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We address the problem of how turbulence is created in a submerged plane jet,
near to the nozzle from which it issues. We do so by making use of a WKB-like
asymptotic expansion for approximate solution of a complex, linear, fourth-order
differential equation describing small deviations from the steady-state stream func-
tion. The result is used as a generating solution for application of the asymptotic
Krylov–Bogolyubov method, enabling us to find the spatial and temporal spectra of
the turbulence in the first approximation. We have thus been able to find the complex
eigenvalues and eigenfunctions, i.e., the natural waves. We show that, for any given
set of parameters, there is a continuum of frequencies and, for each frequency, a
continuum of phase velocities. Correspondingly, there is an infinite number of wave-
lengths. It follows that there is no unique dispersion law and, because of perturbations
(however, small they may be), a regular temporal spectrum does not exist even in
cases where the spatial spectrum is regular. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3693141]

I. INTRODUCTION

Turbulence is widespread in nature and technology, and forms part of common experience.
Formally, it may be defined as a far-from-equilibrium state of a nonlinear physical system with
many degrees of freedom, and it exists in many different variants. Of these, vortex turbulence1, 2 is
probably the best known. A common feature of turbulent systems lies in energy transfer between
the scale or frequency at which energy from an external source is pumped into the system and the
different scale or frequency at which it can be transformed to heat via dissipative processes. Wave
turbulence has been seen or postulated, e.g., among phonons in solids,3 in optical fibers and nonlinear
optical media,4 on vibrating plates5–7 and the surfaces of ferrofluids (liquids that become strongly
magnetized in a magnetic field),8, 9 for sound waves in oceanic waveguides,10 as magnetic turbulence
in interstellar gases,11 shock waves in the solar wind coupled to the earth’s magnetosphere,12 surface
waves on liquid hydrogen,13 and second sound in superfluid helium.14, 15 Frequently, turbulence
involves a cascade-like transfer of turbulent energy towards the high frequency domain,14, 16 which
is where dissipation mainly occurs, but inverse cascades where the energy flows towards larger length
scales (lower frequencies) can sometimes occur too.15, 17 Although turbulence has been studied for
many years, and in many different contexts, the nature of the transition to turbulence has remained
something of an enigma.

We are not aware of any single, clear, universally accepted definition of turbulence. The reason
is that turbulence can exist in different circumstances: in systems with an absolute instability, e.g., in
closed systems or in certain biological ones, turbulence is excited via feedback and is a self-oscillatory
process; in open systems with large coefficients of amplification for disturbances, turbulence results
from an amplification of external or internal noise.18 In what follows, we define turbulence as a state
in which there are random vortex waves in a distributed system whose characteristics either do not
depend at all on the initial conditions, or depend only weakly on them.19

In this paper, we consider a particular, well-characterised, example of the transition to turbulence:
in the jet flow that occurs when a fluid is injected fast through a nozzle into stationary fluid of the
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same kind. Such flows quickly become turbulent, and how the turbulence arises is a very challenging
problem both from the scientific and practical points of view. It was solved theoretically in its
very simplest approximation (a jet flow from a point source), by Landau20 but real jets are of
course considerably more complicated. Submerged jets form the main element of the open-jet wind
tunnels used for structural tests of aircrafts, ships, and rockets and there are many other important
applications. To control the level of turbulence in the jet, an understanding of its internal turbulent
processes is needed.

Because of the convective character of the instability, turbulence in submerged jets is not a
self-oscillatory process, as initially suggested by Gorelik and Landau (see e.g., Rytov’s reminis-
cences discussed in Ref.19) but, rather, it should be viewed as arising via a nonequilibrium phase
transition.19, 21–24 This insight allowed us to propose effective methods for the control of turbulence,
different from those used for self-oscillatory systems like e.g., impinging jets,25 where feedback can
cause the self-excitation of oscillations. One such method is the application of acoustic forcing to
the jet.

We have concluded17 that the turbulence arises through strong amplification of the weak random
disturbances that are always present in jets and, especially, within the nozzle exit section. Within the
jet, at distances close to the nozzle, the turbulent pulsations are small, and for their calculation we can
use a quasi-linear theory, e.g., the Krylov–Bogolyubov asymptotic method for distributed systems.26

For any given harmonic constituent of the stream function, we find a linear equation containing an
unknown complex wave number. It was shown that, for large Reynolds numbers, ordinary methods
of solving even the linearized three-dimensional Navier–Stokes equations for a slowly-diverging
plane flow yield random results due to instability. In the present work, we have therefore used a
WKB-like asymptotic expansion method for the approximate solution of a complex, linear, fourth-
order differential equation describing small deviations from the steady-state stream function. This
equation contains a large parameter proportional to the root-mean-square of the Reynolds number.
The method allows us to find the complex eigenvalues and eigenfunctions. The real part of the
eigenvalue describes the real wave number of a hydrodynamical wave of the frequency in question,
and the imaginary part defines its spatial growth rate. It is the latter that determines the stability
of the jet flow. We will show below that, for any value of the wave frequency, there are an infinite
number of eigenvalues of the wave number and eigenfunctions. This circumstance arises on account
of the inhomogeneity of the system in the region of the boundary layer.

