
An Integrated Framework for Ensuring Runtime

Quality in Service-Oriented Systems

Daniel Barnaby Robinson

Computer Science B.Sc. (Hons)

Computing Department

Lancaster University

This thesis is submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

June 2009

An Integrated Framework for Ensuring Runtime

Quality in Service-Oriented Systems

Daniel Barnaby Robinson

Computer Science B.Sc. (Hons)

This thesis is submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

June 2009

As a relatively new software model, there remain many challenges in realising a

true service-oriented vision. The service-oriented systems which underpin modern

business processes must be able to react to constantly changing environments and

business requirements. The quality of a service-oriented system depends not only

on the quality of service (QoS) provided by services, but on the interdependencies

between services, resource constraints imposed by the runtime environment, and

events such as network outages. It is difficult to anticipate the impact that many of

these emergent factors will have on the behaviour of the system. The third-party

nature of software services also presents the service consumer with limited control

over the quality of a system.

Existing quality assurance initiatives for service-oriented systems are currently

limited in the service quality control they offer the consumer, provide poor support

for expressing quality characteristics, provide poor support for quality assurance

at runtime, provide poor support for resource-restricted systems, and offer limited

scope for integration and customisation to provide an end-to-end quality assur-

ance solution. To address these issues, this thesis presents the development of

an integrated quality assurance framework, which combines quality assurance ap-

proaches from the service description and selection, service monitoring, service

negotiation, and reputation system domains. The approach is illustrated with a

series of service-oriented experiments, which evaluate the role of the framework in

the system quality assurance process.

1

Declaration

This thesis is my own work and has not been submitted in any form for the award

of a higher degree elsewhere. The work was carried out under the supervision of

Dr. Gerald Kotonya of the Computing Department at Lancaster University.

Daniel Barnaby Robinson

8th June, 2009

2

Acknowledgements

I would first like to thank my supervisor, Gerald Kotonya, for the thoughtful

guidance and encouragement he has shown me whilst undertaking this research

journey. I am also grateful to Keith Bennett and Peter Sawyer, for sitting on my

thesis defence panel. I would also like to thank Simon Lock and Peter Sawyer,

for sitting on both my first and second year review panels. Finally, I would like

to thank the Engineering and Physical Sciences Research Council (EPSRC), for

funding my time as a research student at Lancaster University.

3

Related Publications

1. Robinson, D., & Kotonya, G. (2008a). A runtime quality architecture for

service-oriented systems. In A. Bouguettaya, I. Krüger, & T. Margaria (Eds.),

International conference on service-oriented computing (ICSOC) (Vol. 5364, p.

468-482).

2. Robinson, D., & Kotonya, G. (2008b). A self-managing brokerage model for

quality assurance in service-oriented systems. In X. Li, C. S. Smidts, & J. Xu

(Eds.), High assurance systems engineering (HASE) (p. 424-433). IEEE Computer

Society.

