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Testing for time-localized coherence in bivariate data
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We present a method for the testing of significance when evaluating the coherence of two oscillatory time series
that may have variable amplitude and frequency. It is based on evaluating the self-correlations of the time series. We
demonstrate our approach by the application of wavelet-based coherence measures to artificial and physiological
examples. Because coherence measures of this kind are strongly biased by the spectral characteristics of the
time series, we evaluate significance by estimation of the characteristics of the distribution of values that may
occur due to chance associations in the data. The expectation value and standard deviation of this distribution
are shown to depend on the autocorrelations and higher order statistics of the data. Where the coherence value
falls outside this distribution, we may conclude that there is a causal relationship between the signals regardless
of their spectral similarities or differences.
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I. INTRODUCTION

Often in science, but most especially in the clinical or exper-
imental monitoring of physiological processes, time series of
data are recorded that reveal evidence of oscillatory activity.
Examples include neuronal oscillations in electroencephalo-
grams (EEGs) [1], intracranial pressure (ICP) oscillations
[2], arterial blood pressure (ABP) oscillations [3], and other
oscillations found in the cardiovascular system [4]. Where
two different quantities are being measured simultaneously,
the question naturally arises as to whether their individual
oscillations are in some way mutually related. The problem
is thus to detect phase relationships between oscillations
that are found to occur at similar frequencies in different
physiological parameters. A complicating factor is that each
signal typically incorporates several oscillations, each of which
is characterized by a variable frequency and amplitude. Where
broadband bivariate signals are obtained from a complex
system incorporating many coupled oscillatory processes
together with noise, a statistical method is required to identify
unambiguously the significant coherence at each frequency
and across frequencies.

The cross spectrum and wavelet coherence are often used
in bivariate data analysis to detect correspondences between
particular frequency components that are common to both of
the signals under consideration. Many authors, for example
[5–8], use the Fourier cross spectrum to detect coherence.
Properly estimated, the coherence of two time series indi-
cates not just spectral similarities but temporal relationships
showing that some information is shared between them.
The coherence is high when a constant phase difference is
maintained between corresponding oscillatory components
within each of the two time series.

Wavelet coherence measures have been used to detect
interactions between oscillatory components in EEG [9], in
the cardiovascular system [10–12], in geophysics, and in
economics [13]. These methods have also been developed
for use in plasma physics [14,15] and wavelet bicoherence
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methods have been applied to investigate coherent structures
in an electron beam [16].

Torrence and Compo [9] provide details of the wavelet
analysis approach. The wavelet coherence is calculated by
first multiplying the two wavelet values w1(f,t) and w∗

2(f,t)
at each point in time and frequency. However, because the
signals may have arbitrary amplitudes and (even if coherent)
an arbitrary phase difference, these raw values tell us little. In
the case of phase coherence, where a unit phasor is considered
in place of each wavelet term, the magnitude of the product (the
phase difference phasor) is identically one. We wish to know
whether successive values, plotted in the complex plane, are
all similarly directed and thus indicate a consistently preserved
phase difference between the two time series [17]; to this end
Liu [18] describes a consideration of the real and imaginary
parts separately. Time averaging must be introduced to check
for preserved phase relationships, and hence Grinsted et al.
[19] apply a smoothing function to the complex coherence and
Bandrivskyy et al. [10] time average the real and imaginary
parts over the whole time series.

The role of this smoothing is not just to improve the
accuracy of parameter estimation, but to enable the detection of
temporal consistency. Some form of time windowing of data
is required to obtain (quasi-) independent measurements of
phase difference, and some form of time averaging is required
in order to quantify their agreement. In the Morlet wavelet
coherence picture, time resolution corresponds to the finite
width of the wavelet envelope. The averaging can be carried
out over all time, or within some sliding time window (as here),
or by means of a smoothing function applied to the coherence;
the averaging is crucial to the extraction of a value that is
dependent on the degree to which a fixed phase difference is
preserved between wavelet components.

In this paper we show how to calculate time-localized
coherence values by time averaging inside windows and, in
particular, we discuss how to establish the statistical signif-
icance of the results obtained. In Sec. II we provide further
detail of earlier work, summarize the methods available for
significance testing, and illustrate the basic methodology with
some examples. Our methods for the calculation and signifi-
cance testing of wavelet coherence, wavelet phase coherence,
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and windowed wavelet coherence are developed in Secs. III A,
III B, and III C, respectively. We develop significance testing
methods which do not employ surrogates and compare with
typical surrogate testing procedures. Our methods are tested
on numerically generated time series and then applied to real
physiological data in Sec. IV. In Sec. V we summarize briefly
and draw conclusions. Necessary mathematical details related
to coherence and autocorrelation and to windowed wavelet
coherence are provided in Appendices A and B, respectively.

II. BACKGROUND

We now discuss in more detail the present status and
methodology of coherence evaluation. We note that Le Van
Quyen et al. [20] showed the Hilbert and wavelet phase
coherence measures to be equivalent and that Bruns [21]
has drawn attention to the mathematical equivalence of the
wavelet and Fourier coherence approaches; but the necessity
of detecting phase relationships that are maintained over
time is the same in all cases. The cross spectrum obtained
from the Fourier transforms of the whole time series is
uninformative, and the true cross spectrum must be estimated
by use of windowing and averaging. In what follows, we pursue
the wavelet, rather than the windowed Fourier, approach to
coherence as this offers a more intuitive visualization of
time-frequency behavior.

A. Bias and significance testing

Lachaux et al. [22] have discussed the relationship between
bias and independent measurements in wavelet coherence.
Where only a few oscillations of some wavelet component
fit within the time series (in other words, where the phase
values are strongly correlated throughout the length of the
signal), coherence values are higher than they would be if time-
averaging was possible over a large number of independent
measurements.

To compensate for such a bias some form of surrogate
testing [23,24] is commonly implemented, with the aim of
answering the question, “Might this value of coherence be
consistent with an unrelated time series?” A large number
of surrogate time series is generated and the distribution
of unrelated coherence values is determined. If the actual
coherence value falls outside this “null distribution” then
the coherence is deemed to be significant, as for example
by Aguiar-Conraria and Soares [13]. For time-windowed
coherence, an areawise surrogate test is described by Maraun
et al. [25]. We will show, however, that it is possible to calculate
the properties of the “null distribution” without the generation
of surrogates (see Thiel et al. [26] for a philosophically similar
approach).

A special case for coherence testing is when averaging over
values known to reflect truly independent measurements of
the phase (e.g., drawn from different experiments). Zervakis
et al. [27] define the phase intertrial coherence as a means of
checking that the mean phasors obtained from several trials are
in agreement about the phase difference. In Martinez-Montes
et al. [28] the authors approach the issue of coherence by
representing wavelet values from different trials as clusters in
the complex plane.

We may choose to apply the method of surrogates to
estimate the parameters of the null distribution produced by
unrelated time series with the same spectral characteristics as
the original time series. The method of Fourier component
phase shuffling can be used to produce so-called Fourier
transform (FT) surrogates of a signal, in which any temporal
relationship with another signal is destroyed but the spectrum
of the original data is preserved. A variant is the method
of amplitude-adjusted Fourier transform (AAFT) surrogates,
which produces surrogates in which the original values in
the time series are retained, but rearranged in a way that
largely preserves the spectrum while destroying temporal
information [23,29].

Following this approach, we can generate a distribution of
coherence values by subjecting the surrogate signals to exactly
the same procedures as the real data. We can characterize
the actual coherence value in terms of its rank relative to
this distribution (i.e., how many of the surrogate coherence
values it exceeds). If the rank is high (close or equal to 100%
of the surrogate values) then the actual coherence value is
unlikely to have arisen by chance from unrelated signals.
Expressing coherence values in terms of a rank in this way has
the advantage that ranks can be compared directly between
data with different oscillatory frequencies, different numbers
of samples, and different spectral characteristics, all of which
bias the actual and surrogate coherence values of time series.
For example, we can compare the coherence values of data
from a group of experimental runs or subjects by expressing
them in terms of ranks relative to their own purpose-generated
surrogate distributions. We can also discuss the mean rank of
coherence values meaningfully across a range of frequencies
for which the biases in the raw coherence values are different.

