batch size of orders placed at i
ts,i Time until sth unit of stock becomes available at i
ILi Inventory level at i
IPi Inventory position at i
Li Lead time of orders placed at i
Di(Li) Stochastic lead time demand at i
Ai Order cost at i (per order)
hi Holding cost at i (per item per unit time)
bi Backorder cost at i (per item per unit time)
ci,j(y) Cost of transshipping y units from i to j

cf
i;j

Fixed cost of transshipping from i to j

cu
i;j Cost per unit of transshipping from i to j

ki Arrival rate of demand instances at i
li Average size of each demand at i
fi,j Probability that a demand at i will be of size j
f n
i;j Probability that j units are demanded by n customers at i

Pn
i;j Probability that nth customer demands the jth unit at i

Ci Steady state cost of location i
Ci(k) Expected cost rate at time Li given current IPi = k
Xi State variable at location i
X0 i(d) State variable at location i less d units of stock
Vi(Xi, t) Expected total cost at i during the interval [0, t]
ai(Xi) Expected lead time bias at i given starting state Xi

bi(IPi) Expected bias after lead time at i given current IPi

ci(Xi) Total expected bias at i given starting state Xi
The system has N stocking locations which all experience inde-
pendent compound Poisson demand with location i having arrival
intensity ki. Modeling demand as a compound Poisson process en-
ables the policy to be applied in a wide range of inventory systems
that allow customers to demand more than one item at a time. The
probability that a demand at location i is of size j is denoted by fi,j

and we do not prescribe any distributional form. It should also be
noted that Pn

i;j, the probability that the nth customer demands at
location i the jth unit of stock, can be calculated using the recursion
Pn

i;j ¼ Pn
i;j�1 � f n

i;j�1 þ f n�1
i;j�1.

To replenish its stock location i 2 {1, . . . ,N} places an order of size
Qi at the central supplier whenever its inventory position drops to or
below reorder level Ri. This supplier is assumed to have sufficient
inventory capacity so that this order can always be met and takes
a fixed lead time Li to arrive. If a location does not have sufficient
stock on hand to satisfy a demand, then items may be transshipped
to that location from a different location with negligible lead time.
This setup is valid as stocking points are often geographically closer
than that of the supplier and do not have the external logistical de-
lay of placing an order with a supplier. Any demand that cannot be
met immediately (after transshipping) is backordered. Costs are in-
curred for ordering (Ai), holding stock on hand (hi per item and per
time unit), backordering (bi per item and per time unit), and for
transshipping. The cost for transshipping y units from location i to
j is given by ci;jðyÞ ¼ cf

i;j þ ycu
i;j, where cf

i;j is the fixed cost per trans-
shipment and cu

i;j is the cost per unit transshipped.
Under the assumption that no transshipments take place, Axsä-

ter (2003) derives an expression for the bias associated with each
system state. This measures the transient effect on costs of starting
the system in that state. Performing a transshipment will instantly
move the system to a new state, so the benefit of a given transship-
ment can be identified by comparing the bias of the current state
with the aggregate of the bias if the transshipment is enacted
and the cost to enact it. By maximizing the difference between
these quantities over all possible locations and transshipment
quantities, the best myopic decision can be identified. The limita-
tion of the formulation given by Axsäter (2003) is that it does
not allow the size of the transshipment to be larger than the short-
age. This restriction is mathematically convenient in that it ensures
that the inventory position of any location never exceeds Ri + Qi

and thus provides a closed range on which to consider the future
bias. However, when there is a significant fixed cost per transship-
ment it seems intuitive that allowing larger transshipments may
well deliver greater cost benefits. Not every such enhanced trans-
shipment will take the inventory position above Ri + Qi, but to pro-
vide a completely general account and to calculate the benefit
associated with every possible decision it is necessary to extend
the methodology to account for such scenarios. Please note that,
while this extension is certainly needed in general, we shall
encounter in Section 4 two location set-ups where almost all of
the (very considerable) benefits from enhanced transshipments
can actually be achieved while keeping the inventory below Ri + Qi.

We now describe how the above ideas can be developed to yield
near-optimal decisions in our enhanced approach. In steady state
under an (Ri,Qi) replenishment policy without transshipments it
is known that location i’s inventory position is uniformly distrib-
uted over the range [Ri + 1, . . . ,Ri + Qi]. With current (time zero)
inventory position k and stochastic lead time demand Di(Li) then
the mean inventory cost rate at Li is given by

CiðkÞ ¼ hiEðk� DiðLiÞÞþ þ biEðk� DiðLiÞÞ�

¼ ðhi þ biÞEðk� DiðLiÞÞþ þ biEðDiðLiÞ � kÞ

¼ ðhi þ biÞe�kiLi
Xk�1

j¼0

ðk� jÞ
Xj

n¼0

ðkiLiÞn

n!
f n
i;j þ biðkiliLi � kÞ: ð2:1Þ
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We infer that the steady state cost rate for location i is given by

Ci ¼
1
Q i

PRiþQi

k¼Riþ1
CiðkÞ: ð2:2Þ

The current state Xi of location i incorporates information on the
current inventory position (IPi) together with the times at which
each inventory item becomes available. We write Vi(Xi, t) for the to-
tal expected cost incurred under an (Ri,Qi) ordering policy with no
transshipments during the time interval [0, t] when the system is in
state Xi at time 0. The bias associated with Xi is defined as

ciðXiÞ , lim
t!1
fViðXi; tÞ � tCig: ð2:3Þ

Suppose that t > 0 and the random state of location i at time Li is
denoted by XLi

i ; we then have

ViðXi; Li þ tÞ ¼ ViðXi; LiÞ þ EViðXLi
i ; tÞ: ð2:4Þ

We now easily see that

ciðXiÞ ¼ lim
t!1
fViðXi; Li þ tÞ � ðLi þ tÞCig; ð2:5Þ

has a decomposition given by

ciðXiÞ ¼ aiðXiÞ þ biðIPiÞ; ð2:6Þ

where

aiðXiÞ , ViðXi; LiÞ � LiCi; ð2:7Þ

and

biðIPiÞ , lim
t!1

EViðXLi
i ; tÞ � tCi

n o
: ð2:8Þ

The calculation of ai(Xi) is given in the Appendix and is un-
changed by the fact that here we may have IPi > Ri + Qi. However
the earlier method for calculating bi is dependent on the inventory
position at time Li being in the range [Ri + 1, . . . ,Ri + Qi]. A particu-
larly large proactive transshipment may invalidate this assump-
tion. Therefore in our formulation we must take account of the
additional bias that will be arise if the inventory position is taken
above Ri + Qi. We now describe the calculation of bi.

