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Comment on “Inference with minimal Gibbs free energy in information field theory”
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Enßlin and Weig [Phys. Rev. E 82, 051112 (2010)] have introduced a “minimum Gibbs free energy” (MGFE)
approach for estimation of the mean signal and signal uncertainty in Bayesian inference problems: it aims to
combine the maximum a posteriori (MAP) and maximum entropy (ME) principles. We point out, however, that
there are some important questions to be clarified before the new approach can be considered fully justified, and
therefore able to be used with confidence. In particular, after obtaining a Gaussian approximation to the posterior
in terms of the MGFE at some temperature T , this approximation should always be raised to the power of T

to yield a reliable estimate. In addition, we show explicitly that MGFE indeed incorporates the MAP principle,
as well as the MDI (minimum discrimination information) approach, but not the well-known ME principle of
Jaynes [E.T. Jaynes, Phys. Rev. 106, 620 (1957)]. We also illuminate some related issues and resolve apparent
discrepancies. Finally, we investigate the performance of MGFE estimation for different values of T , and we
discuss the advantages and shortcomings of the approach.
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In a recent paper, Enßlin and Weig [1] introduced what they
refer to as a “minimum Gibbs free energy” (MGFE) method for
Bayesian signal reconstruction. The MGFE approach is clearly
valuable, and it has already been applied successfully to the
general problem of signal reconstruction [1,2]. We comment,
however, that there are some important issues that need to
be exposed, and clarified, to enable this new approach to be
applied with confidence.

In the MGFE approach [1], the functional

G[P̃ (s|d)] = −
∫

DsP̃ (s|d) ln P (s,d)

+ T

∫
DsP̃ (s|d) ln P̃ (s|d) (1)

is minimized for a fixed value of the “temperature” T with
respect to the parameters of some chosen approximation
P̃ (s|d) to the actual posterior P (s|d) of the signal s, given
the data d. The approximate posterior P̃ (s|d) is usually taken
to be Gaussian,

P̃ (s|d) = 1√
det(2πD)

exp

{
− (s − m)+D−1(s − m)

2

}

≡ G(s − m,D). (2)

So the minimization of (1) is taken with respect to estimates
of the mean signal m and the uncertainty matrix D, which can
be formulated mathematically as

δG[G(s − m′,D′)]
δm′

∣∣∣∣
m′=m,D′=D

= 0,

(3)
δG[G(s − m′,D′)]

δD′

∣∣∣∣
m′=m,D′=D

= 0.

The Gaussian approximation is, of course, the most convenient
approach because it allows one to calculate explicitly most of
the path integrals that are commonly encountered. Finding
such an approximation may be especially helpful if the
posterior obtained is to be used for further Bayesian inference.

However, the use of the temperature in Eq. (1), as introduced
in Ref. [1], is liable to create confusion. For example, in

Ref. [1] the authors introduce temperature T and a generating
source J into Bayes’ theorem [P (s|d) = P (d|s)P (s)/P (d)]
and consider

P (s|d,T ,J ) = [P (s,d)eJ+s]1/T∫
Ds[P (s,d)eJ+s]1/T

. (4)

This expression coincides with Bayes’ theorem only when J =
0, T = 1: P (s|d) = P (s|d,1,0). Procedures of this kind can
sometimes be useful, as one can take derivatives with respect to
these parameters and then set T = 1,J = 0, which may make
derivations faster. However, in the case of Bayesian inference,
T and J are just part of the mathematical formalism; in partic-
ular, for T �= 1,J �= 0, Bayes’ theorem is evidently violated if
one is claiming that P (s|d,T ,J ) can be used as a posterior. To
avoid logical inconsistencies, these parameters must be set to
their true values T = 1,J = 0 at the end of the calculation.

Nonetheless, there is a way to make use of (4) at different
temperatures: one can express actual posterior P (s|d) in terms
of the tempered one P (s|d,T ,0) as

P (s|d) = A[P (s|d,T ,0)]T , (5)

where A−1 ≡ ∫
Ds[P (s|d,T ,0)]T is the normalization multi-

plier. Indeed, substituting Eqs. (4) into (5), one will recover
Bayes’ theorem. In this context, we note that, in [1], the
MGFE principle is derived from (4). Thus MGFE, as proposed,
finds an approximation to the tempered posterior P (s|d,T ,0),
not to the actual posterior. So if we want to use MGFE at
different temperatures (not only at T = 1), then, after finding
the Gaussian approximation by (3), we should raise it to the
power of T (preserving normalization), which is equivalent to
setting D → D/T in Eq. (2). Otherwise such estimation will
contradict Bayes’ theorem for all temperatures except T = 1.