We note that in earlier linear theories of jet instability,27–31 the problem was solved by use of
the Euler equations for an inviscid fluid. This approach was consistent with the widespread belief
that jet flows may be calculated in the approximation of inviscid fluid (assertions to this effect
appear in many papers and books). The authors of these works succeeded in finding approximate
eigenfunctions and eigenvalues from the condition that any bounded solution of the initial equations
must vanish far from the jet axis (but did not compare their results with experiment). In Ref. 17,
we used the same approach, but starting from the Navier–Stokes equations for the case a plane jet.
For any given set of parameters this leads to a single eigenvalue for a given frequency and distance
from the nozzle. Critically, however, we overlooked the fact that the eigenvalues depend on the point
where the condition for the vanishing solution is applied. We note en passant the large body of
work based on rapid distortion theory (RDT),32, 33 which was introduced for the calculation of how
developed turbulence is distorted when it passes rapidly through a region of large-scale straining
motions, and later extended to analyse inhomogeneous turbulent flows, including some effects of
boundaries.

In the present paper, we employ a different approach to treat the transition to turbulence. For
each set of parameters, we solve the Navier–Stokes equations with initial conditions specified on
the jet axis and for boundary conditions specified far from the axis, beyond the boundary layer. We
sew these solutions together at a point inside the boundary layer. We will show that, in doing so, the
eigenvalues depend on the sewing point, i.e., for any value of the frequency, we find a continuous
set of eigenvalues—complex wave numbers—and corresponding eigenfunctions. Their occurrence
is similar to a phenomenon that occurs in an inhomogeneous optical medium where the propagation
of a monochromatic wave of a given frequency results in a continuous set of waves propagating at
different phase velocities.
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The authors of Refs. 27, 28, 30, 31 refer to their approach as a WKB-method, because the jet
diverges slowly in comparison with the variation of jet velocity within any cross-section. When we
refer to a WKB-like method in the present work, however, we mean something rather different: a
WKB-like technique for approximating the solution of the linear non-self-adjoint boundary-value
problem. We emphasize that, in what follows below, all conditions for the applicability of the WKB-
method are fulfilled at every point (with the exception of the matching points themselves, which are
of zero dimension).

The approach we introduce falls into three main parts:

1. Splitting of the variables into regular and random constituents. Our procedure differ from
the standard one used by the most theoretical physicists, in which they split the solutions
of the initial equations into mean values and the deviations from these means. Instead, we
split the solutions into regular (stationary) and random contributions. For many problems (e.g,
for nonlinear optics) the two procedures coincide; but for hydrodynamical problems, because
of the quadratic nonlinearity, the mean values depend on the deviations from them, leading
to a well-known problem of closure of the equations. Our procedure allows us to avoid this
difficulty. The penalty we pay is that the equations for the random constituents may become
more complicated than those in the conventional procedure. Our approach is restricted to small
turbulence levels.

2. Numerical solution of the linearized equations for the random constituents of the stream
function with initial conditions, both at the jet axis, and with boundary conditions far from the
axis, outside the boundary layer.

3. Sewing together of the resultant solutions and calculation of the eigenvalues of the
wavenumbers.

In Sec. II, we introduce the main equations needed for the description of a plane jet flow, and
then split them into equations describing its regular and random components in Secs. II A and
II B respectively. In Sec. III, we show how the Krylov-Bogolyubov method can be used to solve the
equations for the random constituents of the flow, thus describing how turbulence develops close to
the nozzle. The physical implications of the results obtained are discussed in Sec. IV. In Sec. V, we
summarize and draw conclusions.

II. THE MAIN EQUATIONS FOR A PLANE JET

For simplicity, we consider a plane jet issuing from a nozzle of width 2d (Fig. 1). Neglecting
compressibility, we may describe the processes occurring in such a jet by the two-dimensional
Navier–Stokes equation for the stream function �(t, x, y).20 It is related to the longitudinal (U) and
transverse (V) components of the flow velocity by U(t, x, y) = ∂�/∂y, V(t, x, y) = − ∂�/∂x. In
dimensionless coordinates x′ = x/d, y′ = y/d and time t′ = U0t/d, where U0 is the mean flow velocity
in the nozzle center, this equation may be written as

∂�′

∂t ′ − ∂� ′

∂x ′
∂�′

∂y′ + ∂� ′

∂y′
∂�′

∂x ′ − 2

Re
�′�′ = 0, (1)

FIG. 1. Schematic image of a diverging free jet illustrating the change of its mean velocity profile and widening of the
mixing layer. Curves 1 and 2 correspond, respectively, to the internal and external boundaries of the mixing layer.
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where �′ is the Laplacian in terms of x′ and y′, Re = 2U0d/ν is the Reynolds number, ν is kinematic
viscosity,

�′(t ′, x ′, y′) = �′� ′(t ′, x ′, y′) (2)

is the vorticity. From this point onwards the primes will be dropped.
It should be noted that, corresponding to the dimensionless time, the circular frequencies

ω = 2π f are measured in units of S = ωd/U0 ≡ πSt, where St = 2 f d/U0 is the Strouhal number.
The authors of all classical works on turbulence (e.g., Refs. 20 and 34), starting from Reynolds,

split the solution of the initial nonlinear equations into mean values and random disturbances.
Because of the quadratic nonlinearity in the hydrodynamical equations the mean values depend on
the deviations from them. Consequently, there is a problem of closure for these equations. To avoid
it, we split the solution of Eqs. (1) and (2) into dynamical (regular) and random constituents.17 It is
clear that such approach is reasonable only where the level of turbulence is small. We now consider
in turn the equations for the dynamical and random parts, in Secs. II A and II B, respectively.