4

Contents

Abstract 1

Declaration 2

Acknowledgements 3

Related Publications 4

Contents 5

1 Introduction 13

1.1 Problem Statement . 13

1.2 Key Issues with Existing Work . 14

1.3 Research Objectives . 15

1.4 Research Contributions . 15

1.5 Thesis Structure . 17

2 Service-Oriented Systems 19

2.1 Software as a Service (SaaS) . 19

2.2 Service-Oriented Architecture (SOA) 21

2.3 Service Description . 22

2.4 Service Discovery and Selection . 23

2.5 Service-Level Agreement (SLA) . 24

2.6 Service Composition . 24

2.6.1 Orchestration . 25

2.6.2 Choreography . 26

2.7 System Domains . 26

2.7.1 Business and Enterprise . 27

2.7.2 Grid and Utility Computing 27

5

2.7.3 Embedded Systems . 27

2.7.4 Ubiquitous and Mobile Computing 28

2.8 Summary . 28

3 Service Quality Assurance 29

3.1 Software Quality . 30

3.2 Ensuring Software Quality . 30

3.3 Service Quality Characteristics . 31

3.4 Approaches for Service Quality Assurance 32

3.5 Service Description . 33

3.5.1 Agreement Approaches . 34

3.5.2 Semantic Approaches . 35

3.6 Service Discovery and Selection . 38

3.7 Service Reputation Systems . 41

3.8 Service Negotiation . 46

3.9 Service Monitoring . 51

3.10 Overview and Integration Discussion 58

3.11 Summary . 60

4 Quality Assurance Framework 61

4.1 Framework Overview . 61

4.2 Brokerage System . 63

4.2.1 Broker Engine . 64

4.2.2 Negotiation Protocol . 66

4.2.3 Negotiation Model . 68

4.3 Monitoring System . 69

4.3.1 Service Renegotiation . 72

4.3.2 Forecasting Future QoS . 73

4.4 Reputation System . 73

4.5 Service Ontology . 74

4.5.1 Quality Schema . 75

4.5.2 Service Schema . 77

4.5.3 Strategy Schema . 79

4.6 Service Acceptability . 85

4.7 Customisable Components . 87

4.7.1 Monitor Assembly . 88

6

4.7.2 Extending Forecast Support 88

4.8 Summary . 91

5 Evaluation 92

5.1 Service Simulation . 92

5.2 Service Doping . 93

5.3 Service Strategy . 94

5.3.1 Consumer Strategy . 95

5.3.2 Provider Strategy . 96

5.4 Initial Service Provider Selection 97

5.4.1 Initial Service Provider Reputation 98

5.4.2 Initial Service Negotiation 99

5.4.3 Initial Service Provider Selection Results 102

5.5 Service Monitoring . 104

5.6 Regular Service Performance . 104

5.7 Recurring Service Failure . 107

5.8 Handling SLA Violations . 112

5.8.1 Severe Violations . 113

5.8.2 Moderate Violations . 113

5.9 Service Outage . 114

5.10 Off-Peak and Peak Service Performance 116

5.11 Consumer Competition . 120

5.12 Framework Limitations . 120

5.12.1 No Acceptable Services . 122

5.12.2 Framework System Unavailability 123

5.13 Summary . 124

6 Conclusions 126

6.1 Objectives Revisited . 126

6.2 Future Research Directions . 129

6.3 Concluding Remarks . 132

A Ontology XML Examples 133

A.1 Example Service Contract . 134

A.2 Example Service Strategy . 135

7

B System Visualisation Tool 138

B.1 Initial State . 138

B.2 Negotiation Visualisation . 140

B.3 Service Performance Visualisation 145

References 147

8

List of Figures

2.1 Service as a collection of capabilities 20

2.2 Typical service interaction . 21

2.3 SOA interaction pattern . 22

2.4 Service discovery and selection . 23

2.5 Example service composition . 25

2.6 Service orchestration overview . 25

2.7 Service choreography overview . 26

4.1 Quality assurance framework overview 62

4.2 Framework brokerage architecture 63

4.3 Broker engine overview . 64

4.4 Proposal engine overview . 65

4.5 Negotiation message overview . 66

4.6 Consumer negotiation protocol states 67

4.7 Provider negotiation protocol states 67

4.8 Overview of the bargaining negotiation process 69

4.9 Primary framework monitoring architecture 70

4.10 Alternative service monitoring approaches 71

4.11 Service monitoring and brokerage system integration 72

4.12 Reputation system integration . 74

4.13 Quality ontology elements overview 75

4.14 Quality element . 75

4.15 Constraint element . 76

4.16 Quality ontology XML example . 76

4.17 Service ontology elements overview 77

4.18 Service element . 78

4.19 ServiceContract element . 78

4.20 OperationContract element . 79

9

4.21 Service ontology XML example . 80

4.22 Strategy ontology elements overview 80

4.23 Strategy element . 81

4.24 ServiceStrategy element . 82

4.25 OperationStrategy element . 83

4.26 QualityStrategy element . 84

4.27 ConstraintStrategy element . 84

4.28 Overview of customisable framework components 88

4.29 Monitor assembly components overview 89

4.30 Forecaster component architecture 90

5.1 Service doping architecture . 94

5.2 Initial map service provider reputation 98

5.3 Initial historical map service provider ratings 99

5.4 Initial negotiation with broker of map service provider 1 100

5.5 Initial accepted map service proposal 100

5.6 Initial negotiation sessions with other map service provider brokers 101

5.7 Initial map service proposal acceptability 102

5.8 Initial overall map service provider acceptability 103

5.9 Initial overall navigation composition acceptability 103

5.10 Regular service monitor events . 105

5.11 Regular service invocations . 106

5.12 Regular composition invocations . 106

5.13 Recurring map service response time failure 108