We first observe that, since XLi
i is stochastically independent of

all information in Xi save only IPi, then bi depends upon Xi only
through IPi. More specifically, ILLi

i , the inventory level at time Li,
can be calculated through the relation

ILLi
i ¼ IPi � DiðLiÞ: ð2:9Þ

We also note from Axsäter (2003) the following notation to
show the relationship between ILi and IPi at any point in time.
For a given ILi = k the corresponding inventory position can be
given by

hki ¼ kþ nQi; ð2:10Þ

where n is the smallest integer such that hkiP Ri + 1.
As location i evolves under an (Ri,Qi) ordering policy with no

transshipments, the associated inventory position process regener-
ates upon every entry into state Ri + 1 (or indeed any other state –
Ri + 1 is chosen for convenience). In (2.8) we now deem XLi

i to be
the location i state at time zero and write T for the first subsequent
time at which the corresponding inventory position, given by rear-
ranging (2.9), is in the regeneration state Ri + 1. Standard theory,
for example in Tijms (1986), partitions the infinite horizon consid-
ered in (2.8) as [0,1) = [0,T) [ [T,1) and demonstrates that the
contribution to bi(IPi) from the latter interval is zero. This reasoning
yields both

biðIPiÞ ¼ EViðXLi
i ; TÞ � EðTÞCi; ð2:11Þ

and
biðRi þ 1Þ ¼ 0: ð2:12Þ

We now fix IPi = k > Ri + 1 and develop an expression for bi(k) by
conditioning upon the size of the first demand to occur after time
zero. The expected time at which this first demand occurs is k�1

i

and from (2.11) the cost rate contribution to bi(k) prior to then is
Ci(k) � Ci. Following demand d the inventory position at i will be
changed to hk � di and hence we obtain

biðkÞ ¼
fCiðkÞ � Cig

ki
þ
P1
d¼1

fi;dbi½< k� d >�: ð2:13Þ

We now use (2.13) to recover bi as the limit of an iterative
scheme which is akin to DP value iteration. It proceeds as follows:

b0
i ðkÞ ¼ 0; k 2 ½Ri þ 1; . . . ;Ri þ Q i; . . . ; S�; ð2:14Þ

bn
i ðRi þ 1Þ ¼ 0; n P 0; ð2:15Þ

bnþ1
i ðkÞ ¼ fCiðkÞ � Cig

ki
þ
P1
d¼1

fi;db
n
i ðhk� diÞ;

k 2 ½Ri þ 2; . . . ;Ri þ Qi; . . . ; S�; ð2:16Þ

where S is a large inventory position state such that no higher state
is reached. The scheme must converge geometrically fast, with bi

the limit.
We can now use the complete bias functions ci for each location

i to identify the transshipment that delivers the most cost benefit.
We use the notational shorthand X0iðdÞ for the resulting state of a
location i once d units of inventory have been withdrawn, either
through customer demand or for transshipment. Suppose that
some demand d occurs at location i when in state Xi and that this
causes a shortage. The long term cost benefit of transshipping y
units from location j (in current state Xj) to location i in comparison
with performing no transshipment and allowing all demand to be
absorbed at i is identified as the quantity

Dðj; yÞ ¼ lim
t!1

ViðX0iðdÞ; tÞ þ VjðXj; tÞ � Vi X0iðd� yÞ; t
� �

� Vj X 0jðyÞ; t
� �n o

� cj;iðyÞ � yðAj=Q j � Ai=QiÞ:
ð2:17Þ

From (2.3) we have

Dðj; yÞ ¼ ci X 0iðdÞ
� �

þ cjðXjÞ � ci X0iðd� yÞ
� �

� cj X0jðyÞ
� �

� cj;iðyÞ � yðAj=Q j � Ai=QiÞ: ð2:18Þ

We note that, prior to (2.17), we have taken no account of the
order costs in our calculations. A transshipment of y units from j
to i has the effect of adjusting the long-term cost burden from
orders by y(Aj/Qj � Ai/Qi). We write

D� ¼max
j–i

max
16y6ILj

Dðj; yÞ: ð2:19Þ

Our enhanced policy is as follows: If D⁄ 6 0, do not transship. If
D⁄ > 0 transship y⁄ units from j⁄ to i, where y⁄ and j⁄ are the max-
imizers in (2.19). This decision rule is invoked every time a demand
occurs at a location which would result in a shortage.

This policy is quasi-myopic in that it is cost minimizing if no
further transshipment is permitted after the current shortage is
dealt with. As the reactive policy of Axsäter (2003) is a more con-
strained case of our general enhanced policy, under the myopic
assumption any enhanced decision will be at least as good as that
of the purely reactive policy.