A. The equations for dynamical constituents

In autonomous jets the dynamical constituents are described by stationary Navier-Stokes
equations

�d(x, y) = ∂Ud(x, y)

∂y
− ∂Vd(x, y)

∂x
, (3)

∂Ud(x, y)

∂x
+ ∂Vd(x, y)

∂y
= 0, (4)

Ud(x, y)
∂�d(x, y)

∂x
+ Vd(x, y)

∂�d(x, y)

∂y
− 2

Re

(
∂2�d(x, y)

∂x2
+ ∂2�d(x, y)

∂y2

)
= 0, (5)

whereas the random constituents are described by the equations for deviations from the stationary
solutions. The deviations are caused mainly by the sources of disturbance at the nozzle output
section.

Because Eqs. (3)–(5) cannot be solved analytically, and even their numerical solution presents
insurmountable difficulties, we set the profile of longitudinal velocity component to be of the form

Ud(x, y) = 1

1 + tanh(q/δ00 + r0)

[
1 − tanh

(
q

|y| − 1

δ0(x)
− r (x)

)]
, (6)

where r(x) and δ0(x) are unknown functions of x, δ0(x) ≡ δ1(x) + δ2(x) is the boundary layer thickness
which is assumed to be equal to δ00 for x = 0, δ1(x) and δ2(x) are the thicknesses of internal and
external parts of the boundary layer, and r(x) = r0 for x = 0. This approach is similar to the well
known Galerkin method.35 To calculate the unknown functions, we have used the conservation laws
for the fluxes of momentum and energy. Usually these laws are derived from Reynolds equations for
the mean values of these fluxes,36, 37 and that is why they contain the so-called turbulent viscosity.
In Ref. 17, these laws were derived approximately from Eqs. (3)–(5).

By applying the conservation laws we have found

r (x) ≈ r0 = 0.5, δ0(x) =
√

δ2
00 + 32q2

3Re
x, δ1(x) ≈ δ0(x)

3
, δ2(x) ≈ 2δ0(x)

3
. (7)

The value of δ00 = δ0(0) depends at the conditions of the nozzle outflow. In the case of laminar
flow, when the boundary layer may be approximately described by the Blasius function,20, 38 δ00 is

inversely proportional to
√

Re. We also set δ00 = 1/
(

b0

√
Re

)
, where b0 = 0.1.
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The expressions for Vd(x, y) and �d(x, y) can be found by exact solution of Eqs. (3) and (4). As
a result, we obtain

Vd(x, y) = − 16qsign y

3Reδ0(x)
(

1 + tanh(q/δ00 + r0)
) [q(|y| − 1)

δ0(x)
tanh

(
q(|y| − 1)

δ0(x)
− r0

)

− q

δ0(x)
tanh

(
q

δ0(x)
+ r0

)
− ln

cosh
(

q(|y| − 1)/δ0(x) − r0

)
cosh

(
q/δ0(x) + r0

)
⎤
⎦ ,

�d(x, y) = − qsign y

δ0(x)
(

1 + tanh(q/δ00 + r0)
)
{(

1 + 256q4(|y| − 1)2

9δ4
0(x)Re2

)
cosh−2

(
q(|y| − 1)

δ0(x)
− r0

)

− 256q2

9δ2
0(x)Re2

[
q2

δ2
0(x)

cosh−2

(
q

δ0(x)
+ r0

)
− q

δ0(x)

(
(|y| − 1) tanh

(
q(|y| − 1)

δ0(x)
− r0

)

− tanh

(
q

δ0(x)
+ r0

))
+ ln

cosh
(

q(|y| − 1)/δ0(x) − r0

)
cosh

(
q/δ0(x) + r0

)
⎤
⎦
⎫⎬
⎭ . (8)

Taking into account that q/δ0(x) � 1, we can find approximate expressions for Vd and �d that are
valid at large values of |y|

Vd(x,±∞) ≈ ∓ 16qr0

3δ0(x)Re
, �d(x,±∞) ≈ ∓ 256q3r0

9δ3
0(x)Re2 . (9)

Figure 2 shows plots of Ud(x, y), Vd(x, y), and �d(x, y) versus y for b0 = 0.1, q = 3, r0 = 0.5,
Re = 25 000, x = 0, and x = 8. For all values of y except for narrow intervals near y = ±1, we
see that the quantities Ud(x, y), Vd(x, y), and �d(x, y) are nearly constant. The constant transverse
velocity constituent for |y| > 1 directed towards the jet axis describes the entrainment of ambient
fluid with the jet flow.

It should be emphasized that the results obtained here relate only to the dynamical constituents
of the velocity and vorticity. Random constituents have a strong influence upon the thickness of the
boundary layer, its dependence on the distance from the nozzle, and values of the mean velocities
and mean vorticity.

