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A generalization of the Weyl law to systems with a sharply divided mixed phase space is proposed. The
ansatz is composed of the usual Weyl term which counts the number of states in regular islands and a term
associated with sticky regions in phase space. For a piecewise linear map, we numerically check the validity of
our hypothesis, and find good agreement not only for the case with a sharply divided phase space but also for
the case where tiny island chains surround the main regular island. For the latter case, a nontrivial power law
exponent appears in the survival probability of classical escaping orbits, which may provide a clue to develop
the Weyl law for more generic mixed systems.
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I. INTRODUCTION

In closed quantum systems, a unit Planck cell supports a
single eigenstate, and thereby the number of eigenstates
up to a given energy E is expected to increase as
N (E) ∝ μ(K(E))/(2πh̄)d , where μ(K(E)) and d denote
the volume of the classical phase space K(E) and the
dimensionality of the system, respectively. A more precise
mathematical estimation was made by Weyl on the asymptotic
growth rate of N (E) for eigenmodes of the Laplacian on
bounded domains, which was originally provoked by the
blackbody radiation problem [1], and analogous asymptotic
laws in generic quantum systems are now called the Weyl law.
The Weyl law is universal since the growth rate of eigenmodes
is semiclassically determined only by the volume of closed
domains (for higher order length and curvature corrections,
see Ref. [2]), not by the nature of the underlying classical
dynamics, such as the integrability of the system.

It is natural to seek a generalization of the Weyl law to
open systems in which Hamiltonians are no longer Hermitian
and where spectra become complex [3]. Under the name of the
fractal Weyl law it has been asserted that an analogous formula
could be introduced for complex energies (resonances) of open
systems [4,5]. Heuristic derivations together with mathemat-
ical arguments tell us that the Hausdorff dimension of the
repeller in the corresponding classical phase space charac-
terizes the growth rate of resonance energies [4,5]. Numerical
calculations [4–6], and detailed mathematical analyses [7] then
followed to discuss the validity of the proposed formula.

In contrast to the original Weyl law in which all the
invariant components in classical phase space, either regular
or chaotic, equally contribute to the density of states of
eigenenergies, the corresponding Weyl law in open systems
is rather subtle; it concerns the imaginary part of resonance
states which are necessarily linked to the finite-time dynamics,
so may reflect the nature of underlying classical dynamics
and its correspondence to quantum mechanics as well [5].

Therefore it is not straightforward to go beyond the situation
that the classical system is strongly chaotic and the dynamics
are homogeneous in phase space.

The aim of the present article is to argue for a possible
extension of the Weyl law in more generic situations,
especially in the case where the phase space is composed
of regular and chaotic components. In generic Hamiltonian
systems, it is well known that regular and chaotic regions
coexist in phase space, and the motion along the border
between them becomes sticky, which invokes long-time
correlations in the dynamics [8,9]. Although a Weyl law for
a mixed closed system was discussed recently [12], there is
only limited understanding of whether or not an analog of the
fractal Weyl law exists in mixed open systems [10,11].

Since geometrical structures in a mixed phase space become
immensely complex in general, our strategy here is to take a
simple system with sharply or almost sharply divided phase
space, for which the time scales associated with sticky motions
are more controllable. We hypothesize a relation expected to
hold between the number of resonance states and the survival
probability of sticky classical orbits, and then validate our
ansatz in several typical situations.

This work is organized as follows. In Sec. II we describe a
model of an open system with a sharply or almost sharply di-
vided phase space, and examine its classical escape dynamics.
In Sec. III we formulate our ansatz for the Weyl law and vali-
date its applicability to the resonances of the quantized version
of the model system. Section IV contains our conclusions.

II. PIECEWISE LINEAR MAP AND STICKY MOTION
IN THE OPEN PHASE SPACE

Here we introduce a piecewise linear map with a mixed
phase space and first investigate the classical escape. This will
serve as the basis for the Weyl law in the subsequent section.
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A. The case with a sharp border

We consider the following piecewise linear map [14]:

F :

{
pn+1 = pn + kS(θn),
θn+1 = θn + pn+1 (mod 1), (1)

where S(θ ) is a piecewise linear function given as

S(θ ) =
⎧⎨
⎩

θ 0 � θ < 1/4,

−θ + 1/2 1/4 � θ < 3/4,

θ − 1 3/4 � θ < 1.