To set a significance threshold for coherence we can use the
mean and standard deviation of the surrogate distribution, cal-
culated from a large number of randomly generated surrogates.
For example, if the distribution is normal we frequently set a
threshold of 2 standard deviations above the surrogate mean.
However, we show that it is possible to calculate the charac-
teristics of the distribution of possible coherence values for
unrelated time series without generating any surrogates at all.

To show the necessity of time averaging independent values
of phase, we present and consider some artificial bivariate
data demonstrating the distinction between the cross spectrum
drawn from the whole time series and a wavelet coherence
measure (determined by transforming the time series with good
time resolution and then time averaging in the complex plane).
Coherence is ordinarily normalized by the spectral power of
the corresponding components in the individual time series.
In what follows we approach the problem of correcting the
biases introduced by both the spectral height and width of the
oscillations, so this normalization is neglected.

First we generate a random-walk noise signal of length
1000 s, sampled at 10 Hz (at the nth sample, tn = n/10). This
signal B is the cumulative sum of 10 000 randomly selected
values w(m) from a normal distribution W of unit variance:

B(tn) = �n
m=1w(m), (1)

where

W ∼ N(0,1), (2)
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where N implies “normally distributed.” Such a Brown noise
time series can then be rescaled by replacing the (ranked) actual
sample values with (ranked) samples drawn from a distribution
with a unit variance. In this way, we can generate Brown
noise signals (a,b,c,d,e, . . .) of unit variance to represent
the noise component in each of the two time series and also
to define varying frequencies fb(tn) = 0.3 [1 + 0.1 Bb(tn)],
fc(tn) = 0.6 [1 + 0.1 Bc(tn)], fe(tn) = 0.3 [1 + 0.1 Be(tn)],
with phases φ(tn) =∑n

m=1 2π f (tm) × 0.1, to produce time
series

S1(tn) = Ba(tn) + 0.1 sin[φb(tn)] + 0.1 sin[φc(tn)], (3)

S2(tn) = Bd (tn) + 0.1 sin[φe(tn)] + 0.1 sin[φc(tn)]. (4)

Each signal is detrended by subtraction of a moving 40-s
average to give stationarity over long time scales. This time
series has power at all frequencies above that corresponding
to the detrending time scale.

The phases of the 0.3-Hz components of S1 and S2

are independent, but those of their 0.6-Hz components are
identical. We wish to distinguish the identical from the
independent processes despite the spectral similarities of the
two signals.

A simplified Morlet wavelet transform [30] is applied. The
Morlet mother wavelet is a complex plane wave multiplied by
a Gaussian envelope function,

ψ(σ,t) = 1

σ
1
2

e
−i2πf0 t

σ e
−t2

2σ2 . (5)

For f0 = 1 the characteristic frequency of the wavelet is 1
σ

.
The wavelet transform of a time series is then the convolution
of the complex wavelet [Eq. (5)] with the time series at each
scale σ ,

W (σ,t) =
∫ ∞

−∞
ψ(σ,(t − τ ))f (τ )dτ. (6)

For our demonstration, we use a wavelet with f0 = 1, rescaled
in increments of 5% between σ = 1 and 10 (1 and 0.1 Hz). All
wavelet transforms are scalloped to remove unreliable values
from the edges of the transform, where the wavelets overhang
the edges of the time series. Specifically, if the amplitude of
the wavelet envelope at the edge of the time series is >10% of
its peak amplitude, that wavelet value is removed.

In Fig. 1 we present 300 s of data, showing the raw signals,
their transforms, their cross spectrum (without windowing)
and their wavelet phase coherence (the phase difference phasor
calculated at each point in time and averaged over all time). The
0.3- and 0.6-Hz oscillations are not obvious to the naked eye in
the raw signals shown in Fig. 1(a), although it may be possible
to pick out the spectral peaks in Fig. 1(b) and the corresponding
features in the time-frequency plots in Figs. 1(c) and 1(d).
Without windowing and averaging, the cross spectrum of
Fig. 1(e) is merely the product of the FTs and the peaks at
0.3 and 0.6 Hz are comparable and small, both dwarfed by
the low-frequency noise terms. In contrast, the wavelet phase
coherence is high only where a phase difference is preserved
throughout the transforms. Coherence values are biased toward
low frequencies but the signal component in common (at
0.6 Hz) is still clearly apparent in the phase coherence, as
shown in Fig. 1(f). To verify that the peak at 0.6 Hz represents

FIG. 1. (Color online) Analysis of numerically generated noisy
signals (dimensionless units). (a) The raw signals derived from
Eqs. (3) (black) and (4) (gray); and (b) the magnitude of their discrete
FTs. (c) Wavelet transform amplitude |W (σ,t)| of the signal from (3).
(d) Wavelet transform amplitude of the signal from (4). (e) Magnitude
of the cross spectrum without windowing or averaging. (f) Wavelet
phase coherence.

a true correspondence between signals, and the “bump”
around 0.3 Hz does not, we need to perform a significance
test.
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FIG. 2. Analysis of numerically generated noisy signals (dimen-
sionless units) where one of them is an AAFT surrogate. (a) The raw
signals, where the black curve is derived from Eq. (3) and the gray
curve is an AAFT surrogate of the signal in Eq. (4). (b) The FTs of
the signals in (a). (c) Their cross spectrum. (d) The wavelet phase
coherence of the two signals in (a) (dashed black curve), that is, of
a numerically generated signal with its surrogate, is compared with
the wavelet phase coherence of the two original signals (solid black
curve) from Fig. 1(f). The gray curves indicate the distribution of
thousand such surrogates: The solid gray curve is the mean, and
the dashed and dotted gray curves represent, respectively, 1 and 2
standard deviations about the mean.

In Fig. 2(a) we show an example AAFT surrogate of S2,
its FT [Fig. 2(b)], and its cross spectrum with the original
S1 [Fig. 2(c)]. Note that the mere existence of spectrum-
preserving surrogate time series is enough to invalidate the
crude unwindowed cross-spectrum approach to detecting
correspondences: The surrogate cross spectrum has all the
same features as that in Fig. 1(e). In Fig. 2(d) we present
the surrogate wavelet phase coherence with the original S1,
and the statistics for 1000 such AAFT surrogates. We also
plot the phase coherence of the related signal pair, which
falls far outside the distribution of phase coherence values
obtained for surrogates. The wavelet approach, with good
time resolution and using time- averaging to determine the
coherence, is clearly able to distinguish the truly coherent
signals from the surrogate null distribution.

If coherence averaging was to be performed over X

windows then the number of FTs required to obtain a
properly windowed cross spectrum would be 2X. A secondary
windowing procedure (localized averaging or “smoothing”)
would then be necessary to obtain local estimates of the
average Fourier cross spectrum. To evaluate the wavelet
coherence requires transforms (obtained by convolution with
a wavelet in the frequency domain) at each of F wavelet scales
to be investigated, or ∼2F FTs.

In Sec. III we show how to calculate the parameters of the
null distribution of time-localized coherence values without
use of surrogates. We consider time-localized coherence
values produced by time averaging inside windows, instead
of using a Gaussian smoothing function (which would, in
practice, correspond to a Gaussian weighting of the terms
inside each window). Our method could, in principle, be used
in conjunction with the latter approach, but an additional
complexity would be introduced because, in addition to
counting the terms occurring inside the windows, it would
also be necessary to account for their weighting.

Before proceeding further, we summarize our basic ap-
proach to coherence-based methods.

B. Outline of methodology

Coherence-based methods form a family whose members
depend on time averaging the product of a value drawn from
one analytic time series and the complex conjugate of the
corresponding value drawn from another. This is easiest to
visualize in the case of phase coherence, wherein the complex
quantities are normalized phasors and the time average is the
mean phase difference phasor. The magnitude of this mean
phase difference phasor is the phase coherence, and if the
magnitude is large we can say that a particular phase difference
is preserved over time, given by the phase of the mean phase
difference phasor.

In order to determine whether the phase coherence is
“large” we need to know the characteristics of the distribution
of possible phase coherence values consistent with the null
hypothesis that the two time series are causally unrelated. This
will depend on the time-series themselves; in particular, if
they are uniformly oscillatory with the same frequency then a
fixed phase difference will inevitably be found throughout all
time and the existence of high phase coherence then has no
inductive value.