3. Two location simulation study: reactive vs. enhanced policy

To analyze the performance of the enhanced transshipment pol-
icy, an initial simulation study is conducted. This study is restricted
to networks with two identical locations. In a second study, of



Table 3
Enhanced rule vs reactive rule.

k p L b cf cu

0.8 0.85% 0.6 1.72% 2 1.23% 10 0.84% 10 1.48% 1 1.73%
2.4 1.77% 0.8 1.46% 3 1.95% 20 1.47% 20 1.75% 2 1.45%
4.0 2.14% 30 1.76% 30 1.72%

40 1.91% 40 1.59%
50 1.98% 50 1.41%
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which the details and results will be presented in later sections,
larger and more varied networks will be considered. The two rea-
sons for the more restricted initial exploration are as follows. First,
there are many model parameters and varying all of them for lar-
ger networks is time consuming. This initial exploration allows us
to observe how the parameters impact on costs so that the larger
network can focus on key issues. Secondly, the restriction will al-
low us to determine the optimal transshipment policy using DP
in Section 5 for the same set of experiments, and therefore to study
the relative reduction of the optimality gap from the original reac-
tive policy to the new enhanced transshipment policy.

Since the two locations are assumed identical, we will drop the
location identifying subscript for cost parameters in the remainder
of this section. We will do the same for the policy parameters, and
assume that both locations use the same replenishment and trans-
shipment policy.

Although the transshipment policy might have some effect on
the optimal ordering quantity, in practice there are often fixed or
minimal order sizes. For this reason and in line with previous stud-
ies, we fix the order cost ($100) and use the EOQ formulaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2AklÞ=ðhÞ

p� �
to determine the order size. The validity of this

decision is discussed below. For the sizes of successive demands
within the study we use a geometric distribution such that
fj = p(1 � p)j�1, j P 1. The holding cost rate ($1) is used as the unit
cost and all other model parameters are varied in a full factorial
study. The full range of parameters examined is shown in Table 2.
There are 600 parameter combinations and hence 600 experiments
in total.

For both the original reactive and enhanced transshipment
policies, the transshipment decisions are determined by the algo-
rithms developed in Section 2. To obtain further insights we also
consider the no transshipment policy as a benchmark. For all three
(no, reactive and enhanced) transshipment policies, the optimal
value of R is found post hoc by conducting simulation studies on
the full range of possible values.

Over the 600 experiments an average saving of 1.59% is
observed for the enhanced policy when compared to the reactive
policy. This is broken down by each parameter in Table 3. For
example, the 200 experiments which have an arrival rate of 2.4
customers per unit time yield an average saving of 1.77%.

The results in Table 3 confirm intuition in several ways. Once a
transshipment is instigated, a policy which looks to transship more
will see a greater benefit if the marginal cost of adding an extra
unit is low. This is supported by the cu results. Further, if a policy
is performing each transshipment more efficiently then it is natu-
ral that the saving will increase when there are more transship-
ment opportunities. By increasing parameters k or L, or
decreasing parameter p we raise the lead time demand variability
and thus the chance of a shortage. Unsurprisingly, increasing the
shortage risk through varying these parameters in the manner
described leads to an observed gain in savings.

Considering the backorder costs, we see that the savings are
greater as the penalty for not immediately meeting a demand in-
creases. However, as the fixed transshipment cost increases the
dynamics are less straightforward. As the cost per transshipment
Table 2
Parameter values.

Arrival rate (k) 0.8, 2.4, 4.0
Geometric distribution parameter for demand size (p) 0.6, 0.8
Lead time (L) 2, 3
Backorder cost (b) 10, 20, 30, 40, 50($)
Transshipment cost [per item] (cu) 1, 2($)
Transshipment cost [per transshipment] (cf) 10, 20, 30, 40, 50($)
increases then naturally so does the reward for carrying out more
effective transshipments but at the same time the benefit associ-
ated with carrying out any transshipment decreases. This can be
observed in Table 3 where the benefit conferred by the enhanced
approach increases up to a point before decreasing. This is sup-
ported by the average number of transshipments per 100 units of
time, which falls from 11.2 when cf = 10 to only 3.3 when cf = 50.

More detailed results are provided in the Appendix for a sample
of parameter values (27 experiments). All statistical comparisons
have used paired t-tests at a 95% confidence level, with common
random numbers used for all policies. Overall, the average saving
of the new enhanced policy compared to one which uses no trans-
shipments is 4.21%, reinforcing the view that transshipping is
worthwhile. The standard errors of the costs for the reactive and
the new enhanced policies are also given in Table A.1 (in brackets).
There are a few low demand cases where there is no statistically
significant difference between the reactive and enhanced policies
but no cases were found where the enhanced policy was outper-
formed by the existing policy. We are not able to prove that the en-
hanced policy always outperforms the reactive policy but we have
studied a very large number of problem instances and have as yet
found no counterexamples.

A comparison of the safety stock levels R provides insight into
how the cost reduction is achieved. The average reorder level is
9.8 units without transshipments, 8.9 units for the reactive trans-
shipment policy and 8.2 units for the new enhanced transshipment
policy. Better transshipment decisions reduce the negative cost ef-
fects of shortages, thereby allowing the system to function with
lower safety stocks. Further exploration also showed that in gen-
eral the enhanced transshipment policy is more cost efficient, with
transshipments happening less frequently but with larger quanti-
ties (4.7 units for the enhanced policy compared to 2.1 units for
the reactive policy on average).

To examine the effect of the batch size on the relative perfor-
mance of the policy, the reorder point R, which was optimised
using a value of Q set by the EOQ, was fixed and used to determine
the corresponding optimal batch size in a similar fashion. It should
be noted that this pair may still not be the global optimum. The
results from this showed that the difference between the local
optimal value of Q and the EOQ value is relatively consistent
between the policies, with a difference of 2 units for the reactive
policy and 2.2 for the enhanced policy. In fact the relative perfor-
mance of the two policies remained constant, with the perfor-
mance gain remaining at 1.6%. This indicates that the observed
gains are robust when the batch size is varied and that using the
EOQ value gives a suitable overview of the policies’ performance.