(2)

The dynamics is defined on a compact phase space R: (θ,p) ∈
[0,1) × [−1,1], where periodic boundary conditions on θ and
absorbing boundary conditions on p are imposed, respectively.

For the following specific parameter values k,

k = 2

(
1 − cos

n − 1

n
π

)
(n = 1,2, . . .), (3)

equipped with periodic boundary conditions on both coordi-
nates θ and p, it was rigorously proved in [14] that the phase
space is sharply divided into a regular and a chaotic region.
(Note, however, that the regular region is not a bundle of KAM
curves as, e.g., in the mushroom billiards [13], but a set of
periodic orbits.) Some phase space portraits are demonstrated
in Fig. 1.

We first investigate the classical survival probability of the
particles in the open phase space R. Figure 2 shows how the
support of surviving particles, initially distributed uniformly
over the entire phase space, shrinks as time proceeds. Although
the border between regular and chaotic regions is sharp and
no hierarchical structures appear, it was shown in [15] that
the orbits become sticky around the border, which causes a
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FIG. 1. (Color online) Phase space of the map (1) for (a) k = 2.0
[corresponding to n = 2 in Eq. (3)] and (b) k = 3.0 (n = 3). For
these values, no hierarchical structures appear in phase space. Empty
white regions are composed of periodic orbits. For (c) k = 4.0, the
regular region shrinks to a family of stable periodic orbits. The case
(d) k = 2.5 does not satisfy the condition (3), and tiny hierarchical
islands around the regular region emerge.
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FIG. 2. (Color online) The set of surviving points (θn,pn) for
k = 3.0, after (a) n = 50 iterations and (b) n = 10 iterations, where
2 × 105 initial points are distributed uniformly in the region (θ,p) ∈
[0,1) × [−0.5,0.5] but outside the regular region.

power-law behavior in the survival probability. To see this, let
Kτ be the points which remain in R more than τ steps:

Kτ ≡ {(θ,p) : F t (θ,p) ⊂ R for t < τ }. (4)

In Fig. 3, we plot μ(Kτ ) − μ(K) as a function of τ . Here
μ(·) denotes the area (Lebesgue measure) and K ≡ K∞. The
exponential decay in the short-time regime results from fast
decay processes in the chaotic region, while the power-law
decay in the long-time regime is a typical characteristic of the
sticky motion around the regular region [15]. (The crossover
takes place around τ = τc, where 20 � τc � 100.) Then we
have

μ(Kτ ) − μ(K) = Cτ−ν (for τ � τc). (5)

Here the exponent and slope are obtained as ν = 1 and C �
0.4, respectively. Arguments to account for the exponential
decay in the short-time regime and a derivation of the power-
law exponent ν = 1 are found in [15].

A similar behavior is observed in the case k = 4.0. The
corresponding survival probability is plotted in Fig. 4. In this
case, since μ(K) = 0, we have

μ(Kτ ) = Cτ−ν (for τ � τc). (6)

The origin of the decay exponent ν = 1 is the same as in the
case k = 3.0, and numerical fitting gives C � 1.0.
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FIG. 3. (Color online) Survival probability in the chaotic part in
phase space, for the case k = 3.0. (a) Normal-log and (b) log-log plot.
220 points are initially distributed uniformly over phase space, and
the survival probability is obtained by counting the number of orbits
remaining in R, up to 104 steps. Note that in panel (a), we observe
exponential decay up to τ � 20, while in panel (b) the decay follows
a power law for τ � 100.
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FIG. 4. (Color online) (a) The set of surviving points (θn,pn)
for k = 4.0 after n = 50 iterations, with 106 initial points uniformly
distributed over R. (b) Survival probability for k = 4.0.

B. The case with tiny islands

Next we examine the effect of small islands on the survival
probability. Such islands are obtained when one replaces the
piecewise linear function S(θ ) by

SM (θ ) = 1

2π

M∑
l=0

(2l − 1)!!