The mean phase difference phasor can be visualized as a
total (to be normalized by the number of samples) of a series
of phasors joined end to end in the complex plane (see Fig. 3).
If the phasors are uncorrelated then this is a random walk
with a low total amplitude and an arbitrary phase (black line).
If a particular phase difference is maintained then the walk
will extend a long distance in a particular direction (black
dashed line). If zero phase difference is maintained at all times
then the walk will proceed straight along the real axis and
the phase coherence will be equal to unity. In general, high
phase coherence values indicate that some particular phase
relationship is maintained over time. However, correlations
due to internally correlated time series (i.e., measurements
that are not truly independent) can produce a spuriously high
amplitude.

046205-4



TESTING FOR TIME-LOCALIZED COHERENCE IN . . . PHYSICAL REVIEW E 85, 046205 (2012)

FIG. 3. Cumulative sum of phase difference phasors for three
different types of bivariate data: random phase values (independent
samples from a uniform distribution) in solid black, random phase
differences (drawn from independent 0.3-Hz wavelet phase compo-
nents) of Eq. (3) and Eq. (4) in gray, coherent phase difference values
[drawn from matching 0.6-Hz wavelet phase components of Eqs. (3)
and (4)] in dashed black.

In Fig. 3 we see that even unrelated phase time series can
produce a phase difference walk that is smooth on short time
scales, due to self-correlations (gray line). On long time scales
the growth of the total resembles a random walk. Note that a
closed loop in the walk would correspond to a 2π phase slip
between the time series.

The magnitude of the total is the square root of the product
of the total and its complex conjugate. Multiplying them means
multiplying every phasor by every conjugate phasor, which
we can visualize as a square Hermitian matrix of N2 terms,
diagonal terms being equal to one by definition and correlated
neighboring terms having a large real part. We first show
how the expectation value of this product depends on the
autocorrelation functions of the time series; this determines
the second moment of the null distribution.

The expectation value of the null distribution is determined
after taking a square root [note that this expectation root square
(ERS) value is distinct from the root expectation square (RES)
and that both are needed to find the variance of the distribution].
We can approximate this value by Taylor expanding the square
root about the RES, and then taking the expectation value.
The latter depends on a higher order statistic of the data and
specifically on the correlation of neighboring phase growth
rates in each time series. This same reasoning also applies
to the more general case of coherence in which the complex
quantities are not normalized unit phasors, although it may be
slightly harder to visualize. Having determined the expectation
and variance of the null distribution, we can compare the actual
coherence values with this range of possibilities to test for
significance.

III. METHODS

The general approach described above is applicable to
any complex oscillatory time series that is to be checked
for coherence. Here we apply it to time series subjected to
“filtering” by the Morlet wavelet transform. The transform
produces an array of wavelet components with different
central frequencies, each with time-variable amplitude and

rate of phase growth. The filtering action of the transform
ensures that neighboring amplitude and phase values are
correlated. However, the rate of phase growth must ultimately
be nonuniform for the method of coherence testing to have any
inductive value, as we shall see.

A. Wavelet coherence

We calculate the distribution of coherence values con-
sistent with the null hypothesis of unrelated signals. The
coherence is to be determined from two complex oscillatory
time series w1,2(t) with internal correlations. In the case of
wavelet transform values at frequency f , we take wk(tn) =
Wk(f,tn)eiφk (f,tn), for k = 1,2 and n from 1 to N . The wavelet
power at this frequency is Pk = 1

N

∑N
n=1 wk(tn)w∗

k (tn).
The coherence �W is real by definition,

�W =
{[

1

N

N∑
n=1

w1(tn)w∗
2(tn)

][
1

N

N∑
m=1

w∗
1(tm)w2(tm)

]}1/2

.

(7)

When using the coherence measure to detect a causal
relationship between signals, we must consider the null
hypothesis that the coherence value is due to a chance
relationship preserved over a limited number of correlated
measurements.

Consider the product vk(a,n) = w∗
k (tn)wk(tn+a). We can

represent each such term in the following way, as the sum of
a mean term (for each a) and a difference from the mean (for
each a and n),

vk(a,n) = mk(a) + dk(a,n), (8)

so this mean term, mk(a), is the autocorrelation,

mk(a) = 1

(N − a)

N−a∑
n=1

w∗
k (tn)wk(tn+a). (9)

We determine the first and second moment of possible
coherence values consistent with our null hypothesis. See
Appendix A for details of the working.

The second moment of this null distribution is

E
(
�2

W

) = C

N2
, (10)

where

C = NP1P2 + 2
N−1∑
a=1

Re (N − a)m1(a)m∗
2(a). (11)

The first moment is approximated by a Taylor expansion,
involving higher-order statistics of the data. We calculate the
higher-order statistic

Gk(a,p,q) = 1

(N − a − p − q)

N−a−p−q∑
n=1

wk(tn+a)w∗
k (tn)

×wk(tn+a+q)w∗
k (tn+p) (12)

for each time-series and show that

E(�W ) ≈
√

C

N

〈
1 − 1

8
x2 · · ·

〉
, (13)
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where

〈x2〉 = 2

C2

{
Re

[
N−1∑
a=1

N−1−a∑
q=1−N−a

N−q∑
p=1

(N − a − p − q)

×G∗
1(a,p,q)G2(a,p,q)

]
− K

}
, (14)

with

K = Re

{
N−1∑
a=1

(N − a)
N−1∑
b=1

(N − b)[m∗
1(a) m1(b)]

× [m2(a) m∗
2(b)]

}
. (15)

The first and second moments of the distribution are
sufficient to determine the variance.

Thus we can reevaluate the actual coherence value ob-
tained from the data by checking by how much it exceeds
the expectation value of the null distribution in terms of
standard deviations of this distribution. This allows a single
consistent threshold, such as “2 standard deviations above
the expectation,” to be applied to the detection of significant
coherence, correcting for the biases introduced by having a
limited number of correlated measurements.

Note that Eq. (10) is the expectation square, and we refer
to its square root as the RES. Equation (13) is the ERS. These
terms are used in the text and working, particularly in the ap-
pendixes, in order to highlight the crucial distinction of taking
the expectation value either before or after the square root.

1. Computational issues and accuracy

This approach to the calculation of the expected “null”
phase coherence at each frequency depends on the calculation
of higher order statistics from the data, specifically G,
requiring of order N3 log2 N operations for N data points.
Although the phase time series can be downsampled to elim-
inate obvious redundancy, estimation by calculating Fourier
surrogate coherences, each one requiring of order N log2 N

operations, may be faster. If speedy quantification of the bias
in � is required then the determination of the null RES from
Eq. (10) is algorithmically simple and requires only two FTs.

G provides a measure of the similarity of the phase
differences between pairs of phasors drawn from a time series,
pairs separated by a and a + q values, respectively, and drawn
p values apart. It is estimated by evaluating all such sets of
data and time averaging over n, the position of the first value in
the first pair. However, particularly for high a, p, and q, very
little data may be available for performance of the estimation.
As the order of the statistic grows, the proportion of values
on the “edges” of the matrix of returned values will grow and
contribute to inaccuracies in the final result. The estimation
of the terms that make up C and K is rather better, being
based on the autocorrelation function (a first-order statistic
with one time delay index, the “end” values being the least
accurate). It may be preferable to avoid evaluating G and K

using all possible values of a,p,q to cut computation time and
restrict the sum to well-estimated statistics. In particular, when
windowed coherence is to be evaluated, not all a,p,q need to
be evaluated.

The method of direct calculation has the advantage that the
computationally expensive estimations performed on each of
the individual phase time series need only be performed once,
no matter how many cross comparisons between series are to
be carried out. Although the AAFT preserves the distribution
(and to a great extent the spectrum) of each raw signal,
the presence of spikes or artifacts in the raw data may still
produce distortions in the surrogates that do not mimic the
actual behavior of real signals. Thus, by working with the
autocorrelations (and spectral characteristics) of the wavelet
phase time series drawn from the real data we can also mitigate
the problem of artifacts. Keylock [31] has developed a useful
alternative means of dealing with artifacts in surrogates.