B. The equations for random constituents

Substituting

U (t, x, y) = Ud(x, y) + ∂�r(t, x, y)

∂y
, V (t, x, y) = Vd(x, y) − ∂�r(t, x, y)

∂x
,

(10)
�(t, x, y) = �d(x, y) + �r(t, x, y)

into initial equations, we obtain for random constituents �r(t, x, y) and �r(t, x, y) the following
equations:

�r − ��r = 0, (11)

∂�r

∂t
+ Ud(x, y)

∂�r

∂x
+ Vd(x, y)

∂�r

∂y
− �dy(x, y)

∂�r

∂x
+ �dx (x, y)

∂�r

∂y
− 2

Re
��r

= ∂�r

∂x

∂�r

∂y
− ∂�r

∂y

∂�r

∂x
, (12)

where �dx(x, y) = ∂�d(x, y)/∂x , �dy(x, y) = ∂�d(x, y)/∂y .
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FIG. 2. Plots of Ud(x, y), Vd(x, y), and �d(x, y) versus y for b0 = 0.1, q = 3, r0 = 0.5, Re = 25 000: (a) Ud(0, y); (b) Ud(8,
y); (c) Vd(0, y); (d) Vd(8, y); (e) �d(0, y); and (f) �d(8, y).

III. USING THE KRYLOV–BOGOLYUBOV METHOD FOR STUDYING THE DEVELOPMENT
OF TURBULENCE NOT FAR FROM THE JET NOZZLE

To describe the development of turbulence, we can assume that the right-hand side of Eq. (12) is
of the order of a conditional small parameter ε. In this case, Eqs. (11) and (12) can be solved approx-
imately by a method similar to the Krylov–Bogolyubov method for spatially extended systems.17, 26

We therefore seek a solution in the form of a series in ε

�r(t, x, y) = �0(t, x, y) + εr1(t, x, y) + ε2r2(t, x, y) + . . . ,

�r(t, x, y) = ψ0(t, x, y) + εs1(t, x, y) + ε2s2(t, x, y) + . . . , (13)

u(t, x, y) = ∂�r(t, x, y)

∂y
= u0(t, x, y) + εu1(t, x, y) + ε2u2(t, x, y) + . . . ,

where �0(t, x, y) and ψ0(t, x, y) are generative solutions of Eqs. (11) and (12), r1(t, x, y), r2(t, x, y),
. . . , s1(t, x, y), s2(t, x, y), . . . are unknown functions, and u0(t, x, y) = ∂ψ0(t, x, y)/∂y, u1(t, x, y)
= ∂s1(t, x, y)/∂y, u2(t, x, y) = ∂s2(t, x, y)/∂y, . . . .

It should be emphasized that because of the quadratic nonlinearity the contribution of nonlinear
terms into turbulent processes can be estimated only by using higher approximations of the Krylov–
Bogolyubov method, beginning from the first. In this work, we will restrict our calculations only to
linear approximation.

A. Generative equations (linear approximation)

Setting the right-hand side of Eq. (12) to zero, and taking account of Eq. (11), we obtain the
following generative equation for the random constituent of the stream function:

∂�ψ0

∂t
+ Ud(x, y)

∂�ψ0

∂x
+ Vd(x, y)

∂�ψ0

∂y
− �dy(x, y)

∂ψ0

∂x
+ �dx (x, y)

∂ψ0

∂y
− 2

Re
��ψ0 = 0.

(14)
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We seek a particular solution for Eq. (14) in the form of a sum of running waves with Strouhal
number S, amplitude f (S, x, y), and a slowly varying complex wave number Q(S, x)

ψ0(t, x, y) = 1

2π

∞∫
−∞

f (S, x, y) exp

⎡
⎣i

⎛
⎝St −

x∫
0

Q(S, x) dx

⎞
⎠
⎤
⎦ dS. (15)

The complex wave numbers Q(S, x) may be represented as Q(S, x) = S/vph(S, x) + i�(S, x),
where vph is the wave phase velocity and � is the spatial growth rate (gain factor).

Taking into account that the jet diverges slowly, we can represent the function f (S, x, y) and the
wave number Q(S, x) as series in another conditional small parameter μ ∼ 1/

√
Re characterizing

the slowness of the jet divergence

f (S, x, y) = f0(S, x, y) + μ f1(S, x, y) + . . . , Q(S, x) = Q0(S, x) + μQ1(S, x) + . . . ,

(16)

where f0(S, x, y), f1(S, x, y), . . . are unknown functions vanishing, along with their derivatives, at
y = ±∞.

Substituting Eq. (15) into Eq. (14) and retaining only the first term in the expansion (16), we
obtain the following equation for f0(S, x, y):

L0

(
Q0(S, x)

)
f0(S, x, y) = 0, (17)

where

L0

(
Q0(S, x)

)
=i
(
S − Ud(x, y)Q0(S, x)

)( ∂2

∂y2
− Q2

0(S, x)

)
+ Vd(x, y)

(
∂3

∂y3
− Q2

0(S, x)
∂

∂y

)

+i Q0(S, x)�dy(x, y) + �dx (x, y)
∂

∂y
− 2

Re

(
∂4

∂y4
− 2Q2

0(S, x)
∂2

∂y2
+ Q4

0(S, x)

)
. (18)

Equation (17), in view of Eq. (18), together with the boundary conditions requiring function f0 and its
derivatives to be vanishing at y = ±∞, describes a non-self-adjoint boundary-value problem, whose
solution allows us to find complex eigenvalues of Q0(S, x) and corresponding eigenfunctions.