5.14 Recurring map service failures and switching providers 109

5.15 Updated map service provider ratings 109

5.16 Updated map service provider reputation 110

5.17 Updated overall map service provider acceptability 110

5.18 Renegotiation with map service provider 1 111

5.19 Recurring map service failure impact on composition 112

5.20 Map service failure, followed by provider QoS stabilisation 114

5.21 Map service failure, followed by another failure after renegotiation . 115

5.22 Weather service outage and availability failure 116

5.23 Weather service outage and switching provider 117

5.24 Weather service outage impact on navigation composition 117

5.25 Location service response time failure during peak usage period . . 118

10

5.26 Location service failure and renegotiation 119

5.27 Peak service performance impact on navigation composition 119

5.28 Negotiation failure due to consumer competition 121

5.29 No acceptable map service proposals 122

B.1 System visualisation tool initialised state 139

B.2 Negotiation session list viewer . 140

B.3 Negotiation session viewer . 141

B.4 Negotiation message viewer . 142

B.5 Service provider proposal viewer . 142

B.6 Service provider reputation viewer 143

B.7 Service provider overall acceptability viewer 143

B.8 Composition proposal acceptability viewer 144

B.9 Composition overall acceptability viewer 144

B.10 Monitor event viewer . 145

B.11 Service invocation acceptability viewer 146

B.12 Composition invocation acceptability viewer 146

11

List of Tables

3.1 Service description research initiatives 34

3.2 Service discovery and selection research initiatives 38

3.3 Service reputation system research initiatives 42

3.4 Service negotiation research initiatives 47

3.5 Service monitoring research initiatives 53

3.6 Summary of quality assurance domains 59

5.1 Size and complexity of simulation data 93

5.2 Strategy summary for the automobile navigation system 96

5.3 Map service strategy for the automobile navigation system 96

5.4 Summarised service strategies for the map service providers 97

5.5 Different framework configuration scenarios 124

12

Chapter 1

Introduction

1.1 Problem Statement

Constant change and innovation are characteristics of modern business, driven

by quality-oriented organisations that are continuously adapting to shifts in the

business environment (Truex et al., 1999). The service-oriented systems which

underpin modern business processes must be able to react to constantly changing

environments and business requirements, while maintaining satisfactory levels of

system quality.

As a relatively new software model, there remain many challenges in realising

a true service-oriented vision. The dynamic nature and complexity of systems

composed from services poses a particular challenge for managing system qual-

ity (Woodside & Menascé, 2006). The quality of a service-oriented system de-

pends not only on the quality of service (QoS) provided by service vendors, but

on the interdependencies between services, resource constraints imposed by the

runtime environment, and events such as network outages. It is difficult to antici-

pate the impact that many of these emergent factors will have on the behaviour of

the system. The third-party nature of software services also presents the service

consumer with limited control over the system quality. While the consumer may

obtain a service-level agreement (SLA) from a service provider, which describes

QoS guarantees for the non-functional attributes of a service, such agreements are

difficult to enforce and do not themselves provide the means to ensure the quality

of a system.

13

Chapter 1: Introduction Key Issues with Existing Work

1.2 Key Issues with Existing Work

Current approaches to ensuring quality in service-oriented systems focus on dis-

crete aspects of the quality assurance process, and are not intended to provide

an end-to-end solution. These aspects include the enhancement of service char-

acteristics with non-functional and semantic information, the negotiation of QoS

characteristics, the monitoring of service performance, and systems which collate

and report the reputation of service vendors. Current quality assurance initiatives

for service-oriented systems have the following key issues:

• Limited consumer control over service quality. Existing quality assurance

initiatives primarily focus on predicting system quality from static service

properties (Grassi & Patella, 2006). These approaches provide the consumer

with little control over service quality, outside of the static SLA it obtains

from a service provider. SLAs are difficult to enforce, and require services to

be monitored for compliance.

• Poor support for expressing quality characteristics. Existing service descrip-

tion languages primarily focus on the structural properties of a service, and

provide poor support for expressing non-functional service characteristics.

This makes it difficult for the consumer to accurately discover, compose and

substitute services which match its non-functional requirements (O’Sullivan

et al., 2002).