If the difference between 〈�〉 and
√

〈�2〉 values is very
small then it is likely that no meaningful estimate of the
variance of the distribution is possible and equivalently that
no inference can be based on so few data. In such cases
the matrices Gk may sometimes be so dominated by poorly
estimated edge values that 〈x2〉 is found to be negative, which
is clearly meaningless in the context of actual data, and is
due to the disparity in the total weighting of the different
phase values when they are used to calculate m and G values.
The method may also lose accuracy where the statistics of
the data are highly nonstationary. Note that a loss of accuracy
in the method of calculation may be found at the edges of
spectral peaks, where the statistics of the data are found to
be nonstationary because the wavelet values are intermittently
dominated by the neighboring oscillations.

Strictly speaking, the distribution of coherence values
consistent with the null hypothesis is in general not truly
normal, being bounded at the lower end by zero and, in the case
of phase coherence, at the upper end by unity. Where we have
long time series constituting a large number of independent
measurements of phase difference, the expected coherence
is low and the null distribution is close enough to normal
that the mean and standard deviation are enough to check
for significance. Where the expected coherence is close to
“maxing out” due to the phase measurements being strongly
correlated with each other, the distribution becomes strongly
non-Gaussian.

As the expected phase coherence approaches unity the null
distribution becomes left skewed. In this case it is mathemat-
ically impossible for the actual phase coherence to be more
than 2 standard deviations above the mean, and the wavelet
coherence (incorporating amplitudes as well as phases) will
also max out unless there are additional correlations in
amplitude variability in the data. We recommend checking
the second moment of the expected phase coherence, as this is
quick to determine. When

√
〈�2〉 approaches unity the phase

coherence is close to maxing out. If we still wish to attempt
statistical testing in this very high-baseline regime, and longer
windows of data are not available, surrogates can be used to
check the Gaussianity of the null distribution and the rank of
the coherence relative to surrogates can be determined.

2. Uncorrelated measurements

In the case of data that are completely without
self-correlations, 〈C〉 = NP1P2 and 〈K〉 = 0, while the
Gk(a,p,q) = P 2

k for all a when p = 0 and q = 0 and has
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expectation 0 for all other cases. We thus recover the following
results for uncorrelated data:

E
(
�2

W

) = P1P2

N
(16)

and

E(�W ) ≈
√

P1P2

N

[
1 − 1

4(NP1P2)2
(N−1)

(
N

2

)
P 2

1 P 2
2 · · ·

]
.

(17)

These considerations provide some justification for the
usual practice of normalizing the coherence using the prod-
uct of signal powers. However, the wavelet transform will
generally not provide such uncorrelated measurements, at
least not unless (in the case of the Morlet transform) the
transform is downsampled with a frequency much lower than
the frequency of that wavelet component. By filtering out an
oscillatory component, the integral transform must result in
temporal correlations over several wavelengths at least (even
for noiselike data).

B. Wavelet phase coherence

We consider separately the cases of partial and zero
correlation between the phase measurements.

1. Partially correlated phase measurements

The phase coherence is obtained by extraction of only the
phase values, φk(tn), from the wavelet transform. The phase
difference φ(tn) = φ1(tn) − φ2(tn). As defined in Bandrivskyy
et al. [10], the wavelet phase coherence is

�P = 1

N

({
N∑

n=1

sin[φ(tn)]

}2

+
{

N∑
n=1

cos[φ(tn)]

}2 )1/2

.

(18)

If we replace each wavelet value in Eq. (18) with a normalized
phasor, the following definition of coherence is equivalent:

�P =
[(

1/N

N∑
n=1

eiφ1(tn)e−iφ2(tn)

)

×
(

1/N

N∑
m=1

e−iφ1(tm)eiφ2(tm)

)]1/2

. (19)

So, using using wk(tn) = eiφk (tn), we can find E(�P ) and
E(�P ) in order to calculate the autocorrelation and Gk

statistics for the new time series of unit phasors.

2. Uncorrelated phase measurements

In the case of phase data that are completely without self-
correlations, 〈C〉 = N and 〈K〉 = 0, while the Gk(a,p,q) = 1
for all a when p = 0 and q = 0 and have an expectation of
zero for all other cases. We thus recover the following results
for uncorrelated data, where the phase difference phasor is a
random walk in the complex plane, for which each step is of
unit amplitude:

E
(
�2

P

) = N (20)

and

E(�P ) ≈ 7
8

√
N. (21)

In this case a significant proportion of cases implicitly
evaluated in the Taylor series expansion before averaging do
not, in fact, converge and so the expansion cannot properly be
truncated at the second term. In practice, however, numerical
evaluation of the sums of N random phasors has established
that E(�P ) ≈ 7

8

√
N is correct to within 2%.

Uncorrelated measurement cases occur where phase dif-
ference values from several separate experiments are to be
amalgamated and checked for agreement [27,28]. Successive
wavelet phase values are generally correlated for the reasons
discussed above.

C. Windowed wavelet coherence

To track changes in the degree of coherence between signals
as it varies over time, we can window the data in the time
domain. Using a sliding window we select N values from a
time series of length N ′. Such windowing allows us to plot the
wavelet coherence (or wavelet phase coherence) as a function
of frequency f and time t , where the coherence value is plotted
for a window of given size centered on a particular time.

Although windowing the data introduces good time reso-
lution for the detection of wavelet coherence between signals,
the reduced amount of data available for the calculation
of each coherence value �(f,t) means that biases due to
self-correlations in the signals become correspondingly more
important. Thus, it is necessary to determine the ERS and RES
null coherence values in order to judge the results obtained.

One advantage of working in terms of windowed coherence
values is that the crucially important self-correlations m and
G can be determined by making use of all the data in the
signal, as above, though only the terms with delay indices less
than the size of the window are needed to calculate the ERS
and RES null coherences. We can only estimate the spectral
properties of the data from the time series we have available,
and the smaller the delay t the better the estimation of the
autocorrelation m(t). Thus, fewer terms are needed (improving
speed of calculation) and the terms required are also those most
accurately determined from the data (improving accuracy).

Having obtained the ERS and RES null coherences in
this way, one approach to the actual coherence data is to
rescale it by subtracting the ERS null and dividing by the null
standard deviation. The regions of truly high coherence can
thus be identified. In principle, the use of windowed coherence
enables us to identify all episodes of high coherence even
when the phase relationship maintained may vary over time as
a function of underlying parameters, although this may also
cause nonstationarity in the statistics of the data.

Over a long enough period of time, some episodes of
apparent coherence may occur by chance. Although we can,
for example, identify those coherence values more than 2
standard deviations above the null expectation value, even in
the case of unrelated data we expect some 2.5% of values to
exceed this threshold. We can compare the time average of
the windowed coherence with the null ERS value, but now
the question becomes, “How high must the average windowed
coherence value be relative to the null ERS to constitute a
deviation from the null hypothesis?”
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The windowed coherence values are themselves correlated
to an extent depending on the spectral properties of the data
and the length of the time series. We know the null expectation
value and standard deviation, but a further calculation is
required to find the variance of the distribution of possible
mean windowed coherence values consistent with the null hy-
pothesis, which is more tightly constrained than any individual
value. For X independent windows the error in the estimation
of the mean, often called the standard error of mean (SEM),
would be the standard deviation over

√
X.

In Appendix B we find that the second moment of the
distribution of possible mean windowed coherence values con-
sistent with the null hypothesis is greater than 〈�WW 〉〈�WW 〉
by an amount proportional to 〈ξ 〉, a cross term representing
the expected similarity of neighboring windows, given by

〈ξ 〉 = 2

X2C2

{
Re

[
X−1∑
a=1

N ′−1−a∑
q=1−X−a

N ′−q∑
p=1


(a,p,q)G∗
1(a,p,q)

×G2(a,p,q)

]
− �

}
, (22)

with

� = Re

{
X−1∑
a=1

N ′−1−a∑
q=1−X−a

N ′−q∑
p=1


(a,p,q)[m∗
1(a) m1(a + q − p)]

× [m2(a) m∗
2(a + q − p)]

}
(23)

and all terms accounted for using the normalization factor,


(a,p,q) =
X∑

s=1

X∑
t=1

N+s−1∑
n=s

N+s−1∑
m=s

N+t−1∑
n′=t

N+t−1∑
m′=t

δ(m,n + a)

× δ(n′,n + p)δ(m′,n + a + q), (24)

where δ(i,j ) = 1 when i = j , and = 0 otherwise.
The variance of the time-averaged windowed wavelet

coherence �WW is

〈�WW
2〉 − 〈�WW 〉〈�WW 〉 = C

N2

1

4
〈ξ 〉, (25)

and this result in combination with the expected mean 〈�WW 〉
allows us to determine whether there is overall more coherence
than would be expected according to the null hypothesis.