This can readily be understood by considering the limit
T → 0. It is claimed that MGFE at T = 0 corresponds to
maximum a posteriori (MAP) estimation. MAP estimates the
mean signal m as being the most probable one, i.e., that
for which the posterior P (s|d) is maximal. Mathematically
this principle can be formulated as δ ln P (s|d)

δs
|s=m = 0. If one

also wants to find a MAP-based uncertainty matrix estimate,
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D−1 ≈ − δ2 ln P (s|d)
δsδs+ |s=m can be used. At the same time, under

the Gaussian approximation (2) at T = 0, the functional (1)
is G = − ∫

DsG(s − m,D) ln P (s|d), so that its minimization
with respect to m and D yields∫

Ds
δG(s − m′,D′)

δD′ ln P (s|d)

∣∣∣∣
m′=m,D′=D

= 0

⇒ D = 0 ⇒ G(s − m′,D′) = δ(s − m′) (6)

and

δ

δm′

∫
DsG(s − m′,D′) ln P (s|d)

∣∣∣∣
m′=m,D′=D

= 0

⇒ δ ln P (m′|d)

δm′

∣∣∣∣
m′=m

= 0, (7)

where we have taken into account the result of (6) that
G(s − m′,D′) = δ(s − m′). In effect, (7) is giving a MAP mean
signal estimate, but (6) results in a confusing approximation
of the posterior by a δ-function. Such an approximation
will therefore correspond only partially to MAP estimation,
because D = 0 is being used rather than the correct form
D−1 = − δ2 ln P (s|d)

δsδs+ |s=m.
However, if we take as the uncertainty estimate the limiting

value of D/T as T → 0, we will obtain the correct MAP
estimate. Indeed, using the explicit form of (2), the second
term of (1) can be shown to be∫

DsG(s − m′,D′) lnG(s − m′,D′)=−1

2
ln det(D′) + · · · ,

(8)

where “· · ·” denote terms that are independent of m′ and D′.
Substituting (8) into the condition for the minimum of G (3)
and taking into account that δG(s−m′,D′)

δD′ = 1
2

δ2G(s−m′,D′)
δsδs+ , we

obtain the general equations
∫

Ds
δ2G(s − m′,D′)

δsδs+ ln P (s|d)

∣∣∣∣
m′=m,D′=D

+ T D−1 = 0,

(9)
δ

δm′

∫
DsG(s − m′,D′) ln P (s|d)

∣∣∣∣
m′=m,D=D′

= 0.

As we saw, the second equation of (9) at T → 0 gives the MAP
mean signal estimate, so we are now interested in obtaining
an expression for D(T )/T in this limit. Integrating by parts in
the first equation of (9), and noting that G(s − m′,D′) tends to
zero exponentially as s → ∞, we can rewrite as

∫
Ds

δ2G(s − m′,D′)
δsδs+ ln P (s|d)

∣∣∣∣
m′=m,D=D′

=
∫

DsG(s − m′,D′)
δ2 ln P (s|d)

δsδs+

∣∣∣∣
m′=m,D=D′

→ δ2 ln P (s|d)

δsδs+

∣∣∣∣
s=m

as T → 0, (10)

where we have taken into account that G(s − m′,D′) → δ(s −
m′) as T → 0. Substituting (10) into (9), we will have D =
T (− δ2 ln P (s|d)

δsδs+ |s=m)−1, which coincides with the uncertainty
estimate based on MAP if we move to D → limT →0(D/T ).

Thus, to obtain reliable results using MGFE, one should
always set D → D/T at the end of the calculation. Only then
does the MGFE principle fully reproduce MAP estimation in
the limit T → 0, for example. The authors failed to make this
point clear, notwithstanding its crucial importance.

It is also stated in Ref. [1] that at T → ∞, MGFE
corresponds to maximum entropy (ME). The authors probably
mean the unconstrained maximum of the entropy functional,
and not the standard ME principle of Jaynes [3]. Namely,
they state in the second paragraph that, “...maximum entropy
alone cannot be the inference-determining criterion, since it
favors states of a complete lack of knowledge, irrespective of
the data.” On the contrary, the ME principle does not always
“favor states of a complete lack of knowledge” (which would
correspond to a uniform distribution), and it especially does not
favor any state “irrespective of the data.” In reality, it singles
out the particular distribution that can be realized in the largest
number of ways [4] with respect to all the given data [3–7].
And in general, of course, the ME principle can indeed be the
inference-determining criterion.