(2l)!!(2l + 1)
sin2l+1(2πθ ). (7)

The function SM (θ ) is obtained by expressing the piecewise
linear function as S(θ ) = 1/2π arcsin[sin(2πθ )] and then trun-
cating the Taylor expansion of arcsin at the order M . The differ-
ence behaves as |S(θ ) − SM (θ )| ∼ θ−(2M+1), so SM (θ ) tends to
the original function S(θ ) with increase of M . The smoothing
induces tiny island chains surrounding the main regular island.
As an example, we present the case for M = 5 in Fig. 5.

For this moderately large value of M islands become
visible, which may in general give rise to a complicated
behavior in the survival probability. For M = 100, on the
other hand, the islands are tiny and invisible within the scale
presented here, and the survival probability again decays
algebraically, as is shown in Fig. 6(a). However, the decay
exponent ν changes from ν = 1 to ν = 0.5, even if the potential
function is only slightly smoothed. We also obtain ν = 0.5 for
the case with M = 100 and k = 4.0 [see Fig. 6(b)].

The appearance of the observed exponent ν = 0.5 can be
explained as follows: For large M , we may treat the sticky
motion along the border between the regular and chaotic
regions in almost the same way as in the case with sharp
boundaries. We can then apply the argument developed in [17],
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FIG. 5. (Color online) (a) Phase space portrait for k = 3.0 and
smoothed potential (7) with M = 5. The blue line represents the
boundary between regular and chaotic region in case of M = ∞. (b)
Magnification around the boundary. Small islands appear due to the
smoothing of the potential function.

10-3

10-2

10-1

100

101

100 101 102 103 104

μ(
Kτ )-

μ(
K)

τ

(a)
τ-0.5

10-3

10-2

10-1

100

101

100 101 102 103 104

μ(
Kτ )-

μ(
K)

τ

(b)
τ-0.5

FIG. 6. (Color online) Survival probability of the chaotic orbits
for the smoothed potential (7) with M = 100 and (a) k = 3.0,
(b) k = 4.0.

which is based on the relation between the survival probability
μ(Kτ ) and the distribution P (τ ) of the time each orbit stays
along the sticky layer. In each step, the orbit advances along
the boundary by a shift length d, which can be assumed to be
proportional to a power of a distance ε to the stable region,
as d ∝ εr , and the time scale τ for which each orbit stays
in the sticky region is then given as τ ∼ ε−r . Denoting the
distribution of initial points in the sticky region by p(ε),
one can obtain the relation P (τ ) ∼ p(ε)| dε

dτ
| [17]. Since we

may assume the uniform distribution of initial points, p(ε) =
constant, due to ergodicity of the chaotic region, P (τ ) ∼
τ−(r+1)/r follows. The survival probability then turns out to
be μ(Kτ ) − μ(K) ∼ τ−1/r . In the case of a sharply divided
phase space, r = 1 [17]. One can also justify the exponent
for the smoothed case with tiny islands as r = 2 in terms of
perturbative calculations [18], which leads to ν = 0.5 unless
fluctuations due to the tiny islands strongly affect the motion
in the sticky region. In the time regime that we here focus on,
this condition is well fulfilled, and we can thus predict how
long it takes to exit from the phase space if M is large enough.

III. WEYL LAW FOR THE PIECEWISE LINEAR MAP

A. Ansatz for the Weyl formula

In order to arrive at the Weyl law for the open piecewise
linear map with mixed phase space, we generalize consid-
erations previously applied to fully chaotic systems [16]. In
analogy with the conventional Weyl law, we start with the
relation

Wγ (h̄) ∼ μ(Kτ )

(2πh̄)n
(as h̄ → 0). (8)