As before the same result applies in the case of windowed
wavelet phase coherence, with mk and Gk values calculated
using unit phasors eiφk (f,t) instead of wk(f,t). In this case the
bias attributable to signal power is removed by construction
and, if the data are noisy and oscillatory components are highly
time variable, then the next most important source of bias may
be the self-correlations imposed by the transform itself. The
use of adaptive windows, equal to some fixed multiple of the
wavelet period for each component, is sufficient to normal-
ize this bias. Inspection of raw adaptive-windowed wavelet
phase coherence can be instructive even without any further
calculation or normalization. Such further normalization will
be required where the oscillations in the data (e.g., cardiac
pulsations) include correlations over time scales that are many
times the characteristic scale of the corresponding wavelet.

The phase coherence approach is most appropriate where
the bivariate data represent two coupled, self-sustained, oscil-
lators, each completely described by phase. Where one signal
is suspected of being an admixture of the other, possibly with
a complex and/or time-variable coefficient, it may be more
appropriate to apply wavelet coherence or windowed wavelet
coherence measures, in which the amplitudes of the signals
play a part.

IV. TESTS AND APPLICATIONS

Before applying the method to real physiological data, we
test it on the kind of numerically generated time series detailed
above.

A. Application to numerically generated time series

As indicated above, we can remove a major source of bias
in wavelet coherence simply by using an adaptive window
size equal to a fixed number of periods of the wavelet applied
at each scale component. This ensures that roughly the same
number of periods are used to calculate every coherence value,
although it does not remove biases due to differing degrees of
frequency variability in the oscillations themselves.

The window size is chosen to be 12 periods: If each Morlet
wavelet is taken to include six oscillations of appreciable size,
this window includes two nonoverlapping wavelets. We show,
on this basis, that we are able to distinguish between truly
coherent phases and mere biases in the data.

We examine the windowed wavelet coherence for 1000 s
of the original data pairing described above [Eqs. (3) and
(4)], with related oscillations at 0.6 Hz. We compare first with
the expected null distribution obtained by calculation from
self-correlations, second with the null distribution estimated
by generating 1000 surrogates, and third with a distribution
obtained from 1000 realizations of unrelated data.

The unrelated data are generated in the same way as before,
but including an independent 0.6-Hz oscillatory process with
ff (tn) = 0.6 [1 + 0.1 Bf (tn)], and phase generated as before
with 0.1-s time resolution φf (tn) =∑n

m=1 2π ff (tm) × 0.1:

S1(tn) = Ba + 0.1 sin[φb(tn)] + 0.1 sin[φc(tn)], (26)

S2(tn) = Bd + 0.1 sin[φe(tn)] + 0.1 sin[φf (tn)]. (27)

Note that the self-correlation statistics of the related data
series may not coincide exactly with the typical statistics of
the unrelated data and that in real applications we do not
usually have the luxury of having known, unrelated, time
series to compare with possibly related time series in this
way. Nonetheless, they provide a useful benchmark.

In Fig. 4(a) we plot the actual windowed wavelet coherence
for 1000 s of the original data pairing. Both the 0.3- and 0.6-Hz
oscillations produce “ridges” in the raw coherence that can be
traced across the plot at their respective frequencies.

Figure 4(b) plots the mean windowed wavelet coherence
against the calculated expectation value, the mean of AAFT
surrogates, and the mean of unrelated realizations. The
independent spectral components, at 0.3 Hz and below, give
coherence values very similar to what is expected. The
mean windowed wavelet coherence values of the matching

046205-8



TESTING FOR TIME-LOCALIZED COHERENCE IN . . . PHYSICAL REVIEW E 85, 046205 (2012)

FIG. 4. (Color online) The windowed wavelet coherence with an
adaptive window length to remove selfcorrelation biases introduced
by the transform itself. The 0.6 Hz components of the artificial
timeseries (dimensionless units) are identical. (a) The magnitude
of the windowed wavelet coherence, i.e. the magnitude of the
product of one wavelet transform and the complex conjugate of
the corresponding terms from the other wavelet transform, averaged
inside a time window at a given frequency. (b) The actual mean
(full, green) of the windowed wavelet coherence, compared to the
calculated expectation null mean (full, black), the AAFT null mean
(dashed, gray), and the independent data null mean (dashed, black).
(c) The actual standard deviation (st.d) (full, green) of the windowed
wavelet coherence, compared to the calculated expectation null st.d.
(full, black), the AAFT null st.d. (dashed, gray), and the independent
data null st.d. (dashed, black). (d) The actual mean (full, green) of
the windowed wavelet coherence, compared to a threshold set two
standard deviations in the mean above the calculated expectation
null mean (full, black), the AAFT null mean (dashed, gray), and
the independent data null mean (dashed black). (e) The windowed
wavelet coherence minus the calculated expectation null mean,
divided by the expected null standard deviation in each window.
Note the logarithmic ordinate scales in (b)–(d).

components (at 0.6 Hz) are found to be systematically higher
than expected by all three methods. Thus, we have evidence for
true coherence around this frequency. Note that around 0.6 Hz
the method of direct calculation gives expectation values closer
to the mean values obtained from the unrelated data than the
method of AAFT surrogates achieves.

The standard deviation of the actual windowed wavelet
coherence values is compared to the mean standard deviations
of the null distributions in Fig. 4(c). This standard deviation
is the square root of the variance of the value in a window,
examined in Sec. III A and Appendix A. At low frequencies,
there is good agreement between the actual standard deviation
of the values found in the windows and the standard devi-
ations predicted by all three methods. The actual windowed
wavelet coherence values have higher standard deviations than
expected around 0.6 Hz, just as they have a higher mean, but
the peak appears somewhat “blunted” because the coherence
values are maximized and thus less able to vary.

Figure 4(d) compares the actual mean windowed wavelet
coherence to a threshold set equal to the null mean plus 2 stan-
dard deviations of the null mean. This standard deviation is the
square root of the variance of the mean windowed wavelet co-
herence value, defined in Sec. III C [Eq. (25)] and Appendix B.
The coherence at and around 0.6 Hz exceeds the thresholds, in-
dicating a degree of coherence unlikely to have occurred under
the null hypothesis and which is therefore likely to be genuine.

In Fig. 4(e) windowed wavelet coherence values are
rescaled by subtraction of the calculated expectation mean and
dividing by the calculated expected standard deviation in each
window. It is clearly evident that coherent areas are (correctly)
found in the vicinity of 0.6 Hz: By eye we can trace the “ridge”
in the plot at around 0.6 Hz, whereas the spurious ridge in the
coherence at 0.3 Hz has been successfully normalized by the
rescaling.

1. Deterministic chaos

Deterministic chaos arises in many physical systems and
is arguably a feature of physiological activity. Such processes
may be oscillatory with nonuniform phase growth, so that
interactions and/or dependencies resulting in coherence can be
tested for. In addition to the simple stochastic model described
above, we apply our method to phase values extracted from a
system exhibiting deterministic chaos, specifically the Rössler
equations described in Rössler [32]. In this system we extract
the phase directly from the analytic signal, rather than initially
applying a wavelet “filter,” because only a single underlying
process gives rise to the data. This also demonstrates that the
significance testing approach is more broadly applicable.

For simplicity, we set a = 0.1, b = 0.1, c = 18, and in-
tegrated the equations using the forward Euler method with
relatively high time resolution (0.01 s). The x, y, and z

coordinates were initially set to random values chosen from
a normal distribution and unit variance, and the first 20 000 s
of its evolution discarded to avoid transients and ensure that
each instance was independent. The next 20 000 s of the time
series x and y were subjected to a Hilbert transform and the
phase of the oscillation was extracted from the corresponding
analytic signals. The phase coherence of x and y was found to
be 0.988 in a typical instance.
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We resampled the phase time series to 0.05 Hz and
calculated the expected null distribution of phase coherence
values, as described in Secs. III A and III C. The expectation
value was found to be 0.653 with standard deviation 0.191,
consistent with the high degree of self-correlation in these
time series and indicating that the phase coherence of the
x and y coordinates is higher than would be expected by
chance. We found that the mean phase coherence of the x

coordinate with a y coordinate drawn from an independent
instance of the system (1000 instances with different initial
conditions) was 0.539 with standard deviation 0.187. This is
rather lower than calculated, but 1000 AAFT surrogates had a
mean coherence of only 0.302 with standard deviation 0.143,
and Fourier surrogates (preserving spectrum only) performed
no better, potentially resulting in false positives for coherence
testing in this system.