• Poor support for runtime quality assurance. Existing service monitoring ini-

tiatives are largely manual approaches which focus on static service proper-

ties. Static monitoring approaches provide poor support for detecting and

responding to emergent runtime quality problems in the service execution

environment. As such, existing service monitoring initiatives lack the ability

to effectively recover from an SLA violation or service failure.

• Poor support for resource-restricted systems. Existing quality assurance ini-

tiatives require the service consumer to expend significant resources on ac-

tivities such as service negotiation and monitoring. Ensuring quality is par-

ticularly problematic for service-oriented systems which operate in resource-

restricted environments (Milanovic et al., 2004). Not only must a service

provide an acceptable QoS, but it must be capable of being integrated within

the resource constraints of the service consumer.

14

Chapter 1: Introduction Research Objectives

• Limited scope for integration and customisation. Existing quality assurance

approaches for service-oriented systems focus on discrete aspects of the qual-

ity assurance process, and lack support for integrating with approaches from

other domains. The multitude of techniques within each quality assurance

domain requires the solution to support integration and customisation.

In addition, many existing quality assurance approaches for service-oriented

systems have not been evaluated on real service-oriented systems. The lack of a

significant evaluation means many initiatives are unable to adequately demonstrate

their suitability for purpose. In some cases, it is possible to attribute evaluation

shortcomings to the closed nature and complexity of real-world service-oriented

systems.

1.3 Research Objectives

The principle aim of this research is to improve upon existing quality assurance

approaches for service-oriented systems, by addressing the key issues identified

in Section 1.2. The primary research objective is to develop and evaluate an

integrated quality assurance solution for service-oriented systems. The specific

research objectives of this work are to:

• provide the service consumer with increased control over service quality

• provide support for the expression of quality characteristics, as a means of

supporting the quality assurance process

• provide a runtime solution that can detect and recover from SLA violations

and service failures

• provide a solution that supports resource-restricted systems

• provide customisation support for integrating different quality assurance

techniques and facilitating experimentation

1.4 Research Contributions

The first key research contribution of this thesis is an extensive literature review,

documenting the state of the art in quality assurance solutions for service-oriented

systems.

15

Chapter 1: Introduction Research Contributions

The second key research contribution is an integrated quality assurance frame-

work, which improves upon existing approaches for ensuring quality in service-

oriented systems. The approach integrates quality assurance techniques from the

service description, discovery and selection, reputation, negotiation, and monitor-

ing research domains, and provides a pluggable and extensible assurance solution.

Service-oriented architecture (SOA) is essentially a technology-independent

concept. The framework has been implemented and evaluated using the Jini (Sun

Microsystems, Inc., 2009b) service architecture. As there are a variety of different

SOA implementations, it may be possible to apply the framework to other archi-

tectures, such as the Web Services Architecture (W3C Working Group, 2004). The

framework has been evaluated with a simulated street navigation application com-

posed of multiple Jini services, which is required by different simulated consumer

devices, such as an automobile navigation system or mobile phone.

The key contributions provided by the integrated quality assurance framework

for service-oriented systems are now listed, with a brief discussion of how they

address the research objectives stated in Section 1.3:

• Service brokerage system. The framework provides a pluggable service bro-

kerage system, which supplies an automated runtime method for securing

SLAs that are closer to meeting consumer service requirements. The sys-

tem also compensates service providers accordingly. The brokerage system

provides the consumer with the means to handle and recover from SLA vi-

olations and service failures, by renegotiating and substituting problematic

services. Service brokers conduct the negotiation process independently on

behalf of service consumers and providers, making the brokerage approach

well-suited for resource-restricted systems. The pluggability of the broker-

age system enables the integration of different negotiation models, decision

algorithms and service strategies.

• Service monitoring system. The framework provides a pluggable service mon-

itoring system for measuring runtime service performance, auditing SLAs for

compliance, and for forecasting trends in QoS. The monitoring system in-

forms the service consumer of any SLA violations and service failures, and

provides the consumer with the impetus for activating recovery techniques,

such as service renegotiation and substitution. The monitoring system is

capable of performing its quality assurance tasks independently of the ser-

16

Chapter 1: Introduction Thesis Structure

vice consumer and provider, removing the monitoring burden from resource-

restricted systems. The pluggability of the monitoring system enables the

integration of different quality measurement components, SLA auditors and

forecasting models.