Here Wγ (h̄) denotes the number of resonance states whose
resonance width � is less than γ , where the complex energy
of each resonance state is assumed to be expressed as E − i�,
and γ ∼ 1/τ . This heuristic formula is simply based on the
hypotheses that the number of resonance states with lifetime
1/� > 1/γ should be supported in the semiclassical limit by
the set of classical orbits staying in phase space for T > τ [16].
The crucial point of our analysis is to identify the correct
cutoff scale for γ . In the chaotic case this is determined by
the inverse of the Ehrenfest time τE = (1/λ) ln h̄, where λ is
the Lyapunov exponent [5]. One then obtains a fractal Weyl
law with W ∝ h̄d , where d is related to the dimension of the
fractal repeller (which is not an integer). This choice of the
cutoff cannot hold for a mixed phase space, where the chaotic
component in phase space is not uniform.
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In the present situation, as shown in the previous section,
μ(K) obeys the power law (5) and n = 1, so we have

Wγ (h̄) ∼ 1

2πh̄
[μ(K) + Cγ ν] (as h̄ → 0). (9)

In the semiclassical limit, the first term is supposed to be the
number of regular states supported by the main island and the
second one to the states associated with the sticky zone. We
here focus particularly on the sticky states, and introduce the
notation W

sticky
γ (h̄) as

W sticky
γ (h̄) ≡ Wγ (h̄) − μ(K)

2πh̄
. (10)

Here we put γ = αh̄, which leads to our ansatz

W
sticky
αh̄ (h̄) ∼ Cαν

2π
h̄ν−1. (11)

This ansatz amounts to an Ehrenfest time τE ∝ 1/h̄. Power-law
Ehrenfest times for systems with a mixed phase space have
been conjectured before [10], but only in connection with
situations with a hierarchical phase space (where islands of
stability are surrounded by smaller islands). Here, we examine
the validity of this ansatz for the described system with a
sharply divided phase space.

B. Classification of resonances

We now assess the validity of Eq. (11) by direct diagonaliza-
tion of the quantum counterpart. The quantization procedure
of the piecewise linear map attaching absorbing boundaries
and its smoothed version is presented in the Appendix. As in
the case of the classical map, absorbing boundaries are set at
p = −3/4 and 3/4, and h̄ is given as 3/(2πN ), where N is
the dimension of the Hilbert space.

To start with, we identify several characteristic ranges of
the quantum decay rate �, reflecting a variety of underlying
classical dynamics. Figure 7(a) depicts the decay rate � for
k = 3.0 arranged in ascending order. We may roughly classify
four types of resonance states, numbered as 1, 2, 3, 4 in the
figure:

(1) localized in the main stable island;
(2) localized at the edge of the main stable island;
(3) localized in the sticky region;
(4) extended in the chaotic region.

FIG. 7. (Color online) (a) Quantum decay rates � for k = 3.0
and N = 4096. The values of � are arranged in the ascending order.
(b) Four typical resonance states in the Husimi representation. The
numeric labels indicate the corresponding decay rate in panel (a).

FIG. 8. (Color online) (a) Quantum decay rates � for k = 4.0
and N = 4096, arranged in the ascending order. (b) Three typical
resonance states in the Husimi representation. The labels again
correspond to the indicated decay rates in panel (a).

If we count the number of states using the first term in (9),
type 2 states turn out to follow the same Weyl law as the regular
states (of type 1).

The reason for the unusual appearance of type 1 regular
states, which are not localized along invariant closed curves,
but uniformly extended over the whole regular region, is due
to that, as mentioned, the orbits in the regular domain are
not a bundle of KAM circles but the set of periodic points.
Note the similarity to the surviving classical orbits shown in
Fig. 2, especially between the resonance of type 3 and the
remaining points along the border shown in Fig. 2(a), but also
the resonance of type 4 and the orbits shown Fig. 2(b).

As shown in Fig. 1, the regular region for k = 4.0 is just
a set of fixed points, so types 1 and 2 states for k = 3.0 are
merged into type 2, and sticky states are thus still numbered
as type 3 in Fig. 8.