The Fourier spectra of x and y are highly structured with
related harmonics and subharmonics. This makes it difficult
to construct surrogates that resemble real time-series. Also, a
very long time series may be required to estimate accurately
the spectral and autocorrelation characteristics of the time
series, and it may be that the distribution of coherence values
consistent with the null hypothesis depends on a number of
important self-correlations. Our method of direct calculation
uses only the statistics m and G and only as they are estimated
from the available data. Different methods of surrogate
generation or calculation (effectively, slightly different null
hypotheses) may result in different null mean and standard
deviation values, and it is unclear which will perform best
when attempting to detect true coherence in any given case.
Where the dynamical behavior of a system can be investigated
numerically, further investigation of the implications of its
self-correlations for coherence measures is recommended.

B. Coherence in signals from a human subject

We now apply this approach to data recorded from a human
subject who was being monitored in an intensive care unit
after suffering a traumatic brain injury. Intracranial pressure
is routinely monitored in such cases because, if the pressure
in the skull is too high, reduced perfusion and ischemic brain
damage can result. We wish to detect, if any, the influence
of ABP on ICP. This may occur as a result of mechanical
transmission of changes in pressure within the thorax, or via
reflex feedback loops in the cardiovascular system.

We use a wavelet with f0 = 1, rescaled in increments of 5%
between 0.0025 and 2.5 Hz, with a window length of 12 peri-
ods. Figure 5(a) shows the raw signals, and Fig. 5(b) their FTs,
including prominent cardiac and respiratory oscillations and
their harmonics. Figure 5(c) shows the raw windowed wavelet
coherence.

There are peaks in the raw coherence corresponding to
cardiac and respiratory oscillations in blood pressure prop-
agating mechanically in the ICP. Note that the subject was
being artificially ventilated, so that the respiratory oscillations
in pressure are very strongly autocorrelated (mechanical
0.25-Hz oscillations). The cardiac oscillations are also highly
regular (≈1 Hz). Below the respiratory frequency, spontaneous
oscillations in ICP and ABP occur.

FIG. 5. (Color online) The windowed wavelet coherence of ICP
and ABP with an adaptive window length to remove self-correlation
biases introduced by the transform itself. (a) A typical section (50–
100 s) of the raw signals (ABP, gray; ICP, black). (b) Their Fourier
transforms. (c) Magnitude of the windowed wavelet coherence (cf.
Fig. 4(a)). (d) The actual mean (full, green) of the windowed wavelet
coherence, compared to the expected null mean (full, black) and a
threshold (dashed, black) set at twice the null standard deviation
in the mean, above the mean (cf. Fig. 4(d)). (e) The windowed
wavelet coherence minus the expected null mean, divided by the
expected null standard deviation for each window (compare with
Fig. 4(e)). Some low frequency features are more than 6 standard
deviations above the expected null mean. (f) The magnitude of the
phase difference between ABP and ICP oscillations in each window.
Note the logarithmic ordinate scale in (d).
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We calculate the expected null distribution of windowed
coherence values, as described in Secs. III A and III C.

Figure 5(d) shows that the coherence is significantly
higher than would be expected by chance across a range of
frequencies. At low frequencies the mean of the windowed
coherence exceeds the threshold (2 standard deviations above
the expectation value) calculated from the self-correlations
in the two time-series as described in Sec. III C. We see
actual and predicted coherence peaks at the respiratory and
cardiac frequencies and their harmonics. For a window of
only 12 periods, both the respiratory and cardiac coherence
values have “maxed out” and become completely predictable.
In this case the bias is so high that a much longer window
is needed to show the significance of the cardiorespiratory
coherence. This is consistent with mechanical transmission of
the high-frequency pressure waves in the ABP into the ICP.

In Fig. 5(e) the coherence is rescaled according to the
mean and standard deviation expected of the null distribution
(Sec. III A). The relatively significant low frequency coherence
becomes apparent.

By plotting the magnitude of the phase difference angle φ,
rather than the absolute magnitude of the windowed coherence
values, we can see in Fig. 5(f) that the phase relationship
between the oscillations in ICP and ABP changes below
the respiratory frequency. According to Czosnyka et al. [2],
a negative correlation coefficient between slow changes in
ICP and ABP indicates an intact cerebrovascular reactivity
(where the cerebrovasculature counteracts the fluctuations in
blood pressure by regulating the volume of blood within the
skull). By using the frequency resolution provided by wavelet
coherence testing we can see the characteristic frequencies
at which this phase shift takes place and prove its statistical
significance.

V. SUMMARY AND CONCLUSION

We have demonstrated and quantified the dependence of
wavelet coherence measures on self-correlations in the data.
Such self-correlations must be accounted for, either by direct
estimation or by surrogate testing, in order to determine the
significance of any coherence result. We can view the use
of Fourier surrogates, which preserve the spectral (and thus
autocorrelation) properties of the data, as a means of estimating
parameters calculated explicitly in Sec. III.

The windowed wavelet coherence or wavelet phase coher-
ence approach offers reasonably intuitive interpretation and
good frequency and time resolution when applied to noisy
nonautonomous oscillators.

The method detailed here is quite generally applicable
to phase time series obtained by other means, such as by
interpolation between marked events [33,34] or Hilbert phase
data [20,35]. It could also be applied to quantify the bias intro-
duced by self-correlations in the case of short-time-windowed
estimates of the Fourier cross spectrum. Whenever coherence
or bicoherence (or indeed higher order coherence) must
be tested for significance, the extent to which successive phase
measurements can be said to be independent will determine the
ability to distinguish between genuinely coherent and merely
coincident data.
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APPENDIX A: COHERENCE AND AUTOCORRELATION

In this Appendix, we provide details of the working used in
deriving relations needed in Sec. III A. We begin by finding the
RES coherence, where the coherence is determined from two
complex oscillatory time series w1,2(t) with internal correla-
tions but no cross relationship. In the case of wavelet transform
values at frequency f , we take wk(tn) = Wk(f,tn)eiφk (f,tn), for
k = 1,2 and n from 1 to N .

The coherence �W is real by definition:

�W =
{[

1/N

N∑
n=1

w1(tn)w∗
2(tn)

][
1/N

N∑
m=1

w∗
1(tm)w2(tm)

]}1/2

.

(A1)

Inside the braces is a sum of terms indexed by n, multiplied
by all the same terms indexed by m. This is the sum of an array
of N2 products w1(tn)w∗

2(tn)w1(tm)∗w2(tm). We can consider
this array as a Hermitian matrix of complex numbers, indexed
by n,m, real, where n = m. Where long term correlations are
present between phase values the w1(tn)w∗

2(tn)w1(tm)∗w2(tm)
values for m close to n are also nearly real. We can reindex
using a = m − n, representing the time delay (in samples)
between w1(tn) and w2(tm):

�W = 1

N

{
NP1P2 + 2

N−1∑
a=1

Re

[
N−a∑
n=1

w∗
1(tn)w1(tn+a)

×w∗
2(tn)w2(tn+a)

]}1/2

. (A2)

Note that, in Eq. (A2), the replacement of terms by their real
parts depends on the fact that all the terms together form a
matrix equal to its own conjugate transpose.