Outside the boundary layer (for y ≥ y∞ and 0 ≤ y ≤ y1), where y∞ is a sufficiently large value
of y and y1 is a value of y smaller than the inner boundary of the boundary layer, the functions Ud(x,
y), Vd(x, y), and �dx(x, y) are almost independent of y. Therefore in these regions of y the solution
of Eq. (17) can be found analytically. Taking account of the requirement that they vanish at large
values of y, and assuming that f0(S, x, y) are odd functions of y, these solutions may be written as

f0(S, x, y) =

⎧⎪⎨
⎪⎩

C11(x) sinh
(

B11(x)y
)

+ C12(x) sinh
(

B12(x)y
)

for 0 ≤ y ≤ y1,

C21(x) exp
(

B21(x)y
)

+ C22(x) exp
(

B22(x)y
)

for y ≥ y∞,

(19)

where

B11(x) = O0(S, x), B12(x) =

√√√√
Q2

0(S, x) +
i
(
S − Q0(S, x)

)
Re

2
(20)

are roots of the characteristic equation in the region 0 ≤ y ≤ y1, and B21(x), B22(x) are roots of the
characteristic equation

B4 − Vd(x,∞)Re
2

B3 −
(

2Q2
0 + iSRe

2

)
B2 − Re

2

(
∂�d(x,∞)

∂x
− Q2

0Vd(x,∞)

)

× B + Q4
0 + iSQ2

0Re
2

= 0 (21)
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in the region y ≥ y∞ having negative real parts, C11(x), C12(x), C21(x), and C22(x) are arbitrary slow
functions of x. It should be noted that |B11| and |B21| are of order 1, whereas |B12| and |B22| are of
order

√
Re.

It follows from here that, for any value of y, the general solution of Eq. (17) can be written as

f0(S, x, y) =
{

C11(x) f11(S, x, y) + C12(x) f12(S, x, y) for 0 ≤ y ≤ y0,

C21(x) f21(S, x, y) + C22(x) f22(S, x, y) for y ≥ y0,
(22)

where y0 is a point inside the boundary layer, and f11(S, x, y), f12(S, x, y), f21(S, x, y), and
f22(S, x, y) are linearly independent solutions of Eq. (17) satisfying the following conditions:

f11(S, x, 0) = 0,
∂ f11(S, x, y)

∂y

∣∣∣∣
y=0

= B11(x),
∂2 f11(S, x, y)

∂y2

∣∣∣∣
y=0

= 0,

∂3 f11(S, x, y)

∂y3

∣∣∣∣
y=0

= B3
11, f12(S, x, 0) = 0,

∂ f12(S, x, y)

∂y

∣∣∣∣
y=0

= B12(x),

∂2 f12(S, x, y)

∂y2

∣∣∣∣
y=0

= 0,
∂3 f12(S, x, y)

∂y3

∣∣∣∣
y=y∞

= B3
12(x),

f21(S, x, y∞) = 1,
∂ f21(S, x, y)

∂y

∣∣∣∣
y=y∞

= B21(x),
∂2 f21(S, x, y)

∂y2

∣∣∣∣
y=y∞

= B2
21(x),

∂3 f21(S, x, y)

∂y3

∣∣∣∣
y=y∞

= B3
21(x), f22(S, x, y∞) = 1,

∂ f22(S, x, y)

∂y

∣∣∣∣
y=y∞

= B22(x),

∂2 f22(S, x, y)

∂y2

∣∣∣∣
y=y∞

= B2
22(x),

∂3 f22(S, x, y)

∂y3

∣∣∣∣
y=y∞

= B3
22(x). (23)

Solutions (22) should be sewn together at some point y = y0 inside the boundary layer. The
sewing conditions are as follows:

C11(x) f11(S, x, y0) + C12(x) f12(S, x, y0) = C21(x) f21(S, x, y0) + C22(x) f22(S, x, y0),

C11(x)
∂ f11(S, x, y)

∂y

∣∣∣∣
y=y0

+ C12(x)
∂ f12(S, x, y)

∂y

∣∣∣∣
y=y0

= C21(x)
∂ f21(S, x, y)

∂y

∣∣∣∣
y=y0

+ C22(x)
∂ f22(S, x, y)

∂y

∣∣∣∣
y=y0

,

C11(x)
∂2 f11(S, x, y)

∂y2

∣∣∣∣
y=y0

+ C12(x)
∂2 f12(S, x, y)

∂y2

∣∣∣∣
y=y0

= C21(x)
∂2 f21(S, x, y)

∂y2

∣∣∣∣
y=y0

+ C22(x)
∂2 f22(S, x, y)

∂y2

∣∣∣∣
y=y0

,

C11(x)
∂3 f11(S, x, y)

∂y3

∣∣∣∣
y=y0

+ C12(x)
∂3 f12(S, x, y)

∂y3

∣∣∣∣
y=y0

= C21(x)
∂3 f21(S, x, y)

∂y3

∣∣∣∣
y=y0

+ C22(x)
∂3 f22(S, x, y)