C. Isolating resonances associated with sticky motion

In order to see the validity of our ansatz (11), we first ensure
that one can indeed separate the two terms in Eq. (9). That is,
we isolate resonances associated with the sticky region from
those associated with the regular region, and also check in
which γ range our ansatz (9) for the Weyl law associated with
sticky motion holds. Here this is done for the case with a sharp
border. In the next subsections, using the results here obtained,
we investigate the self-consistency of our argument, that is, the
validity of our assumption γ = αh̄, and the range of α where
the ansatz (11) holds.
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FIG. 9. (Color online) Wγ (h̄)/N vs γ for (a) k = 3.0 and (b)
k = 4.0. The black dashed line expresses the formula (9). The curves
correspond to N = 512 (red), 1024 (light green), 2048 (dark blue),
4096 (pink), 8192 (light blue), 16384 (orange).
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FIG. 10. (Color online) Plot of W
sticky
αh̄ (h̄) 2π

Cα
as a function of 1/h̄

for (a) k = 3.0 and (c) k = 4.0. We put α = 100 for k = 3.0 and
α = 200 for k = 4.0. W

sticky
αh̄ (h̄) 2π

Cα
as a function of the parameter α

for (b) k = 3.0 and (d) k = 4.0, respectively. For each α, we have
calculated several values of N (red curve) where N is chosen such
that γ � 0.05 is satisfied. The blue line shows the average over N .
If the ansatz (12) holds, the function W

sticky
αh̄ (h̄) 2π

Cα
should tend to the

green line.

For the strictly piecewise linear map, we can rigorously
evaluate the area of the regular island μ(K). For k = 3.0,
the regular island forms a polygon with μ(K) = 3/16, while
μ(K) = 0 for k = 4.0. The coefficient C appearing in (9) has
already been evaluated above, so inserting these data into the
formula (9), we can check its validity by direct comparison
to the numerical results for the quantum map. This is done in
Fig. 9, where we plot Wγ (N )/N as a function of γ for several
values of h̄, while the dashed line represents the right-hand
side of (9).

For the range γ � 0.05, our ansatz agrees well with the
numerical data, in both cases k = 3.0 and k = 4.0, and
Wγ (N )/N tends to μ(K)/(2πh̄) as γ → 0. We also notice
that with increasing N the curves approach the expected line.

D. The case with a sharp border

The above results show that the separation of resonances
associated with the sticky region from those associated with
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FIG. 11. (Color online) Plot of W
sticky
αh̄ (h̄) as a function of 1/h̄ for

k = 3.0 and α = 100. The green line represents W
sticky
αh̄ � 0.27h̄−0.5.
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FIG. 12. (Color online) For k = 3.0, the assumed function
C(α/6π )0.5N 0.5 is fitted to determine (a) C and (b) ν.

the regular region is a reasonable assumption, and ranges of γ

actually exist where the ansatz (9) holds. Now we check the
consistency of the ansatz (11) by varying the free parameter
α such that γ is contained in the range of validity confirmed
above.

We first investigate the strictly piecewise linear case, for
which our ansatz can be written as

W
sticky
αh̄ (h̄)

2π

Cα
∼ 1 (as h̄ → 0). (12)

For k = 3.0, we plot the left-hand side of Eq. (12) in Fig. 10(a),
as a function of 1/h̄. The result demonstrates the general
validity of our ansatz. The deviations are small, and may be
due to some localized states in the chaotic region which were
counted as sticky ones.

Since α is a free parameter, we may vary α as long as
the condition γ � 0.05 is satisfied. Figure 10(b) is a plot of
W

sticky
γ (h̄) 2π

Cα
for various α. In this figure, N is chosen such

that the condition γ = αh̄ � 0.05 is satisfied. For example,
within the range 0 < α � 300, if 1/h̄ � 6000(N � 3000), the
condition γ � 0.05 is fulfilled. However, we cannot take α

too small since for a fixed N the number of resonance states
satisfying the condition � < γ decreases with decreasing α,
and finally becomes empty. Therefore, there is a lower bound
of α for each N such that a sufficiently large number of
resonance states with � < γ exists. The deviation from the
expected value (green line) observed in the small α regime
can therefore be attributed to the lack of resonance states
for sufficient statistics. We note that too large α also leads
to improper counting for W

sticky
γ since type 4 states (chaotic

states) are included for a given h̄. Except for such small and
large α regimes, we observe that our ansatz is a reasonably
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FIG. 13. (Color online) Plot of W
sticky
αh̄ (h̄) as a function of 1/h̄ for

k = 4.0 and α = 100. The green line represents W sticky � 0.34h̄−0.5.
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FIG. 14. (Color online) For k = 4.0, the assumed function
C(α/6π )0.5N 0.5 is fitted to determine (a) C and (b) ν.

good one. Figure 10 also shows the validity of the ansatz for
k = 4.0.