The results in this section have clearly shown that the new en-
hanced transshipment policy significantly outperforms the original
reactive transshipment policy. However, it remains of real interest
to discover how close (in cost terms) it is to an optimal transship-
ment policy. To explore this, we will develop a dynamic program-
ming (DP) formulation for finding the optimal transshipment
policy in the next section, and then compare its cost to that of
the new enhanced transshipment policy in Section 5, using the
same set of experiments that were investigated in this section.



Table 4
Additional notation.

d Time quantum between each state transitionffi;j
Truncated probability of demand j at location i such that Ri � Qi < ILi is
always true

Yi Number of quanta until the outstanding order arrives at location i
Z Location of most recent demand where Z = 0 indicates no demand

occurred in the preceding period
IH Indicator function where H is a logical statement: if true IH = 1 else IH = 0
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4. Dynamic programming formulation

In this section, we provide a DP formulation that can be used to
find the optimal transshipment policy using value iteration. In our
system, the resulting policy determines how much to transship, gi-
ven the locations’ inventory levels and remaining lead times of out-
standing orders, in order to minimize the overall cost rate incurred.
We remark that our DP formulation utilizes a discrete time approx-
imation of the actual continuous review system. However, for a
sufficiently small time quantum the approximation is very good.
This will be verified in the numerical investigation of Section 5.
For presentational ease, we will refer to the transshipment policy
that minimizes the cost under the DP formulation as the optimal
transshipment policy.

Our formulation is for a two location system setup. While it is
possible to generalize the approach to larger systems, value itera-
tion becomes computationally intractable very quickly due to the
rapid growth in the number of states. In order to limit the state
space, only one order is allowed to be outstanding at each location
at any time. This assumption is supported by real world practice
and by the simulation results obtained in Section 3. These showed
that conditional upon a location having orders outstanding the
probability of multiple orders outstanding was less than 1%. Our
simulations also showed that limiting the enhanced policy in a
two location network so that a location could only ever have a
maximum stock of Ri + Qi resulted in no statistically significant cost
difference. The reader is referred to the related discussion in Sec-
tion 2. This result is due to the fact that it is unlikely that one loca-
tion would have enough excess stock to be able to completely refill
the other’s safety stock, and thus make IPi > Ri + Qi. Therefore it is
feasible to limit the inventory state space to a range of Ri ± Qi. It
should be noted that in a multi-location network, and in particular
with non-identical locations, this assumption will not hold. Recall
from Section 3 that we will apply the DP algorithm for the same set
of experiments as described there. To develop the DP model we
introduce additional notation and formulae in Table 4. For suffi-
ciently small time quantum d, we may assume that in a single time
Table 5
Optimality gap analysis.

k p

Parameter
value

Reactive
vs. Opt.
(%)

Enhanced
vs. Opt.
(%)

Improvement
(%)

Parameter
value

Reactive
vs. Opt.
(%)

Enh
vs.
(%)

0.8 1.00 0.14 86 0.6 2.01 0.2
2.4 1.99 0.23 90 0.8 1.61 0.1
4.0 2.45 0.31 90

b cf

10 0.94 0.11 90 10 1.96 0.4
20 1.64 0.18 90 20 2.00 0.2
30 1.99 0.24 89 30 1.88 0.1
40 2.19 0.28 87 40 1.71 0.1
50 2.30 0.32 86 50 1.52 0.1
slot the system experiences an instance of demand at either one
location or neither location. The probability of a demand of size j
at location i is dki

ffi;j during each period while the probability of
no demand in the system is 1 � d(k1 + k2). In the limit d ? 0 these
probabilities converge to the exact Poisson probabilities.

4.1. State definition

A five dimensional system state incorporates the inventory level
and the time until the outstanding order arrives (if there is one) at
both locations. The fifth dimension indicates the location where
any current demand has occurred. We write state s as follows

s ¼ hIL1; IL2;Y1;Y2; Zi ð4:1Þ

Recall that we do not allow the inventory position to go above
Ri + Qi. Further, the decision to allow a maximum of one outstand-
ing order bounds the inventory level below. Hence we have that
Ri � Qi < ILi 6 Ri + Qi. Moreover, we clearly have 0 6 Yj <

Lj

d .

4.2. Action space definition

The action a (�a) is the amount to transship from locations
1(2)–2(1). For a given state s, the set of actions Act(s) is bounded
by zero, and by the minimum of the amount available to transship
and the amount that can be stored at the receiving location (i.e.
that does not take the inventory position above its maximum).
We summarize these constraints by.

If IL2 > 0, IL1 < 0 and Z = 1:
anced
Opt.

9
5

9
6
6
2
0

a 2 f�minðIL2;R1 þ IðY1¼0Þ � Q1 � IL1Þ; . . . ;0g
If IL1 > 0, IL2 < 0 and Z = 2:
a 2 f0; . . . ;minðIL1;R2 þ IðY2¼0Þ � Q 2 � IL2Þg
Else: a 2 {0}.

Hence, for example, if IL1 > 0, IL2 < 0, Z = 2 and Y2 > 0 then a is an
integer in the range from 0 to min(IL1,R2 � IL2).