Consider the product vk(a,n) = w∗
k (tn)wk(tn+a). We can

represent each such term in the following way, as the sum of
a mean term (for each a) and a difference from the mean (for
each a and n):

vk(a,n) = Mk(a)eiμk (a) + dk(a,n), (A3)

where

Mk(a)eiμk(a) = 1

(N − a)

N−a∑
n=1

w∗
k (tn)wk(tn+a). (A4)

We expect that W (f,tn) is varying and φ(f,tn) is increasing (at
a nonuniform rate) such that Mk(a) is large for small a. This is
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the case for amplitude and phase values based on appropriately
sampled physiological oscillators and wavelet transforms.
Although Mk(a)eiμk(a) is a time average and thus not a
function of n, in the calculation of certain two-dimensional
autocorrelation functions below we may still make use of the
array of values mk(a,n) = Mk(a)eiμk(a), where n is a dummy
variable used to keep track of how many times mk(a) appears
in the sum

|N�|2 = NP1P2 + 2
N−1∑
a=1

Re

{
N−a∑
n=1

[m1(a,n)m∗
2(a,n)]

+
N−a∑
n=1

[m1(a,n)d∗
2 (a,n)] +

N−a∑
n=1

[d1(a,n)m∗
2(a,n)]

+
N−a∑
n=1

[d1(a,n)d∗
2 (a,n)]

}
. (A5)

The second and third terms are zero by construction and,
assuming that the deviations from linear phase growth of the
two oscillators are unrelated, the real part of the last term has an
expectation value of zero, leaving only the first term made up of
the time averages mk . Here we are finding the expectation of the
square total phasor, averaging over all possibilities consistent
with the statistics mk . The terms m(a,n) = Mk(a)eiμk(a) are
easily calculable for each phase time series on an individual
basis (being essentially equal to the normalized autocorrelation
of the phase time series and calculable in of order N log2 N

operations) and allow us to calculate the expectation value of
the square phase difference phasor for any pair of phase time
series in a further order n operations, similar to that required
to calculate the actual phase coherence of that pair of phase
time series:

〈|N�|2〉 = NP1P2 + 2Re
N−1∑
a=1

(N − a)

× [M1(a)eiμ1(a)M2(a)e−iμ2(a)]. (A6)

The RES phasor is simply
√

〈|N�|2〉/N .
Now we approximate a value for the ERS magnitude of

the mean phase difference phasor, using the autocorrelation
and higher moments for the actual phase time series. In
order to expand the square root as a Taylor series, we divide
through by the RES value as calculated above. This produces
an expression of the form

√
1 + x, where x is small. This

small term accounts for the deviation from the expectation
phase coherence value due to random associations between
the deviations from linear phase growth in the two time series.

From Eq. (A5) we define the ERS:

ERS = 1

N

〈{
NP1P2 + 2

N−1∑
a=1

Re

[
N−a∑
n=1

m1(a,n)m∗
2(a,n)

+
N−a∑
n=1

d1(a,n)d∗
2 (a,n)

]}1/2〉
, (A7)

and dividing through by C = N + 2
∑N−1

a=1 Re [
∑N−a

n=1
m1(a,n)m∗

2(a,n)] we obtain

ERS = RES

〈√√√√1 + 2Re
N−1∑
a=1

[
N−a∑
n=1

d1(a,n)d∗
2 (a,n)

]/
C

〉
,

(A8)

and the RES is equal to
√

C/N as above. This gives us the
ERS in the form

ERS = RES〈√1 + x〉, (A9)

with x = 2 Re [
∑N−1

a=1

∑N−a
n=1 d1(a,n)d∗

2 (a,n)]/C. If the terms
d1 and d2 from the two time series are unrelated, x is small.
Performing the Taylor expansion we obtain

ERS ≈ RES〈1 + 1/2x − 1/8x2 · · ·〉. (A10)

The expectation value of x is 0 as before. Now we must
estimate the expectation value of x2:

〈x2〉 = 4

C2

〈
Re

[
N−1∑
a=1

N−a∑
n=1

d1(a,n)d∗
2 (a,n)

]

× Re

[
N−1∑
b=1

N−b∑
m=1

d1(b,m)d∗
2 (b,m)

]〉
. (A11)

Expanding the real part as a sum of complex conjugates
and multiplying out, we find

〈x2〉 = 2

C2

〈
Re

{[
N−1∑
a=1

N−a∑
n=1

d1(a,n)d∗
2 (a,n)

]

×
[

N−1∑
b=1

N−b∑
m=1

d1(b,m)d∗
2 (b,m)

]}

+ Re

{[
N−1∑
a=1

N−a∑
n=1

d1(a,n)d∗
2 (a,n)

]

×
[

N−1∑
b=1

N−b∑
m=1

d∗
1 (b,m)d2(b,m)

]}〉
. (A12)

The matrix of d values defined above for each time series
represents departures from the mean rate of phase growth.
In order for the method of phase coherence to have any
inductive value, the two oscillators must have such nonuniform
phase growth. Otherwise, independent measurements of phase
difference are impossible in principle, and only the initial phase
difference and the time coordinate are necessary to determine
the phase difference at all times. In the language of Shannon
entropy, the mutual information of the signals is trivially 100%
when both have purely linear phase growth, because both share
100% mutual information with any clock.

Given that there are departures from linear phase growth,
these d terms are themselves likely to be correlated, particu-
larly in the case of biological oscillations whose rate depends
on the state of the organism. For example, at certain times
the heart rate is higher than average (d terms shift the phase
change between samples forward) and at other times lower
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than average (d terms shift the phase change between samples
back). At these times neighboring d values will be similar.

Where equal or correlated terms in the above expression
are conjugated and multiplied together, the expectation value

of the real part is nonzero. In the first part of Eq. (A12)
the sum of terms is multiplied by itself without conjugation,
with expectation value zero assuming d1 and d2 to be
unrelated,

2

C2

〈
Re

{[
N−1∑
a=1

N−a∑
n=1

d1(a,n)d∗
2 (a,n)

][
N−1∑
b=1

N−b∑
m=1

d1(b,m)d∗
2 (b,m)

]}〉
= 0, (A13)

but in the second part the d terms are multiplied by their own complex conjugates, so the expectation value is finite. Replacing
dk (a,n) with vk(a,n) − mk(a,n) we obtain

〈x2〉 = 2

C2

〈
Re

{[
N−1∑
a=1

N−a∑
n=1

d∗
1 (a,n)d2(a,n)

][
N−1∑
b=1

N−b∑
m=1

d1(b,m)d∗
2 (b,m)

]}〉

= 2

C2

〈
Re

({
N−1∑
a=1

N−a∑
n=1

[v∗
1 (a,n) − m∗

1(a,n)] [v2(a,n) − m2(a,n)]

}

×
{

N−1∑
b=1

N−b∑
m=1

[v1(b,m) − m1(b,m)] [v∗
2 (b,m) − m∗

2(b,m)]

})〉
. (A14)

Multiplying out inside each sum and using the fact that

N−1∑
a=1

N−b∑
n=1

[vi(a,n) mj (a,n)] =
N−1∑
a=1

N−b∑
n=1

[mi(a,n) mj (a,n)], (A15)

by construction, we obtain

〈x2〉 = 2

C2

〈
Re

[
N−1∑
a=1

N−a∑
n=1

v∗
1 (a,n) v2(a,n) − m∗

1(a,n) m2(a,n)

][
N−1∑
b=1

N−b∑
m=1

v1(b,m) v∗
2 (b,m) − m1(b,m) m∗

2(b,m)

]〉
. (A16)

For unrelated time series, we can multiply out and rearrange the terms

〈x2〉 = 2

C2

〈
Re

[
N−1∑
a=1

N−a∑
n=1

v∗
1 (a,n) v2(a,n)

N−1∑
b=1

N−b∑
m=1

v1(b,m) v∗
2 (b,m)

]
− Re

[
N−1∑
a=1

N−a∑
n=1

v∗
1 (a,n) v2(a,n)

N−1∑
b=1

N−b∑
m=1

m1(b,m) m∗
2(b,m)

]

− Re

[
N−1∑
a=1

N−a∑
n=1

m∗
1(a,n) m2(a,n)

N−1∑
b=1

N−b∑
m=1

v1(b,m) v∗
2 (b,m)

]
+ Re

[
N−1∑
a=1

N−a∑
n=1

m∗
1(a,n) m2(a,n)

N−1∑
b=1

N−b∑
m=1

m1(b,m) m∗
2(b,m)

]〉
.