∂y3

∣∣∣∣
y=y0

. (24)

The eigenvalues of Q0(S, x) should be found from the condition for the vanishing of the
determinant of the system of Eqs. (24). This determinant may be written as

D
(

Q0(S, x, y0)
)

= r23(S, x, y0)q01(S, x, y0) − r13(S, x, y0)q02(S, x, y0) + r12(S, x, y0)q03(S, x, y0)

+r03(S, x, y0)q12(S, x, y0) − r02(S, x, y0)q13(S, x, y0) + r01(S, x, y0)q23(S, x, y0), (25)



035104-9 P. S. Landa and P. V. E. McClintock Phys. Fluids 24, 035104 (2012)

where

qi j (S, x, y0)= ∂ i f11(S, x, y)

∂yi

∣∣∣∣
y=y0

∂ j f12(S, x, y)

∂y j

∣∣∣∣
y=y0

− ∂ j f11(S, x, y)

∂y j

∣∣∣∣
y=y0

∂ i f12(S, x, y)

∂yi

∣∣∣∣
y=y0

,

ri j (S, x, y0)= ∂ i f21(S, x, y)

∂yi

∣∣∣∣
y=y0

∂ j f22(S, x, y)

∂y j

∣∣∣∣
y=y0

− ∂ j f21(S, x, y)

∂y j

∣∣∣∣
y=y0

∂ i f22(S, x, y)

∂yi

∣∣∣∣
y=y0

.

(26)

A direct numerical calculation of D(Q0(S, x, y0), starting from initial equations, for large Reynolds
numbers gives random values on account of the fact that qi j (S, x, y0) and ri j (S, x, y0) are differences
between large numbers of the same order. One way to avoid these difficulties lies in the appropriate
change of variables (see Ref. 17). Another way lies in the approximate solution of the initial equation
by using a method similar to the WKB-method suggested by Wentsel, Kramers, and Brillouin in
1926 (Refs. 39–41) mainly for the problems of quantum mechanics.54, 55 We note en passant that
the WKB-method actually goes back to earlier works by Poincaré, Birkhoff, and Rayleigh42–44 and
then it evolved further with Tamarkin.45, 46 Later the WKB-method was set forth in Refs. 47–50): in
Refs. 47 and 48 only for second order differential equations, and in Refs. 49 and 50 for higher order
differential equations of a certain kind.

1. Using the WKB-like method

For using the WKB-like method, we take into account that Vd(x, y)/Ud(x, y) ∼ 1/λ, where
λ = √

Re is a large parameter. It is therefore convenient to rewrite Eq. (17) in terms of vd(x, y)
= Vd(x, y)λ ∼ Ud(x, y) and to resolve it with respect to higher derivative. As a result, we find

∂4 f0

∂y4
− 2Q2

0
∂2 f0

∂y2
+ Q4

0 f0 − λvd(x, y)

2

(
∂3 f0

∂y3
− Q2

0
∂ f0

∂y

)

− λ2

2

[
i
(
S − Ud(x, y)Q0

)(∂2 f0

∂y2
− Q2

0 f0

)
+ �dx (x, y)

∂ f0

∂y
+ i Q0�dy(x, y) f0

]
= 0. (27)

According to the main idea of the WKB-method, a partial solution of Eq. (27) may be sought as

f0(x, y) = exp

(
λ

∫
g(x, y) dy

) ∞∑
j=0

ϕ j (x, y)λ− j , (28)

where g(x, y) and ϕj(x, y) are unknown functions. Substituting Eq. (28) into Eq. (27), restricting
expansion (28) to the term of order λ0 and equating the coefficients of λ4, we obtain for g(x, y) the
following equation:

g2(x, y)

(
2g2(x, y) − vd(x, y)g(x, y) − i

(
S − Ud(x, y)Q0

))
= 0. (29)

Equation (29) has four roots: two multiple zero roots and two different finite ones

g1,2(x, y) =
vd(x, y) ∓

√
v2

d(x, y) + 8i
(
S − Ud(x, y)Q0

)
4

. (30)

It may be easily shown that only g1(x, y) has a negative real part for large values of |y|.
In the case of zero roots the coefficient of λ3 vanishes. Equating the coefficients of λ2, we find

the equation for φ0(x, y)

i
(
S − Ud(x, y)Q0

)(∂2φ0(x, y)

∂y2
− Q2

0φ0(x, y)

)
+ �dx (x, y)

∂φ0(x, y)

∂y

+i Q0�dy(x, y)φ0(x, y) = 0. (31)

Equation (31) coincides with the corresponding Euler equation.
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Outside the boundary layer Eq. (31) becomes an equation whose coefficients are independent
of y

∂2φ0(x, y)

∂y2
− Q2

0(x)φ0(x, y) = 0 (y ≤ y1),

iS

(
∂2φ0(x, y)

∂y2
− Q2

0(x)φ0(x, y)

)
+ �2

dx (x,∞)
∂φ0(x, y)

∂y
(y ≥ y∞). (32)

The odd solution of these equations outside the boundary layer is

φ0(x, y) =
⎧⎨
⎩

sinh
(

Q0(x)y
)

for |y| ≤ y1,

exp
(
β(x)(|y| − y∞)