4.3. Cost function

The cost (fs(a)) associated with being in state s and choosing
action a is obtained by aggregating the cost of holding (or
backordering) the current level of inventory after the transship-
ping action has taken place with the cost of the action itself. There
is also the additional cost of placing any replenishment order
L

Improvement
(%)

Parameter
value

Reactive
vs. Opt.
(%)

Enhanced
vs. Opt.
(%)

Improvement
(%)

86 2 1.35 0.12 91
92 3 2.28 0.33 86

cu

76 1 1.99 0.26 88
88 2 1.64 0.19 89
92
93
94
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which is included in the period directly after the order has been
instigated. Hence we have

fsðaÞ ¼ h1ðIL1 � aÞþ þ h2ðIL2 þ aÞþ þ b1ðIL1 � aÞ� þ b2ðIL2

þ aÞ� þ A1IðY1¼
L1
d �1Þ þ A2IðY2¼

L2
d �1Þ þ cujaj þ cf Ijaj>0 ð4:2Þ
4.4. State transitions

If the current state is s = hIL1, IL2, Y1, Y2, Zi, action a is undertaken
and demand d occurs at location 1 then the new state will be
s0 ¼ hIL01; IL

0
2; Y

0
1;Y

0
2i, where

IL01 ¼ IL1 � a� dþ Q 1IðY1¼1Þ;

IL02 ¼ IL2 þ aþ Q 2IðY2¼1Þ;

Y 01 ¼ ðY1 � 1ÞIð16Y16
L1
d �1Þ þ

L1

d
� 1

� �
IðIL1�a�d6R1&Y1¼0Þ;

Y 02 ¼ ðY2 � 1ÞIð16Y26
L2
d �1Þ þ

L2

d
� 1

� �
IðIL2þa6R2&Y2¼0Þ: ð4:3Þ

Similar transitions can be identified for the cases when a de-
mand occurs at location 2 and when no demand occurs anywhere
in the system.

4.5. Value iteration

The above are deployed in a value iteration in which the value
function (Vn(s)) is the minimal cost incurred over an n-period hori-
zon from initial state s. If we write w(s,s0) for the probability of
moving from state s to s0 then the optimality principle gives

VnðsÞ ¼ min
a2ActðsÞ

fsðaÞ þ
X
s02S

wðs; s0ÞVn�1ðs0Þ
 !

: ð4:4Þ

We develop the (Vn)nP1 using backwards induction and utilize
the stopping criterion recommended by Tijms (1986). The mini-
mizing actions in the final iteration yield the �-optimal policy.
5. Optimality gap

For each of the 600 experiments, the dynamic programming
model was used to determine the optimal transshipment policy.
This was then used within the simulation model of Section 3
along with the two approximate policies and the policy of not
transshipping. This ensured that like for like comparisons could
be made using the same set of randomly generated events. It
was necessary to gather results for a range of values of the reorder
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Fig. 1. Sensitivity Analysis for cf =
point R so that the optimal value could be used for each parame-
ter set.

5.1. Results

The benefit of using the enhanced policy can now be seen in the
large step it takes towards the performance of the �-optimal policy.
Table 5 shows that over a range of parameter values there is a con-
sistent level of improvement in cost performance achieved by
including a proactive stock rebalancing element to a reactive pol-
icy. Compared to a policy of no transshipment the enhanced policy
closes the suboptimality gap by over 95% over the entire data set.
Compared to the reactive policy it is closed by 89%; it is this rela-
tive improvement over the optimality gap which is broken down in
Table 5.

The enhanced policy appears to perform strongly in comparison
to the optimal policy. In fact in 90 of the 600 experiments there is
no statistical difference between the two policies. It also displays
very similar characteristics to the dynamic programming based
optimal policy. Both its average reorder point (8.2 vs. 8.1) and aver-
age transshipment size (both 4.7) are similar. The one difference is
the number of transshipment events. For every 100 time units the
�-optimal policy carries out one extra transshipment on average
(6.4 vs. 7.5). This implies that the lack of future information results
in a slightly more conservative approach in the enhanced policy. A
subsection of the full results can be found in Table A.2.

Fig. 1 clearly demonstrates the superiority in performance of
the enhanced policy over the reactive policy, more so for larger val-
ues of the fixed transshipment cost. It also gives an indication of
the greater consistency the enhanced policy achieves in
performance.

5.2. Accuracy of Discrete Time Assumption & Computation Time

The above results arising from the DP implementation all use
discrete time quantum d ¼ 1

8. We confirm the acceptability of this
choice by resolving with d ¼ 1

16 and observing that the resulting
changes in cost rates are minimal and nowhere statistically
significant.

While using the optimal policy may reduce inventory costs its
development is computationally expensive when compared to
the heuristic policies, which can be obtained very rapidly in real
time. The time taken to compute each experiments optimal policy
was recorded.

Table 6 gives a breakdown of the time needed to develop an
optimal policy by arrival rate. It displays how halving the size of
d from d ¼ 1

8 increases the computational time by a factor of 5 or
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10 (left) and cf = 50 (right).



Table 6
Computational time (mins).

Arrival rate d ¼ 1
8 d ¼ 1

16
Multiple

0.8 3.2 24.2 7.6
2.4 33.6 222.7 6.6
4.0 154.9 759.7 4.9
Overall 63.9 335.5 5.3

Table 8
Percentage cost savings for the enhanced policy over the reactive policy: large
networks.

Average k Identical (%) Two tier (%)

1.4 4.57 4.64
2.2 5.93 5.82
3.0 6.69 6.60
3.8 7.17 7.33
4.6 7.55 7.69
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more on average. Moreover, the computation time increases rap-
idly with the arrival rate.
Fig. 2. Savings achieved by the enhanced policy over no transshipment.
6. Large network study

Having shown that the enhanced policy improves the original
reactive policy and makes a large step towards closing the optimal-
ity gap while reducing some of the variability in performance, the
next step is to consider its performance in larger networks. In a
simulation study, designed in a similar way to the above small net-
work study, inventory systems with 5, 10 and 20 location are con-
sidered. Rather than a full factorial study the focus is now put on
how the size of the network and the arrival rate (and hence the
lead time demand variability) influences policy performance. Eight
different arrival rates are considered in networks with identical
locations. Additionally, networks which had two different levels
of arrivals are considered. These networks have 40% of the loca-
tions at a higher demand rate than the other 60%. In the latter case,
the overall system arrival rate is set equal to a corresponding iden-
tical location configuration so that comparisons could be fairly
drawn (see Table 7).