However, great care needs to be taken when employing
principles like that of maximum entropy, as all available
information must be taken into account. In Bayesian inference,
the ME principle is usually used only for assigning prior
probabilities [P (s) in our case] [6,8], because finding the
posterior fully in terms of ME is not appropriate to the case in
which noise is present (see p. 949 of Ref. [4]).

Nonetheless, as a method of reasoning, the ME principle
is very general and powerful. For illustrative purposes, let us
try to apply it instead of Bayesian inference. Thus, following
[5,7], for our case of finding P (s|d) one can introduce the
information entropy SI as

SI = −
∫

DsP (s|d) ln
P (s|d)

Q(s)
, (11)

where Q(s) is the invariant measure [5–7] which, roughly
speaking, characterizes the density of points in s. The
maximum entropy principle states that the most reasonable
PDF (“uniquely determined as the one which is maximally
noncommittal with regard to the missing information” [3])
that we can assume on the basis of the given information is the
one for which SI (11) is maximal subject to the constraints of
all the given information. The most exact, elegant, general, and
understandable definition of the ME principle is given in the
conclusion of Jaynes’ celebrated paper [3]: “In the problem of
prediction, the maximization of entropy is not an application
of the law of physics, but merely a method of reasoning which
ensures that no unconscious arbitrary assumptions have been
introduced.” Such a maximization involves all the information
that we have and all the assumptions that we make, and thus
it is dangerously easy to misuse. For the case considered
in Ref. [1], the given information includes the data d, the
model for the data d = R[s] + n, and all assumptions about
the probability distributions P (s), P (d|s), and so on, as well
as the normalization condition

∫
DsP (s|d) = 1. If we are

only given some average values Gi = ∫
Dfgi[f ]P (f ), such a

maximization may be carried out through the use of Lagrange
multipliers [3–7]. In our case, taking all the information into
account is a highly nontrivial task, but one that is easily effected
through Bayesian inference (moreover, the ME principle is in
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some sense incorporated within the Bayesian framework and
related to MAP estimation; see pp. 949–950 of Ref. [4]).

It is important to note that, although Enßlin and Weig [1]
de facto consider information entropy with a uniform invariant
measure Q(s) = 1, it can be justified because, in the case under
consideration, one can regard the signal s as being defined on
a uniformly continuous set of points. However, in the limit
T → ∞, the MGFE principle reduces to unconstrained max-
imization of

∫
DsG(s − m,D) lnG(s − m,D) with respect to

parameters m and D of the Gaussian approximation. Such an
approach evidently takes no account at all of any of the given
information, and thus does not correspond to the ME principle.
Nevertheless, the MGFE principle (setting D → D/T after
minimization) can still be valuable for T > 1 for some specific
forms of posterior, but a more detailed investigation of this case
is required.

Another very interesting case arises for T = 1 when the
MGFE approximation to the posterior is based on the minimum
discrimination information (MDI) principle [9,10], as shown
by the authors. Note that the MDI principle can be regarded
mathematically as an extension or generalization of the ME
principle [11], as it is equivalent to maximization of the same
quantity (11), but with some given probability P ∗(s) instead
of the invariant measure Q(s) (the latter can be regarded as the
most ignorant probability distribution on a given continuous set
of points: see p. 16 of Ref. [6]). In this case, MGFE amounts
to finding the Gaussian approximation closest to the actual
posterior in terms of MDI. It corresponds to a kind of MDI
estimator (see, e.g., Ref. [12]), which can be useful as we will
see below.

The authors of [1] showed that their MGFE principle
includes both the MDI approach and MAP mean signal
estimation. In this Comment, we have shown that, after setting
D → D/T , it also provides the correct MAP uncertainty
estimate in the corresponding limit, thus fully reproducing the
MAP approach. The fact that the Gibbs free energy used for
Bayesian inference effectively incorporates both the full MAP
and MDI estimations is indeed remarkable. It is instructive
to investigate the relative quality of the MGFE-based
approximation to the posterior at different T , together
with other such approximations. To avoid complications,
let us compare the MAP (MGFE at T = 0), MDI (MGFE
at T = 1), and minimum mean-squared error [MMSE,
mMMSE = arg min

m

∫
Ds(s − m)2P (s|d) = 〈s〉] estimators.