• Reputation system. The framework provides a reputation system for fa-

cilitating trust between service consumers and providers. The reputation

system collates service ratings provided by service consumers. These ratings

reflect the collective consumer experience of particular services and service

providers. The reputation system integrates with the framework’s broker-

age system, to provide the service consumer with additional criteria during

the service negotiation and selection processes. This reputation criteria is

particularly useful when the consumer has no prior experience of a service

provider, and improves the control over its choice of service provider.

• Quality ontology. The framework provides a quality ontology for the expres-

sion of service quality characteristics, strategies for consumer and provider

service requirements, and for the specification of SLAs between consumers

and providers. The ontology provides a common set of quality attribute

descriptions for service consumers and providers, with the aim of reducing

ambiguity and misunderstanding. The quality ontology is integrated by the

framework’s service brokerage, monitoring and reputation systems, and sup-

ports the automation of the quality assurance processes they fulfill.

• Service doping approach. The development of the framework includes the

design and implementation of a service doping approach, used to simulate

different QoS scenarios in service-oriented systems. The approach enables

experiments which would be difficult to perform otherwise, without a suitable

service marketplace and co-operation from commercial service providers.

Some of the results of this research have been published in two conference

papers (Robinson & Kotonya, 2008a, 2008b).

1.5 Thesis Structure

Chapter 2 continues the thesis with the background into service-oriented systems,

and the principles of the software as a service development model. The chap-

17

Chapter 1: Introduction Thesis Structure

ter then identifies system domains where service-oriented software development is

being used, and the specific quality issues that impact systems in these domains.

Chapter 3 begins with an introduction to the subject of software quality assur-

ance, and traditional approaches for ensuring software quality. The chapter then

examines the particular quality characteristics of services, and provides an overview

of the current quality assurance approaches for service-oriented systems. Chapter 3

continues with a detailed survey of existing research initiatives for tackling quality

issues in service-oriented systems. These initiatives are categorised and discussed

within the domains of service description, service discovery and selection, service

reputation systems, service negotiation, and service monitoring. The chapter con-

cludes by discussing the limitations of the existing quality assurance initiatives for

service-oriented systems, and puts forward the potential benefits of an integrated

solution comprised of techniques from each quality assurance domain.

Chapter 4 discusses the design and implementation of an integrated quality

assurance framework for service-oriented systems, which is a key contribution of

this research. The discussion begins with the three integrated systems provided

by the framework for brokering, monitoring and rating services. The chapter

then discusses a service quality ontology for the expression of service character-

istics, strategies and SLAs. The chapter continues with an explanation of how

strategies are specified for consumer and provider service requirements, and the

utility-based formulas used to calculate service acceptability. The chapter con-

cludes with a discussion and example of the customisable aspects of the quality

assurance framework.

Chapter 5 provides a series of experiments based on a simulated service-oriented

application, in order to demonstrate and evaluate the quality assurance framework

against the research objectives stated in Section 1.3. The evaluation presents

several experiments developed using a service doping approach, which provides

the means to simulate different quality issues experienced by a service-oriented

system. Within each experiment, the role of the quality assurance framework in

resolving these issues is demonstrated. The evaluation also examines scenarios

which highlight the limitations of the current quality assurance framework.

Chapter 6 provides an evaluation of the quality assurance framework, and

assesses the extent to which the research objectives have been addressed. The

chapter then discusses future research directions the work could take. The chapter

concludes the thesis with a summary of the research and some final reflections.

18

Chapter 2

Service-Oriented Systems

Service-oriented architecture (SOA) is a software development framework that is

seeing increased adoption within the IT industry (Erl, 2007). SOA supports the

dynamic composition and reconfiguration of software systems from networked soft-

ware services, which provide functionality to the service consumer on an as needed

basis. The SOA development model provides significant benefits over traditional

product-oriented software deployment. These benefits include the dynamic in-

tegration and rapid deployment of platform-independent systems, and reduced

capital investment (Erl, 2005; Sommerville, 2006). This chapter provides an in-

troduction to service-oriented systems and the SOA development model.

2.1 Software as a Service (SaaS)

Software as a service (Brereton et al., 1999; Bennett et al., 2000) is being pro-

moted by software industry leaders as the basis for the next computing paradigm.