A full set of results is given in Tables A.3 and A.4 within the
Appendix. The average percentage savings, broken down by as-
signed values of the arrival rate, are given in Table 8. The overall
average results show a saving over the reactive policy of 6.38%
for identical locations and 6.42% for the networks with a two tier
arrival rate structure. As for smaller networks, the greatest savings
occur when the arrival rate is large.

The difference in results between the identical location setup
and the two tier setup is small. Ideally a system with many differ-
ent arrival rates could be considered but this is challenging to
implement due to the necessity of determining suitable values of
R for each location via a post hoc optimization.

The enhanced policy offers a consistent level of cost improve-
ment. Average costs are reduced by between 11% and 17% in com-
parison with no transshipment. In the case of the reactive policy,
the cost saving can be as little as 6%. The greater consistency in
performance of the enhanced policy against increasing arrival rate
is illustrated by Fig. 2.

While costs are an important part of inventory systems it is
not the only performance measure of interest. Service levels
within a system are also a key consideration and the fill rates
(the percentage of demand filled immediately from stock on
hand or via transshipment) were also recorded for the large net-
Table 7
Parameter values.

Number of locations 5, 10, 20

Arrival rate [Identical Locations](k) 1.4, 2.2, 3.0, 3.8, 4.6
Low arrival rate [Different Locations](kl) 1.0, 1.8, 2.6, 3.4, 4.2
High arrival rate [Different Locations](kh) 2.0, 2.8, 3.6, 4.4, 5.2
Distribution of order size (p) 0.8
Lead time (L) 3
Backorder cost (b) 30($)
Transshipment cost [per item] (cu) 1($)
Transshipment cost [per transshipment] (cf) 10($)
work study. For the reactive policy a service level of 96.8% was
achieved, but the enhanced policy increased this to 98.3%.

The large network study also reinforces other findings from the
smaller network results. For identical locations, safety stock is re-
duced from 12.6 units on average with no transshipments to 9.3
units under the reactive policy and to 5.6 units under the new en-
hanced policy. Similar results are obtained for the two tier net-
works. The average size of transshipment again increases, from
1.3 units to 6.0 units. These results illustrate the greater efficiency
possible from anticipating shortages rather than merely respond-
ing to them.
7. Conclusions

We have shown that the benefits of reactive transshipments can
be enhanced by the development of a new type of policy, which
incorporate a proactive element. System costs can be reduced
and the efficiency of the transshipment process improved. This
has been observed through an extensive study of both small and
large (R,Q) replenishment policy inventory networks, with the
benefits growing with the number of stock holding locations.
Moreover the improvements that this enhanced transshipment
policy can bring have been shown to significantly reduce the opti-
mality gap.

The comparison to optimality has been achieved through a dy-
namic programming model that enables the calculation of an �-
optimal transshipment policy and the resulting costs. Whilst this
formulation is restricted to small systems it is an important step
in understanding the transshipment process and in evaluating
the performance of the more easily developed enhanced policy.
More importantly, the numerical results show that the enhanced
policy performs close to optimal over the examined parameters,
with some scenarios showing no significant difference between
the enhanced policy and the �-optimal policy.

One possible way to further improve the enhanced policy is to
relax the myopic assumption that underpins it. Another avenue
would be to develop the redistribution element by considering
transshipments at times other than at those when shortages occur.
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One clear limitation within batch ordering systems with transship-
ments is the challenge to find appropriate replenishment policy
parameter values, even more so in systems with non-identical
locations. Our results have shown that the enhanced transship-
ment policy can significantly alter the optimal reorder point when
compared to no-transshipments. Indeed part of the savings
achieved is a consequence of being able to lower the amount of
safety stock required throughout the system. Future work could
develop analytical approaches to the determination of reorder
Table A.1
Two location results: p = 0.8, L = 3, cu = 1.

k b cf Q R No tran. R Reactive (Err)

0.8 10 10 15 1 29.96 (0.02) 1 29.08 (0.02)
0.8 10 30 15 1 29.96 (0.02) 1 29.79 (0.02)
0.8 10 50 15 1 29.96 (0.02) 1 29.91 (0.02)
0.8 30 10 15 3 33.41 (0.03) 2 31.04 (0.02)
0.8 30 30 15 3 33.41 (0.03) 3 32.29 (0.02)
0.8 30 50 15 3 33.41 (0.03) 3 32.84 (0.02)
0.8 50 10 15 4 34.83 (0.03) 3 31.80 (0.02)
0.8 50 30 15 4 34.83 (0.03) 3 33.11 (0.03)
0.8 50 50 15 4 34.83 (0.03) 4 33.81 (0.02)
2.4 10 10 25 7 51.76 (0.02) 6 50.93 (0.02)
2.4 10 30 25 7 51.76 (0.02) 7 51.66 (0.02)
2.4 10 50 25 7 51.76 (0.02) 7 51.73 (0.02)
2.4 30 10 25 10 57.14 (0.03) 9 54.32 (0.02)
2.4 30 30 25 10 57.14 (0.03) 10 56.31 (0.02)
2.4 30 50 25 10 57.14 (0.03) 10 56.81 (0.02)
2.4 50 10 25 12 59.51 (0.03) 9 55.53 (0.03)
2.4 50 30 25 12 59.51 (0.03) 11 57.82 (0.02)
2.4 50 50 25 12 59.51 (0.03) 11 58.60 (0.03)
4 10 10 32 13 66.82 (0.02) 12 66.02 (0.02)
4 10 30 32 13 66.82 (0.02) 13 66.76 (0.02)
4 10 50 32 13 66.82 (0.02) 13 66.82 (0.02)
4 30 10 32 17 73.55 (0.03) 15 70.52 (0.02)
4 30 30 32 17 73.55 (0.03) 16 72.81 (0.03)
4 30 50 32 17 73.55 (0.03) 17 73.33 (0.03)
4 50 10 32 18 76.38 (0.04) 16 72.03 (0.03)
4 50 30 32 18 76.38 (0.04) 17 74.84 (0.03)
4 50 50 32 18 76.38 (0.04) 18 75.68 (0.03)