)
sign y for |y| ≥ y∞,

(33)

where

β(x) = −
√

Q2
0(x) − �2

dx (x,∞)

4S2
+ i�dx (x,∞)

2S
≈ −Q0(x). (34)

The solutions (33) allow us to find boundary conditions for Eq. (31) at y = 0 and |y| = y∞.
It follows from Eq. (28) that we can take φ0(x, y) as the first partial solution of Eq. (27), and set

f01(x, y) = φ0(x, y) =
{

f11(x, y) for 0 ≤ y ≤ y0,

f12(x, y) for y0 ≤ y ≤ y∞,
(35)

where f11(x, y) and f12(x, y) are partial solutions of Eq. (27) with the boundary conditions

f11(x, 0) = 0,
∂ f11(x, 0)

∂y
= Q0(x),

∂2 f11(x, 0)

∂y2
= 0,

∂3 f11(x, 0)

∂y3
= Q3

0(x), (36)

f12(x, y∞) = 1,
∂ f12(x, y∞)

∂y
= β,

∂2 f12(x, y∞)

∂y2
= β2,

∂3 f12(x, y∞)

∂y3
= β3(x). (37)

For the nonzero roots g1, 2(x, y), we can equate in Eq. (27) the coefficients of λ3 to find the equation
for function φ0(x, y). In view of Eq. (29), this equation is

∂φ0(x, y)

∂y
+

2
(

5g1,2(x, y) − vd(x, y)
)

∂g1,2(x, y)/∂y − �dx (x, y)

g1,2(x, y)
(

4g1,2(x, y) − vd(x, y)
) φ0(x, y) = 0. (38)

It has to be solved with the boundary conditions

φ0(x, 0) = 0 for 0 ≤ y ≤ y0, φ0(x, y∞) = 1 for y ∼ y∞. (39)
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Such a partial solution is

φ0(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(21)
0 (x, y) = exp

⎧⎨
⎩−

y∫
0

[
2
(

5g1(x, y) − vd(x, y)
)

g1(x, y)
(

4g1(x, y) − vd(x, y)
) ∂g1(x, y)

∂y

− �dx (x, y)

g1(x, y)
(

4g1(x, y) − vd(x, y)
)
]

dy

⎫⎬
⎭− exp

⎧⎨
⎩−

y∫
0

[
2
(

5g2(x, y)−vd(x, y)
)

g2(x, y)
(

4g2(x, y)−vd(x, y)
)

×∂g2(x, y)

∂y
− �dx (x, y)

g2(x, y)
(

4g2(x, y) − vd(x, y)
)
]

dy

⎫⎬
⎭ for 0 ≤ y ≤ y0,

φ
(22)
0 (x, y) = exp

⎧⎨
⎩

y∞∫
y

[
2
(

5g1(x, y) − vd(x, y)
)

g1(x, y)
(

4g1(x, y) − vd(x, y)
) ∂g1(x, y)

∂y

− �dx (x, y)

g1(x, y)
(

4g1(x, y) − vd(x, y)
)
]

dy

⎫⎬
⎭ for y0 ≤ y ≤ ∞.

(40)

It follows from Eqs. (28) and (40) that the second partial solution of Eq. (27) is

f02(x, y) =
{

f21(x, y) for 0 ≤ y ≤ y0,

f22(x, y) for y0 ≤ y ≤ y∞,
(41)

where

f21(S, x, y) = exp

⎧⎨
⎩

y∫
0

[√
Reg1(x, y) −

2
(

5g1(x, y) − vd(x, y)
)

g1(x, y)
(

4g1(x, y) − vd(x, y)
) ∂g1(x, y)

∂y

+ �dx (x, y)

g1(x, y)
(

4g1(x, y)−vd(x, y)
)
]

dy

⎫⎬
⎭− exp

⎧⎨
⎩

y∫
0

[√
Reg2(x, y)−

2
(

5g2(x, y)−vd(x, y)
)

g2(x, y)
(

4g2(x, y)−vd(x, y)
)

×∂g2(x, y)

∂y
+ �dx (x, y)

g2(x, y)
(

4g2(x, y) − vd(x, y)
)
]

dy

⎫⎬
⎭ 0 ≤ y ≤ y0(x), (42)

f22(S, x, y) = exp

{ y∞∫
y

[
−

√
Reg1(x, y) +

2
(

5g1(x, y) − vd(x, y)
)

g1(x, y)
(

4g1(x, y) − vd(x, y)
)

×∂g1(x, y)

∂y
− �dx (x, y)

g1(x, y)
(

4g1(x, y) − vd(x, y)
)
]

dy

}
y0(x) ≤ y ≤ y∞(x). (43)

The general solution of Eq. (27) like as Eq. (22) is

f0(S, x, y) =
{

C11(x) f11(S, x, y) + C12(x) f12(S, x, y) for 0 ≤ y ≤ y0,

C21(x) f21(S, x, y) + C22(x) f22(S, x, y) for y ≥ y0,
(44)

where C11(x), C12(x), C21(x), and C22(x) are arbitrary functions of x. The sewing conditions are the
same as Eq. (24).

