The accuracy of photo-based structure-from-motion DEMs

Mike James¹, Stuart Robson²

¹Lancaster Environment Centre, Lancaster University, U.K. ²Dept. Civil, Env. & Geomatic Engineering, University College London, U.K.

Outline

- structure-from-motion and multi-view stereo
- Study1: volcanic craters

• Study 2: coastal cliff

Structure-from-motion (SfM)

- automatic processing of images into 3D point clouds
 - multiple images from different positions
 - no control points required
 - determines camera data
 - produces a sparse surface point cloud

Multi-view stereo (MVS)

- dense image matching
 - uses camera data from SfM

Georeferencing

 scale, translate and rotate 3D model to real-world coordinate system

Software

SfM-MVS: 'Bundler photogrammetry package' (J.Harle) http://blog.neonascent.net/archives/bundler-photogrammetry-package

- SfM : Bundler (Snavely et al., 2006)
- MVS : PMVS2 (Furukawa & Ponce, 2010)

Georeferencing: 'sfm_georef' (James & Robson, JGR, in revision) http://www.lancs.ac.uk/staff/jamesm/software/sfm_georef.htm

Applications

SfM (Dowling, 2009; Dandois and Ellis, 2010; Stimpson et al, 2011)

SfM-MVS (Niethammer et al. 2010; Welty et al., 2010, Verhoeven, 2011; Falkingham, 2011, James et al., 2011; Castillo et al., 2012)

James et al. (2011)

SfM-MVS vs. traditional photogrammetry

Advantages:

- no initial camera models required
- more flexible image acquisition
- no control required for model generation
- automated processing

Disadvantages:

- simplified camera model used
- independent camera models for each photo
- incremental scheme errors can accumulate
- few integrated error metrics

Summit craters of Piton de la Fournaise volcano, Reunion

- two over-flights in a microlight
- 133 images, Canon EOS D60, 20 mm lens
- 45 control targets (± ~0.1 m)
- reference DEM from oblique photogrammetry (VMS)

SfM-MVS point cloud

Georeferencing (sfm_georef)

• RMS error 0.99 m

1 km

DEM comparisons

RMS difference: 1.0 m

reprocessed for single camera model

reprocessed for single, extended camera model

RMS difference: 0.87 m

Summary so far...

- SfM-MVS gave metre-level precision over viewing distances of ~1000 m
- precision is being limited by the simple camera model
- independent camera models help accommodate error

ScanPos03

Sunderland Point, U.K.

- arcuate cliff section, 2-3 m high, ~60 m long
- comparison data collected with Riegl LMS-Z210II (TLS)

Image collection

150 images, Canon EOS 450D, 28 mm lens

Differences between SfM-MVS and TLS

cliff surface gridded in a vertical cylindrical coordinate system

Regions of large apparent error

regions of oblique surface

 different techniques give different coverage

Reprocessing camera models

Erosion rates at Sunderland Point С Α В • 03/03/12 • 30/11/11 Sections: * 18/10/11 02/08/11 В С Α 06/06/11 • 07/04/11 • 12/02/11

Conclusions

- SfM-MVS can offer advantages over other techniques for topographic measurement
- precision is limited by straightforward camera model
- with digital SLRs, precisions of ~1:1000 can be achieved
 - mm over viewing distances of m
 - cm over viewing distances of 10's m