Table A.2
Two location results: optimality comparison p = 0.8, L = 3, cu = 1.

k b cf Q Opt. No tran. Gap (%

0.8 10 10 15 28.84 29.96 3.75
0.8 10 30 15 29.58 29.96 1.29
0.8 10 50 15 29.82 29.96 0.49
0.8 30 10 15 30.68 33.41 8.17
0.8 30 30 15 31.89 33.41 4.55
0.8 30 50 15 32.39 33.41 3.05
0.8 50 10 15 31.55 34.83 9.43
0.8 50 30 15 32.53 34.83 6.60
0.8 50 50 15 33.22 34.83 4.61
2.4 10 10 25 49.62 51.76 4.12
2.4 10 30 25 51.12 51.76 1.24
2.4 10 50 25 51.53 51.76 0.44
2.4 30 10 25 52.70 57.14 7.77
2.4 30 30 25 54.72 57.14 4.23
2.4 30 50 25 55.62 57.14 2.67
2.4 50 10 25 53.88 59.51 9.47
2.4 50 30 25 55.93 59.51 6.03
2.4 50 50 25 56.93 59.51 4.34
4.0 10 10 32 63.68 66.82 4.71
4.0 10 30 32 65.86 66.82 1.44
4.0 10 50 32 66.47 66.82 0.53
4.0 30 10 32 67.44 73.55 8.31
4.0 30 30 32 70.40 73.55 4.28
4.0 30 50 32 71.63 73.55 2.61
4.0 50 10 32 69.07 76.38 9.57
4.0 50 30 32 71.91 76.38 5.85
4.0 50 50 32 73.29 76.38 4.04
points. This would enable the full benefits of the improvements
in the transshipment policy to be realized in more complex inven-
tory systems with a larger number of stocking locations and non-
identical demand rates.
Appendix A. Detailed results

Tables A.1–A.4.
Saving (%) R Enhanced (Err) Saving (%) Improve (%)

2.96 1 28.86 (0.02) 3.66 0.73
0.56 1 29.61 (0.02) 1.17 0.61
0.18 1 29.84 (0.02) 0.41 0.23
7.10 2 30.75 (0.02) 7.95 0.92
3.34 3 31.91 (0.02) 4.47 1.17
1.70 3 32.38 (0.02) 3.06 1.38
8.70 3 31.66 (0.02) 9.11 0.46
4.95 3 32.56 (0.02) 6.52 1.65
2.93 3 33.26 (0.02) 4.51 1.63
1.59 5 49.78 (0.02) 3.83 2.27
0.19 6 51.16 (0.02) 1.15 0.96
0.05 7 51.55 (0.02) 0.41 0.36
4.94 8 53.08 (0.02) 7.11 2.28
1.45 9 54.81 (0.02) 4.09 2.68
0.59 9 55.67 (0.02) 2.57 2.00
6.70 9 54.39 (0.02) 8.61 2.05
2.85 10 56.11 (0.02) 5.72 2.96
1.54 10 57.02 (0.02) 4.18 2.68
1.20 10 64.09 (0.02) 4.08 2.92
0.10 12 65.93 (0.02) 1.34 1.24
0.01 12 66.49 (0.02) 0.50 0.49
4.13 14 68.44 (0.02) 6.95 2.94
1.00 15 70.60 (0.02) 4.01 3.04
0.30 16 71.74 (0.02) 2.47 2.17
5.70 15 70.15 (0.03) 8.16 2.60
2.02 16 72.23 (0.03) 5.43 3.48
0.91 17 73.48 (0.02) 3.79 2.91

) Reactive Gap (%) Enhanced Gap (%)

29.08 0.81 28.86 0.09
29.79 0.73 29.61 0.12
29.91 0.31 29.84 0.08
31.04 1.16 30.75 0.24
32.29 1.25 31.91 0.08
32.84 1.37 32.38 0.00
31.80 0.80 31.66 0.34
33.11 1.73 32.56 0.08
33.81 1.73 33.26 0.10
50.93 2.57 49.78 0.31
51.66 1.05 51.16 0.09
51.73 0.39 51.55 0.04
54.32 2.97 53.08 0.71
56.31 2.82 54.81 0.15
56.81 2.09 55.67 0.09
55.53 2.97 54.39 0.93
57.82 3.27 56.11 0.32
58.60 2.84 57.02 0.17
66.02 3.55 64.09 0.65
66.76 1.34 65.93 0.10
66.82 0.52 66.49 0.03
70.52 4.36 68.44 1.46
72.81 3.31 70.60 0.28
73.33 2.31 71.74 0.15
72.03 4.11 70.15 1.54
74.84 3.91 72.23 0.44
75.68 3.16 73.48 0.26



Table A.3
Large network results: identical locations.

No. k Q R No tran. R Reactive Saving (%) R Enhanced Saving (%) Improve (%)

5 1.4 19 6 109.70 3 98.66 10.06 2 95.70 12.76 3.00
5 2.2 24 9 136.79 6 125.13 8.53 4 119.55 12.61 4.46
5 3.0 28 13 159.31 10 147.22 7.59 6 139.42 12.49 5.29
5 3.8 31 16 178.90 13 167.06 6.62 9 157.43 12.00 5.76
5 4.6 34 19 196.75 16 184.77 6.09 12 173.50 11.81 6.09

10 1.4 19 6 219.54 3 195.23 11.08 1 186.30 15.14 4.57
10 2.2 24 9 274.11 6 247.89 9.56 3 232.83 15.06 6.08
10 3.0 28 13 319.13 9 292.21 8.44 5 272.45 14.63 6.76
10 3.8 31 16 358.32 12 332.20 7.29 7 307.81 14.10 7.34
10 4.6 34 19 394.16 16 367.49 6.77 10 339.12 13.96 7.72
20 1.4 19 6 438.92 3 389.24 11.32 1 365.30 16.77 6.15
20 2.2 24 9 548.17 6 493.83 9.91 3 458.09 16.43 7.24
20 3.0 28 13 638.43 9 582.55 8.75 5 535.93 16.06 8.00
20 3.8 31 16 717.40 12 661.97 7.73 7 606.33 15.48 8.41
20 4.6 34 19 788.43 16 733.04 7.03 9 668.19 15.25 8.85

Table A.4
Large network results: two tier locations.

