Lancaster EPrints

Baseline Soil Variation Is a Major Factor in Arsenic Accumulation in Bengal Delta Paddy Rice

Lu, Ying and Adomako, Eureka and Solaiman, A R M and Islam, Rafiqul M and Deacon, Claire and Williams, Paul and Rahman, G K M M and Meharg, Andrew A. (2009) Baseline Soil Variation Is a Major Factor in Arsenic Accumulation in Bengal Delta Paddy Rice. Environmental Science and Technology, 43 (6). pp. 1724-1729. ISSN 0013-936X

Full text not available from this repository.

Abstract

Factors responsible for paddy soil arsenic accumulation in the tubewell irrigated systems of the Bengal Delta were investigated. Baseline (i.e., nonirrigated) and paddy soils were collected from 30 field systems across Bangladesh. For each field, soil sampled at dry season (Boro) harvest, i.e., the crop cycle irrigated with tubewell water, was collected along a 90 m transect away from the tubewell irrigation source. Baseline soil arsenic levels ranged from 0.8 to 21. mg/kg, with lower values found on the Pliestocene Terrace around Gazipur (average, 1.6 ± 0.2 mg/kg), and higher levels found in Holecene sediment tracts of Jessore and Faridpur (average, 6.6 ± 1.0 mg/kg). Two independent approaches were used to assess the extent of arsenic build-up in irrigated paddy soils. First, arsenic build-up in paddy soil at the end of dry season production (irrigated − baseline soil arsenic) was regressed against number of years irrigated and tubewell arsenic concentration. Years of irrigation was not significant (P = 0.711), indicating no year-on-year arsenic build-up, whereas tubewell As concentration was significant (P = 0.008). The second approach was analysis of irrigated soils for 20 fields over 2 successive years. For nine of the fields there was a significant (P < 0.05) decrease in soil arsenic from year 1 to 2, one field had a significant increase, whereas there was no change for the remaining 10. Over the dry season irrigation cycle, soil arsenic built-up in soils at a rate dependent on irrigation tubewell water, 35* (tubewell water concentration in mg/kg, ≡ mg/L). Grain arsenic rises steeply at low soil/shoot arsenic levels, plateauing out at concentratations. Baseline soil arsenic at Faridpur sites corresponded to grain arsenic levels at the start of this saturation phase. Therefore, variation in baseline levels of soil arsenic leads to a large range in grain arsenic. Where sites have high baseline soil arsenic, further additional arsenic from irrigation water only leads to a gradual increase in grain arsenic concentration.

Item Type: Article
Journal or Publication Title: Environmental Science and Technology
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 53853
Deposited By: ep_importer_pure
Deposited On: 27 Apr 2012 16:11
Refereed?: Yes
Published?: Published
Last Modified: 09 Apr 2014 23:23
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/53853

Actions (login required)

View Item