Service-oriented architecture (SOA) is a conceptual structure for realising this vi-

sion, based on the design principle of service-orientation. Service-orientation is a

design approach which specifies the implementation of processing or solution logic

in the form of services.

Services are loosely-coupled and reusable software components, which encap-

sulate discrete functionality (Sommerville, 2006). Services are self-describing and

should facilitate the rapid, low-cost development and deployment of distributed

service-oriented applications (Brogi et al., 2008). A service can be described as

a collection of capabilities, grouped together by the functional context provided

by the service (Erl, 2007). The service contains the logic required to carry out

19

Chapter 2: Service-Oriented Systems Software as a Service (SaaS)

these capabilities, and provides a service contract that describes which of these

capabilities is available for invocation. An example service is shown in Figure 2.1.

StockQuote

GetLastTradePrice
GetOpeningTradePrice

service context

service capabilities

Figure 2.1: A service can be considered as a collection of capabilities.

Services are discoverable and dynamically-bound at runtime. Services are in-

teroperable, yet can be implemented using different programming languages on

different platforms. The major requirements of services are dependability, com-

posability and reuse (Milanovic et al., 2003). Services are provided by service

providers or vendors, and are requested and used by service consumers. It is pos-

sible to have many providers of the same service, with consumers free to choose

between them. Services are typically accessed across a computer network.

Services are often stateless, in that they do not maintain state between re-

quests made by different consumers of the service. This statelessness promotes the

scalability of services. If state information is required, it should be passed to the

service by the consumer with the service request that requires it. Services can be

stateful when needed, for complex multi-stage operations. Stateful services have

the benefit of reducing message overhead. With stateful services, consumers may

pass an identification with any service requests made, in order to provide iden-

tifying information to the service. The service interaction of both stateless and

stateful services can be described as connectionless, with short-lived interactions

between the consumer and service. The typical service interaction process is shown

in Figure 2.2.

Communication with a service is done through the service interface, making

the service a black-box component. This enables service-oriented solutions to

run across heterogeneous hardware platforms, and be implemented using different

technologies and programming languages. It also facilitates the integration of

legacy, native and proprietary systems into the architecture, through the use of a

wrapper (Benatallah et al., 2002).

The software as a service (SaaS) model overcomes several limitations of tradi-

tional software development and use (Turner et al., 2003). Service-oriented appli-

cations can be composed at runtime, with services added, removed or replaced as

20

Chapter 2: Service-Oriented Systems Service-Oriented Architecture (SOA)

Service

service request

service response

process
request

Service
Consumer

Figure 2.2: Typical service interaction.

needed. This is in contrast to the traditional approach of software as a product,

where these types of activities are static and essentially frozen before the software

product is delivered. Many of the principles of SOA can be automated, enabling

flexible service-oriented applications which can rapidly respond to emergent prop-

erties, and changes in requirements and the environment.

2.2 Service-Oriented Architecture (SOA)

The principles of service-oriented architecture (SOA) are loose-coupling, the ser-

vice contract, autonomy, abstraction, reusability, composability, statelessness, and

discoverability (Erl, 2005). SOA provides a distinct approach to the software engi-

neering principle of separation of concerns. This theory states that a large problem

can be more effectively solved through decomposition into smaller problems or con-

cerns.

SOA is a method of building distributed systems from loosely-coupled services.

SOA is an implementation-independent software model, based on the principle of

service-orientation, and can be realised using any suitable technology platform.

There is currently an increasing interest in using the SOA architectural approach

for the development of complex software systems, with the use of the Web Services

Architecture (W3C Working Group, 2004) as an enabling technology (Saunders

et al., 2006). However, SOA is fundamentally a technology-independent concept.

Other examples of SOA implementations include Jini (Sun Microsystems, Inc.,

2009b) and the OSGi Service Platform (OSGi Alliance, 2009).

The SOA interaction pattern, also referred to as the publish-/find-bind-execute

model, is shown in Figure 2.3. The consumer typically initiates service requests.

21

Chapter 2: Service-Oriented Systems Service Description

Service
Consumer

Service
Provider

Service
Registry

bind and execute (invoke) service

find required
service

publish service
description

Service

Figure 2.3: The SOA interaction pattern.

2.3 Service Description

Service descriptions are used by service consumers to describe the services they re-

quire, and by service providers to advertise the services they offer. In an ideal SOA,

these descriptions would not only provide descriptions of the functional attributes

of a service, but also non-functional attributes and rich semantic information.