No. k Q R No tran. R Reactive Saving (%) R Enhanced Saving (%) Improve (%)

5 1.0–2.0 16–23 4–9 107.90 1–5 97.09 10.02 1–4 94.09 12.80 3.09
5 1.8–2.8 22–27 8–12 135.84 4–6 124.09 8.65 3–6 118.75 12.58 4.30
5 2.6–3.6 26–30 11–15 159.09 8–10 146.93 7.64 5–8 139.26 12.46 5.22
5 3.4–4.4 30–34 14–18 178.51 11–13 166.35 6.81 8–12 156.69 12.22 5.80
5 4.2–5.2 33–37 17–21 196.36 14–16 184.15 6.22 10–14 172.65 12.07 6.24

10 1.0–2.0 16–23 4–9 216.45 1–3 192.37 11.13 0–3 183.66 15.15 4.53
10 1.8–2.8 22–27 8–12 272.49 4–7 246.42 9.57 2–5 231.84 14.92 5.91
10 2.6–3.6 26–30 11–15 318.51 7–10 291.95 8.34 4–7 271.97 14.61 6.84
10 3.4–4.4 30–34 14–18 357.89 11–13 330.70 7.60 6–9 305.60 14.61 7.59
10 4.2–5.2 33–37 17–21 393.22 14–16 366.33 6.84 8–11 337.39 14.20 7.90
20 1.0–2.0 16–23 4–9 433.49 2–4 383.29 11.58 0–2 359.18 17.14 6.29
20 1.8–2.8 22–27 8–12 544.63 5–6 490.86 9.87 1–3 455.33 16.40 7.24
20 2.6–3.6 26–30 11–15 637.43 8–10 581.32 8.80 4–7 536.26 15.87 7.75
20 3.4–4.4 30–34 14–18 715.42 11–13 659.18 7.86 5–8 602.59 15.77 8.58
20 4.2–5.2 33–37 17–21 786.75 14–16 730.31 7.17 8–11 665.03 15.47 8.94
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Appendix B. Calculating ai(Xi)

If ts is the time when the sth unit becomes available at location i
then at each point in time a location’s state can be described by a
variable Xi, where

Xi ¼ ðIPi; tIP; tIP�1; . . . ; t1 � ðILiÞ�Þ: ðB:1Þ

For location i the pdf and cdf of the distribution of the time
when the nth customer arrival instant occurs can be respectively
given as:

gn
i ðtÞ ¼

kn
i tn�1e�ki t

ðn� 1Þ! ; ðB:2Þ

Gn
i ðtÞ ¼ 1�

Xn�1

k¼1

ðkitÞk

k!
e�ki t : ðB:3Þ

Using these distributions it is possible to obtain the pdf and cdf
of the time when the jth unit is demanded at location i:

rj
iðtÞ ¼

Xj

n¼1

Pn
i;jg

n
i ðtÞ; ðB:4Þ

Rj
iðtÞ ¼

Xj

n¼1

Pn
i;jG

n
i ðtÞ; ðB:5Þ

It is now possible to calculate ai(Xi). We let xi(s, ts) be the
expected holding and backorder costs, associated with the sth item
of stock demanded during the lead time Li. If s 6 0 then the item
has already been demanded, with s = 0 the most recently
demanded item. This gives four specific cases. The first two being:
For s 6 0, ts 6 Li,

xiðs; tsÞ ¼ bits: ðB:6Þ
For s 6 0, ts > Li,
xiðs; tsÞ ¼ biLi: ðB:7Þ
We now define quantity Uj
iðtÞ as

Uj
iðtÞ ¼

Z t

0
rj

iðuÞudu ¼
Xj

n¼1

Pn
i;jG

nþ1
i ðtÞ n

ki
: ðB:8Þ

This allows us to express the other two cases as:

For s > 0, ts 6 Li,
xiðs; tsÞ ¼ hi

Z Li

ts

rs
i ðuÞðu� tsÞduþ 1� Rs

i ðLiÞ
� �

ðLi � tsÞ
� �

þ bi

Z ts

0
rs

i ðuÞðts � uÞdu;

¼ hi Us
i ðLiÞ � Us

i ðtsÞ � tsð1� Rs
i ðtsÞÞ

	
þLið1� Rs

i ðLiÞÞ


þ bi Rs

i ðtsÞts � Us
i ðtsÞ

	 

: ðB:9Þ
For s > 0, ts > Li,
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xiðs; tsÞ ¼ bi Rs
i ðLiÞLi � Us

i ðLiÞ
	 


: ðB:10Þ
We calculate ai(Xi) using

aiðXiÞ ¼
XIP

s¼1�ðILÞ�
xiðs; tsÞ þ

X1
s¼IPþ1

xiðs; LiÞ � LiCi; ðB:11Þ

where LiCi is the steady state cost incurred during the lead time
period. The first summation calculates the expected cost over the
period Li associated with each unit of inventory either in stock, on
order or already demanded. Similarly the second summation calcu-
lates the expected cost for any potential demand where the corre-
sponding item of stock has not yet been ordered from the
supplier. The final term subtracts the steady state cost for the given
period of time so that overall ai(Xi) gives the bias over period Li.
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