(A17)

The expectation values of the two cross terms in v1 v2 and m1 m2 have the same magnitude as the final term assuming
independence, so we cancel down to obtain

〈x2〉 = 2

C2

〈
Re

[
N−1∑
a=1

N−a∑
n=1

v∗
1 (a,n) v2(a,n)

N−1∑
b=1

N−b∑
m=1

v1(b,m) v∗
2 (b,m)

]

− Re

[
N−1∑
a=1

N−a∑
n=1

m∗
1(a,n) m2(a,n)

N−1∑
b=1

N−b∑
m=1

m1(b,m) m∗
2(b,m)

]〉
. (A18)

Multiplying two totals is the same as multiplying all combinations of terms and totalling the results (multiplication distributive
over addition):

〈x2〉 = 2

C2

〈
Re

[
N−1∑
a=1

N−a∑
n=1

N−1∑
b=1

N−b∑
m=1

v∗
1 (a,n) v1(b,m)v2(a,n) v∗

2 (b,m)

]

− Re

[
N−1∑
a=1

N−a∑
n=1

N−1∑
b=1

N−b∑
m=1

m∗
1(a,n) m1(b,m)m2(a,n) m∗

2(b,m)

]〉
. (A19)
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Assuming unrelated phase time-series 1 and 2,

〈x2〉 = 2

C2
Re

[
N−1∑
a=1

N−a∑
n=1

N−1∑
b=1

N−b∑
m=1

〈v∗
1 (a,n) v1(b,m)〉 〈v2(a,n) v∗

2 (b,m)〉
]

− Re

[
N−1∑
a=1

N−a∑
n=1

N−1∑
b=1

N−b∑
m=1

m∗
1(a,n) m1(b,m) m2(a,n) m∗

2(b,m)

]
. (A20)

This expression can be divided into two terms, the first
dependent on higher order self-correlation in the data and the
second depending on the first order statistics mk . The second
term is easily calculated using the autocorrelation functions
of the data, yielding a real positive number K for any pair of
phase time-series under examination:

K = Re

{
N−1∑
a=1

N−a∑
n=1

N−1∑
b=1

N−b∑
m=1

[m∗
1(a,n) m1(b,m)]

× [m2(a,n) m∗
2(b,m)]

}
. (A21)

Substituting the original phase terms back in for vk , we
estimate the first term based on the higher order statistics of
the data, reindexing using m = n + p, m + b = n + a + q so
that neighboring terms have small p and q values:

N−1∑
a=1

N−a∑
n=1

N−1∑
b=1

N−b∑
m=1

vi(a,n) v∗
i (b,m)

=
N−1∑
a=1

N−a∑
n=1

N−n−a∑
q=1−n−a

N−q∑
p=1

wi(tn+a) w∗
i (tn) wi(tm+b) w∗

i (tm)

=
N−1∑
a=1

N−a∑
n=1

N−n−a∑
q=1−n−a

N−q∑
p=1

wi(tn+a)w∗
i (tn)wi(tn+a+q) w∗

i (tn+p).

(A22)

Then, changing the order of summation,

N−1∑
a=1

N−a∑
n=1

N−n−a∑
q=1−n−a

N−q∑
p=1

wi(tn+a) w∗
i (tn) wi(tn+a+q) w∗

i (tn+p)

=
N−1∑
a=1

N−1−a∑
q=1−N−a

N−q∑
p=1

N−a−p−q∑
n=1

wi(tn+a) w∗
i (tn)

×wi(tn+a+q) w∗
i (tn+p). (A23)

The product of the estimated higher order statistics Gk for
the two time-series is independent of the temporal relationships
that may exist. We calculate

Gi(a,p,q) = 1

(N − a − p − q)

N−a−p−q∑
n=1

wi(tn+a) w∗
i (tn)

×wi(tn+a+q) w∗
i (tn+p), (A24)

giving

〈x2〉 = 2

C2

{
Re

[
N−1∑
a=1

N−1−a∑
q=1−N−a

N−q∑
p=1

(N − a − p − q)

×G∗
1(a,p,q)G2(a,p,q)

]
− K

}
, (A25)

with K defined in Eq. (A21).
Having evaluated 〈x2〉, we can determine the value of

the ERS Taylor expansion above. The variance and the
standard deviation are determined by the RES and ERS
values.

The estimation of the ERS and variance requires three-
dimensional self-correlation functions for matrices of values
and is thus computationally rather slower than the calculation
of the RES. In some cases it may be preferable to approximate
the ERS using the RES, to “get a feel for the data,” or to
use a surrogate distribution to estimate all the characteristics.
On the other hand, the direct calculation of RES, ERS, and
variance values can also be carried out using a resampled
(smaller) subset of phase values, because the correlations
between successive phase samples are explicitly taken into
account during the estimation. This produces a considerable
speed-up for practical purposes, with almost no deficits in
the case that the phase values are correlated over long time
scales relative to the sampling (for example, in the case of low
frequency wavelet components). Resampling should not be
attempted at a frequency lower than f0/σ for a given wavelet
component Wσ (t), to avoid inaccuracies due to aliasing
effects.

APPENDIX B: WINDOWED WAVELET COHERENCE

We now justify the statement made in Sec. III C that the
second moment of the distribution of possible mean windowed
coherence values consistent with the null hypothesis is greater
than 〈�WW 〉〈�WW 〉 by an amount proportional to 〈ξ 〉. We
assume that the sliding window position is incremented by an
amount equal to the time resolution of the data. Thus, if the
size of a window is N terms and the total number of terms
available is N ′ the number of windows X is N ′ + 1 − N . If X

windows are used, then the mean windowed coherence value
is obtained from a sum of correlated quantities

X∑
s=1

�WW (s) = 1

N

X∑
s=1

√√√√[N+s−1∑
n=s

w1(tn) w∗
2(tn)

][
N+s−1∑

m=s

w1(tm) w∗
2(tm)

]∗

.

(B1)
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We already know the expectation value of this sum; it is simply X times the ERS value for a window of size N . We
need the second moment,〈

X∑
s=1

�WW (s)
X∑

t=1

�WW (t)

〉
=
〈

1

N

X∑
s=1

√√√√[N+s−1∑
n=s

w1(tn) w∗
2(tn)

][
N+s−1∑

m=s

w1(tm) w∗
2(tm)

]∗

× 1

N

X∑
t=1

√√√√[N+t−1∑
n′=t

w1(t ′n) w∗
2(t ′n)

][
N+t−1∑
m′=t

w1
(
t ′m
)

w∗
2

(
t ′m
)]∗〉

. (B2)

We proceed as before to expand the square roots using Taylor expansions,〈
X∑

s=1

X∑
t=1

�WW (s)�WW (t)

〉
=

X∑
s=1

X∑
t=1

C

N2

〈(
1 + 1/2xs − 1/8x2

s · · ·)(1 + 1/2xt − 1/8x2
t · · ·)〉, (B3)

where xs = 2Re [
∑N+s−1

a=s

∑N+s−a
n=s d1(a,n)d∗

2 (a,n)]/C and xt = 2Re [
∑N+t−1

a=t

∑N+t−a
n=t d1(a,n)d∗

2 (a,n)]/C, giving〈
X∑

s=1

X∑
t=1

�WW (s)�WW (t)

〉
≈

X∑
s=1

X∑
t=1

(
〈�WW 〉〈�WW 〉 + C

N2

1

4
〈xsxt 〉

)
(B4)

to second order, so the variance (the difference between the mean square and the square mean) is proportional to the second order
cross term 〈ξ 〉 which can be evaluated in much the same way as 〈x2〉 was found above:

〈ξ 〉 = 1

X2

X∑
s=1

X∑
t=1

〈xsxt 〉 = 2

X2C2

⎧⎨
⎩Re

⎡
⎣X−1∑

a=1

N ′−1−a∑
q=1−X−a

N ′−q∑
p=1


(a,p,q)G∗
1(a,p,q)G2(a,p,q)

⎤
⎦− �

⎫⎬
⎭ , (B5)

with

� = Re

⎧⎨
⎩

X−1∑
a=1

N ′−1−a∑
q=1−X−a

N ′−q∑
p=1


(a,p,q)[m∗
1(a) m1(a + q − p)][m2(a) m∗

2(a + q − p)]

⎫⎬
⎭ (B6)

and all terms accounted for using the normalization factor


(a,p,q) =
X∑

s=1

X∑
t=1

N+s−1∑
n=s

N+s−1∑
m=s

N+t−1∑
n′=t

N+t−1∑
m′=t

δ(m,n + a)δ(n′,n + p)δ(m′,n + a + q), (B7)

where δ(i,j ) = 1 when i = j , and = 0 otherwise.
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