Services are not merely functions, but functions performed on behalf of a service

consumer for a given cost. This cost is not just monetary, but involves a whole

collection of limitations (O’Sullivan et al., 2002). It is therefore important that

a service description also expresses the non-functional or qualitative constraints

which accompany the functionality of the service. By including such informa-

tion, service providers are able to differentiate themselves from other providers of

functionally-alike services. Service consumers are then able to discover and select

providers of services which best satisfy the non-functional consumer requirements.

Service descriptions primarily facilitate the advertisement, discovery and selec-

tion of services, but can also benefit other processes such as service negotiation,

composition and monitoring. Specialist languages for describing services are in

development, which have the aim of automating and improving service interoper-

ability (Martin et al., 2004).

22

Chapter 2: Service-Oriented Systems Service Discovery and Selection

2.4 Service Discovery and Selection

The advertisement and discovery of services is a key principle of SOA, and an

integral part of the SOA interaction pattern (shown earlier in Figure 2.3). In this

abstract model, service providers publish descriptions to a registry that describe

the services they provide. These service descriptions are then advertised by the

registry for service consumers to discover, as shown in Figure 2.4. Once a suitable

service is discovered, the registry provides the consumer with the location of the

provider of the service. The consumer uses the location endpoint to bind to and

invoke (use) the service.

Service discovery can be performed purely on the functional aspects of a ser-

vice, which limits consumer choice to those services which provide a compatible

interface (and also the service cost, if applicable). Service discovery and selec-

tion can also integrate non-functional and semantic criteria (Maximilien & Singh,

2004a; Oldham et al., 2006), as well as provider reputation (Xu et al., 2007). In

the event that several functionally-compatible services exist, any additional crite-

ria aids the service consumer in selecting the service which is most acceptable to

the consumer’s non-functional requirements.

Service
Registry

Service
Consumer

Service

Service
Provider

good quality and cheap,
but slow

Service

Service
Provider

Service

Service
Provider

discover
and select

good quality and fast,
but expensive

fast and cheap,
but poor quality

Figure 2.4: Service discovery and selection.

23

Chapter 2: Service-Oriented Systems Service-Level Agreement (SLA)

2.5 Service-Level Agreement (SLA)

The service-level agreement (SLA) is used to describe a formally-negotiated busi-

ness contract between two parties, such as the consumer and provider of a service.

An SLA concerns the terms and conditions of service provision and use, i.e. what

a consumer can expect from a provider, and restrictions on what a consumer can

demand from a provider. SLAs are composed from smaller service-level objectives

(SLOs), which describe specific non-functional commitments over the use and pro-

vision of a service. An SLA usually associates a cost with a certain level of service,

and may also specify penalties for non-compliance. As SLAs are merely contracts

and do not enforce anything by themselves, they must be monitored or audited at

runtime for violations by either party.

Service providers should be able to enter into agreements with an awareness

of their resources, and be able to allocate and manage their resources, in order

to meet runtime QoS guarantees and avoid SLA violations (Ludwig et al., 2004).

Service usage conditions may also be placed on service consumers.

The service consumer may directly negotiate an SLA with a service provider,

or may delegate this activity to a third-party service broker (Menascé & Dubey,

2007). Similarly, the service consumer can directly measure and audit service

performance in order to detect any SLA violations, or may utilise a third-party

SLA monitoring solution (Skene et al., 2007).

2.6 Service Composition

The ability to compose services together is a key principle of SOA. Service com-

position is the process of creating new services composed of smaller single services

or other composed services. Complex business processes can be composed from

multiple services, with each service providing some discrete piece of functionality.

SOA promotes reusability by composing new services out of existing services, and

composing new compositions from existing compositions. A simple hypothetical

example is shown in Figure 2.5, where a road navigation service has been composed

from a location service, a map service and a traffic report service.

Two other service-oriented concepts related to service composition are service

orchestration and choreography, which are now discussed separately.

24

Chapter 2: Service-Oriented Systems Service Composition

Map Service

Traffic
Service

Location
Service

Navigation
Service

Navigation Composition

Service
Consumer

Figure 2.5: Example service composition.

