Lancaster EPrints

IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch

Owen, C.J. and Amm, O. and Bruno, R. and De Keyser, J. and Dunlop, M.W. and Eastwood, J.P. and Fazakerley, A.N. and Fontaine, D. and Forsyth, C. and Hasegawa, H. and Hellinger, P. and Hercik, D. and Jacquey, C. and Milan, S. and Raeder, J. and Sibeck, D.G. and Stverak, S. and Travnicek, P. and Walsh, A.P. and Wild, James (2012) IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch. Experimental Astronomy, 33. pp. 365-401. ISSN 0922-6435

[img]
Preview
PDF - Submitted Version
Download (914Kb) | Preview

    Abstract

    The dayside magnetopause is the primary site of energy transfer from the solar wind into the magnetosphere, and modulates the activity observed within the magnetosphere itself. Specific plasma processes operating on the magnetopause include magnetic reconnection, generation of boundary waves, propagation of pressure-pulse induced deformations of the boundary, formation of boundary layers and generation of Alfvén waves and field-aligned current systems connecting the boundary to the inner magnetosphere and ionosphere. However, many of the details of these processes are not fully understood. For example, magnetic reconnection occurs sporadically, producing flux transfer events, but how and where these arise, and their importance to the global dynamics of the magnetospheric system remain unresolved. Many of these phenomena involve propagation across the magnetopause surface. Measurements at widely-spaced (Δ ˜ 5 RE) intervals along the direction of dayside terrestrial field lines at the magnetopause would be decisive in resolving these issues. We describe a mission carrying a fields and plasmas payload (including magnetometer, ion and electron spectrometer and energetic particle telescopes) on three identical spacecraft in synchronized orbits. These provide the needed separations, with each spacecraft skimming the dayside magnetopause and continuously sampling this boundary for many hours. The orbits are phased such that (i) all three spacecraft maintain common longitude and thus sample along the same magnetopause field line; (ii) the three spacecraft reach local midday when northern European ground-based facilities also lie near local midday, enabling simultaneous sampling of magnetopause field lines and their footprints.

    Item Type: Article
    Journal or Publication Title: Experimental Astronomy
    Additional Information: The original publication is available at www.springerlink.com
    Subjects: Q Science > QB Astronomy
    Departments: Faculty of Science and Technology > Physics
    ID Code: 54969
    Deposited By: ep_importer_pure
    Deposited On: 07 Jun 2012 16:42
    Refereed?: Yes
    Published?: Published
    Last Modified: 09 Apr 2014 23:38
    Identification Number:
    URI: http://eprints.lancs.ac.uk/id/eprint/54969

    Actions (login required)

    View Item