The complex eigenvalues Q0(S, x) should be found from the condition of vanishing the deter-

minant D
(

Q0(S, x)
)

of system (24) at the sewing point y0, i.e., we must solve the system of two
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FIG. 3. The dependences (a, c) of the gain factor �0 = Im

(
Q0

)
and (b, d) the wave phase velocity vph0 = S/Re(Q0) on

the sewing-point y0 for (a) S = 1 and two values of x (x = 4 (1) and x = 8 (2)); and for (b) x = 8 and two values of S (S = 1
(1) and S = 4 (2)).

equations

Re

(
D
(

Q0(S, x)
))

= 0, Im

(
D
(

Q0(S, x)
))

= 0 (45)

with respect to two unknowns Re
(

Q0(S, x)
)

and Im
(

Q0(S, x)
)

.

Different methods for numerical solution of such systems are described, for example, in Refs. 51
and 52. They all are based on the supposition that there exists a functional monotonically changing

with the changes in |D
(

Q0(S, x)
)
|. In our case, however, such a functional does not exist. We have

therefore used a trial-and-error method. Our calculations have shown that the roots of Eqs. (45)
depend essentially from the sewing point y0.

Examples of the dependences of the gain factor �0 = Im
(

Q0

)
(a,c) and the wave phase velocity

vph0 = S/Re(Q0) (b), (d) on the sewing-point y0 are shown in Fig. 3 for S = 1 and two values of x
(x = 4 (1) and x = 8 (2)); and for x = 8 and two values of S (S = 1 (1) and S = 4 (2)).

IV. DISCUSSION

The fact that the eigenvalues and eigenfunctions, corresponding to the same frequencies, are
different for different sewing points means that an infinite number of waves of the same frequency
but with different wavelengths may coexist. Because of the instability, the amplitudes of these waves
become random. Consequently, hydrodynamic waves in inhomogeneous media do not have a unique
dispersion law, i.e., different phase velocities may correspond to the same frequencies. Seemingly,
in such media turbulence arises in just this way.

We see that the phase velocity takes on all values from 1, when the sewing-point approaches the
inner boundary of the boundary layer, to 0, when the sewing-point approaches its external boundary.
Correspondingly, the gain factor changes from zero to a finite limiting value that is sufficiently
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FIG. 4. The dependences of the phase velocities on sewing-point y0 for x = 8: (a) S = 1 crosses and S = 2 circles; (b)
S = 3 crosses and S = 4 circles; (c) S = 4.5 crosses and S = 5 circles; the dependence of the dynamical longitudinal flow
velocity is shown in a, b, and c by heavy line.

FIG. 5. The dependences of (a) the gain factor �0, (b) the wave phase velocity vph0, (c) the wave number K0 and (d) the
wavelength λ on the distance from the nozzle x for S = 2.
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large. It should be noted that negative values of the phase velocity signify that the corresponding
hydrodynamic wave propagates toward the jet flow and damps. For comparatively large values of
y0, x = 8, we have found two eigenvalues for each value of y0.

It is very interesting that, as can be seen from Fig. 4, for any x and y0 the phase velocity of the
waves is close to the dynamical constituent of the longitudinal flow velocity Ud(x, y0) (see Fig. (3)).
This feature can be explained by the fact that, as shown in Ref. 53 in the linear approximation
hydrodynamic waves in jets are transverse and propagate downstream with the flow velocity. The
ratio vph(y0)/Ud(y0) is sensibly independent of S and at any sewing-point lies close to unity. The well
known experimental fact that, when interacting with an obstacle, hydrodynamic waves transform
partially into acoustic waves17 may be easily accounted for by the transverse nature of hydrodynamic
waves.

Figure 5 illustrates the dependences of the gain factor �0, phase velocity vph0, wave number
K0, and wavelength λ on the distance x from the nozzle at fixed values of the Strouhal number.
The corresponding values of the sewing point coordinate y0 are shown by thin lines. The cause of
the decrease in wavelength as the distance increases lies in the decrease in phase velocity with an
increase of the sewing point coordinate (see Fig. 3).

It should be noted that all dependences of the gain factor �0 on the Strouhal number S are of a
resonant character. For a certain value of S these dependences take on a maximal value depending
on the distance from the nozzle. This may be treated as indicating that a jet may be represented as a
set of resonators, as discussed in Ref. 17.

V. CONCLUSIONS

There are several significant conclusions to be drawn. First, splitting the initial equations into
regular and random constituents is a useful approach that does not result in problems of closure.
Secondly, the transition to turbulence occurs via the generation of an infinite number of waves:
there is a continuum of frequencies and, for each frequency, a continuum of phase velocities.
Correspondingly, there is an infinite number of wavelengths. It follows that there is no unique
dispersion law and, because of perturbations (however small they may be), a regular temporal
spectrum does not exist even in cases where the spatial spectrum is regular. Thirdly, for all values
of frequency, and of other parameters, the wave phase velocity lies close to the flow velocity, which
may be accounted for by the fact that hydrodynamic waves propagating downstream with the flow
velocity, and acoustic waves, are solutions of the same hydrodynamic equations.53

The importance of these results relates not only to the fundamental understanding of turbulent
processes in jets, but also bears on many practical applications including those mentioned as examples
in Sec. I. They are also of more general applicability, to all cases where turbulence arises in an
inhomogeneous medium, e.g., the atmosphere.
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