E. The case with tiny islands

Next we examine the case with tiny islands along the border.
In this case, the ansatz takes the form

W
sticky
αh̄ (h̄) ∼ Cα0.5

2π
h̄−0.5 (as h̄ → 0). (13)

For the k = 3.0 case, we can only evaluate μ(K) numeri-
cally, so here we employ the numerical value μ(K106

) � 0.178,
and C � 0.15. As seen in Fig. 11, we again find that the
numerical data agree well with the expectations once h̄ is
small enough. As shown in Fig. 12, the value of C does
not necessarily keep constant, but the exponent obtained by
fitting the numerical data approaches the desired value ν � 0.5
[see Fig. 12(b)].

In a similar way, we can also test the k = 4.0 case. Using the
numerical value μ(K106

) � 0.0089, we plot W
sticky
αh̄ (h̄) 2π

Cα
as a

function of 1/h̄ in Fig. 13, and confirm that the ansatz works
reasonably well for the small h̄ regime. This is further justified
by fitting numerical data for various α. We find that not only ν

but also C agree with their classical values as shown in Fig. 14.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have proposed a formula which generalizes
the Weyl law to systems with a mixed phase space, and tested
it numerically for a piecewise linear map and its smoothed
version. The formula is based on a simple classical-to-quantum
correspondence for the states with finite lifetime, and is
composed of the classical measure of regular islands and
the survival probability in the chaotic region. The former is
associated with stable states supported by regular classical
islands, and the latter reflects classical sticky motion along the
border between the regular and chaotic regions.

Classical dynamics in a mixed phase space is very compli-
cated in general, and a single uniform time scale characterizing
the dynamics does not exist. The fractal Weyl law for chaotic
systems, on the other hand, could be derived using the
combination between classical-to-quantum correspondence,
requiring quasideterministic decay following classical decay
process, and the classical survival time [5]. Hence an analogous
argument as for globally hyperbolic systems cannot apply to
generic mixed systems.

In addition, in the case where regular islands with positive
measure coexist with the chaotic repellers in phase space, the

Hausdorff dimension of the whole invariant set is equal to 1.
Thus, if we naively follow the original fractal Weyl law, the
exponent characterizing the growth rate of the resonances turns
out to be unity, meaning that the fractal structure of chaotic
repellers cannot reflect in the Weyl law. An idea of a “fat
fractal” has been proposed to characterize such a situation [19],
and the Weyl law in the case where fat fractals appear in phase
space has been discussed in Refs. [10,11].

Our strategy was to avoid the full complexity of a generic
mixed phase space by taking a system with a sharply or
almost sharply divided phase space, and to see how the sticky
dynamics affects the growth rate of resonance states. Even
in such a simple setting, the time scale in which classical-to-
quantum correspondence holds is not obvious, and so there is
no guarantee that one may identify the lifetime of quantum
resonance states with classical survival time.

Purely quantum effects such as localization or tunneling
(diffraction in the sharp limit) must come into play when the
effective Planck’s constant is not small enough. However, the
observed good agreement of the power-law exponent in the
proposed Weyl law not only in the sharply divided phase space
but also for the case with tiny islands provides significant
resources for future investigations.
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APPENDIX: QUANTIZATION OF THE PIECEWISE
LINEAR MAP WITH ABSORBING BOUNDARIES

In this appendix we show how to quantize our piecewise
linear map (1) with absorbing boundaries and its smoothed ver-
sion. The one-step time evolution of a quantum state without
absorbing boundaries is described by the unitary operator

|ψ(n + 1)〉 = Û |ψ(n)〉, (A1)

where

Û = exp

[
− i

h̄

p̂2

2

]
exp

[
− i

h̄
V (θ̂)

]
. (A2)

For the piecewise linear map (1), we set

V (θ ) =
⎧⎨
⎩

−kθ2/2 (0 � θ < 1/4),
k(θ2/2 − θ/2 + 1/16) (1/4 � θ < 3/4),
−k(θ2/2 − θ + 1/2) (3/4 � θ < 1),

(A3)

and for its smoothed version,

V (θ ) = −k cos 2πθ

(2π )2

M∑
l=0

1

(2l + 1)2

×
l∑

k=0

(2l − 2k − 1)!!