It is difficult to compare their performance in general: in some
cases, one may perform better, in other cases, a different one
may perform better. This is illustrated in Fig. 1, where the
original posterior is compared with Gaussian approximations
based on MDI, MAP, and MMSE for the (oversimplified) case
of a signal consisting of a single point x. The parameters of
these approximations for the two cases considered are given in
Table I, together with characteristics of the original posteriors.
From Fig. 1(a) we see that, in the case of simple symmetric
posteriors, all estimators give identically good (true) mean
signal estimates, while MDI gives much better uncertainty for
the signal (Table I), resulting in a much closer approximation,
as shown by the dotted line in Fig. 1(a). The situation changes
when we move to the asymmetric posterior shown by the
full curve in Fig. 1(b). In this case, the estimators considered
give completely different approximations: MMSE gives the

FIG. 1. The posterior P (x|d) (full curves) compared with Gaus-
sian approximations (2) based on MMSE (dashed), MAP (dash-
dotted), and MDI (dotted) for (a) symmetric and (b) asymmet-
ric posteriors. In (a) P (x|d) ∼ 1

1+3x2e−x2 +x4
(and the MAP and

MMSE approximations coincide); in (b) P (x|d) ∼ exp[−x2(1 +
e−3x)]. Both original posteriors are shifted in x to give zero mean
〈x〉 = 0. Parameters of corresponding approximations are given in
Table I.

best mean signal (as it should), but too large an estimate of
D; MAP gives a significantly incorrect m (Table I), but a
reasonable signal uncertainty; while MDI estimation results
in an almost true m, but an underestimated D. An MGFE
estimation at, e.g., T = 0.5 produces an average between
MAP and MDI (not shown) in both cases.

Although we estimate the uncertainty matrix (which
is scalar here) for MAP and MMSE as D−1

MAP,MMSE =
− ∂2 ln P (x|d)

∂2x
|x=mMAP,MMSE , it should be emphasized that MAP and

MMSE originally estimate only the mean signal; estimation
of the signal uncertainty, on the other hand, is an intuitive
extension that does not necessarily work well. Such estimation
fails when the peak (where the mMAP is applicable) is flat

TABLE I. Parameters m and D for MMSE, MAP, and MDI-based
Gaussian approximations compared to the original values of mean
signal 〈x〉 and signal uncertainty 〈(x − 〈x〉)2〉 in the cases (a) and (b)
of Fig. 1.

Quantity (a) (b)

〈x〉 0 0
mMMSE 0 0
mMAP 0 −0.31
mMDI 0 0.02
〈(x − 〈x〉)2〉 1.12 0.27
DMMSE 0.17 0.60
DMAP 0.17 0.25
DMDI 0.74 0.16
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[consider, e.g., P (x|d) ∼ 1
1+x4 ], so that the second derivative

of the posterior is zero at s = mMAP, hence implying that
DMAP → ∞. The same concerns apply to MMSE-based
uncertainty matrix estimation, for which D can even reach
negative values in rare cases. In general, therefore, it is not
a good idea to base uncertainty estimation on either MAP
or MMSE. In this sense MDI estimation is more general.
MDI estimates of m and D maximize the resemblance of
the Gaussian approximation to the original posterior, which
makes such an estimator useful in cases when one needs
to reuse the resultant posterior (e.g., for the next step of
Bayesian inference). MMSE produces the best mean signal
estimate (which is exact by definition), whereas MDI generally
produces comparatively good estimates of both mean signal
and signal uncertainty. The advantage of MAP is that it is the
easiest approximation to use, although sometimes (e.g., for
multiple-peaked posteriors) it even fails to find a reasonable
estimate of the mean signal.

In summary, our comment is that the Gaussian approxima-
tion of the posterior based on the MGFE principle [1] should
always be taken asG(s − m,D/T ), where m,D are the original
MGFE estimates (3) at temperature T . Otherwise, such an

estimation will contradict Bayes’ theorem. This is a crucially
important point. In particular, we have shown above that only
in this form does MGFE fully incorporate the MAP principle as
T → 0. To avoid confusion, it also needs to be appreciated that
MGFE does not in fact incorporate Jaynes’ ME principle [3].
While this does not result in a significant disadvantage, it seems
better to use MGFE in the range 0 � T � 1, where it provides
a compromise between the MAP and MDI approaches. We
also investigated the effect of different temperature choices
in MGFE, taking as examples T = 0 and 1. Although the
optimal choice depends on the situation, and more detailed
investigation is needed, we note that the choice of T = 1, cor-
responding to MDI estimation, performs quite well. This ac-
counts for the good results obtained in the authors’ subsequent
work [2], where MGFE was used mainly for this particular
temperature.

We thank T. A. Enßlin and C. Weig for the colle-
gial way in which they discussed the science behind our
Comment. Our research was supported by the Engineer-
ing and Physical Sciences Research Council (UK) (Grant
No. EP/100999X1).
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