(2l − 2k)!!
[sin(2πθ )]2l−2k, (A4)

which is obtained by integrating SM (θ ) given as (7).
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To introduce absorbing boundaries, we define the projection
operator as

P̂ (p) =
{

1 (p ∈ [−3/4,3/4]),
0 (p /∈ [−3/4,3/4]). (A5)

Then we solve the eigenvalue equation

P̂ (p)Û� = e−i(E−i�)�. (A6)

Here E − i� denotes the complex energy of the resonance
states.
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A. Eberspächer, J. Main, and G. Wunner, ibid. 82, 046201
(2010).

[7] S. Nonnenmacher and M. Zworski, J. Phys. A: Math. Gen. 38,
10683 (2005); S. Nonnenmacher, J. Sjöstrand, and M. Zworski,
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Lett. 94, 30004 (2011).
[13] L. A. Bunimovich, Chaos 11, 802 (2001); 13, 903 (2003).
[14] M. Wojtkowski, Commun. Math. Phys. 80, 463 (1981).
[15] A. Akaishi and A. Shudo, Phys. Rev. E 80, 066211 (2009).
[16] K. K. Lin and M. Zworski, Chem. Phys. Lett. 355, 201

(2002).
[17] E. G. Altmann, A. E. Motter, and H. Kantz, Phys. Rev. E 73,

026207 (2006).
[18] A. Akaishi and A. Shudo (unpublished).
[19] D. K. Umberger and J. D. Farmer, Phys. Rev. Lett. 55, 661

(1985).

046203-7

http://dx.doi.org/10.1007/BF01456804
http://dx.doi.org/10.1215/S0012-7094-90-06001-6
http://dx.doi.org/10.1016/S0021-7824(01)01230-2
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1103/PhysRevLett.93.154102
http://dx.doi.org/10.1103/PhysRevLett.93.154102
http://dx.doi.org/10.1103/PhysRevE.77.015202
http://dx.doi.org/10.1103/PhysRevE.77.036205
http://dx.doi.org/10.1103/PhysRevE.79.016215
http://dx.doi.org/10.1103/PhysRevE.79.016215
http://dx.doi.org/10.1103/PhysRevE.80.035202
http://dx.doi.org/10.1103/PhysRevE.80.055201
http://dx.doi.org/10.1103/PhysRevE.82.046201
http://dx.doi.org/10.1103/PhysRevE.82.046201
http://dx.doi.org/10.1088/0305-4470/38/49/014
http://dx.doi.org/10.1088/0305-4470/38/49/014
http://dx.doi.org/10.1007/s00220-011-1214-0
http://dx.doi.org/10.1088/0951-7715/24/12/R02
http://dx.doi.org/10.1016/0167-2789(83)90232-4
http://dx.doi.org/10.1016/0167-2789(84)90140-4
http://dx.doi.org/10.1016/0167-2789(84)90140-4
http://dx.doi.org/10.1103/PhysRevE.81.026208
http://dx.doi.org/10.1088/1751-8113/43/39/392003
http://dx.doi.org/10.1088/1751-8113/43/39/392003
http://dx.doi.org/10.1209/0295-5075/94/30004
http://dx.doi.org/10.1209/0295-5075/94/30004
http://dx.doi.org/10.1063/1.1418763
http://dx.doi.org/10.1063/1.1598411
http://dx.doi.org/10.1007/BF01941656
http://dx.doi.org/10.1103/PhysRevE.80.066211
http://dx.doi.org/10.1016/S0009-2614(02)00212-9
http://dx.doi.org/10.1016/S0009-2614(02)00212-9
http://dx.doi.org/10.1103/PhysRevE.73.026207
http://dx.doi.org/10.1103/PhysRevE.73.026207
http://dx.doi.org/10.1103/PhysRevLett.55.661
http://dx.doi.org/10.1103/PhysRevLett.55.661