2.6.1 Orchestration

An orchestration is an executable process, comprised of two or more services,

which is centrally controlled. In the composition example given in Figure 2.5, the

process controller is the navigation service. The navigation service is responsible

for querying the location service for the coordinates of the consumer’s current

location, querying the map service for a map for the coordinates, and querying

the traffic service for traffic data for the coordinates. The map and traffic data is

combined by the navigation service, to provide a navigation aid to the consumer.

There are different models for service orchestration. The hub and spoke model,

shown in Figure 2.6, is a common implementation of orchestration, which enables

multiple services to interface with a central orchestration engine (Erl, 2005). Or-

chestrations are typically owned by a single organisation, and control almost every

part of a complex process.

Service B

Service A

Service EService C

Service D

controller of
process

Figure 2.6: Service orchestration overview.

25

Chapter 2: Service-Oriented Systems System Domains

2.6.2 Choreography

Choreography enables collaboration between participants, when multiple services

from different organisations must be composed together to achieve a common

goal (Erl, 2005). Rather than compose existing services to form a new service which

has central control over the whole process, choreography defines collaboration rules

and policies which enable different services to collaborate with one another to

form a process (Josuttis, 2007). Each service involved in the collaboration only

contributes to a part of the process. An overview of choreography and its role in

enabling cross-organisational collaboration is provided in Figure 2.7, adapted from

an example in (Erl, 2005).

Service B

Service A

Choreography

request
collaboration

request
collaboration

collaboration
rules

organisation A

organisation B

Figure 2.7: Service choreography overview.

2.7 System Domains

There are several system domains where service-oriented approaches to software

development and use are being deployed. Applications in these domains are af-

fected by both generic and domain-specific quality issues, and are often required

to have automated responses to changes in requirements, the service execution

environment, resource availability, and to general system faults.

26

Chapter 2: Service-Oriented Systems System Domains

2.7.1 Business and Enterprise

The service-oriented systems which underpin modern business processes must be

able to react to constantly changing environments and business requirements. The

adoption of service-oriented solution logic can introduce new issues to ensuring

quality in business systems. Service qualities such as availability, security, re-

sponse time, and throughput are particularly of concern. Guarantees for these

qualities may be less important for services which are consumed once and then

discarded, but critical for services which are important parts of longer running

service compositions and bound by SLAs (Menascé, 2002). Ensuring quality is

particularly complex when applications are composed of services provided by dif-

ferent organisations, which may be based in different countries across the world.

2.7.2 Grid and Utility Computing

The term grid computing is given to an approach for sharing computing resources

across the Internet, with the aim of turning a global network of computers into a

single powerful computational resource. The process of offering the computational

resources of a grid as a metered service is known as utility computing (also referred

to as on-demand computing and cloud computing). Grids are already in use for

resource-intensive scientific applications, but could also become a future model for

enterprise applications. Resource-oriented qualities are particularly of concern in

grid computing, as well as qualities such as availability, security, response time, and

throughput. Ensuring quality in grid systems is particularly challenging because of

the complexity of grid systems consisting of thousands of components across mul-

tiple domains, where quality must be ensured at local and global levels (Menascé

& Casalicchio, 2004).

2.7.3 Embedded Systems

Embedded systems are devices which feature programmable computers, but are

themselves not intended to be general purpose computers (Wolf, 2001). The

software for these systems is becoming increasingly complex, with a need to dy-

namically add and remove advanced functionality during the lifetime of a de-

vice (Tournier et al., 2005). Embedded systems have non-functional qualities

which distinguish them from general purpose systems. These qualities are pri-

marily resource-oriented and performance-related, and affect the overall quality of

27

Chapter 2: Service-Oriented Systems Summary

a system. Examples include types of resource consumption, concerning issues such

as processor, memory, storage, power, and network bandwidth requirements. Other

qualities include performance, reliability, availability, and security. These qualities

are often in competition with one another, e.g. an increase in system security levels

can have an impact on the performance of a system. Similarly, increased system

performance requirements can negatively impact the power consumption of a sys-

tem. The competition between interdependent and competing qualities typically

leads to system trade-offs being made.

2.7.4 Ubiquitous and Mobile Computing

Ubiquitous computing (Weiser, 1991), also referred to as pervasive computing, de-

scribes a shift away from the desktop interaction model of contemporary comput-

ing, to a network of small and inexpensive devices which are embedded in ev-

eryday objects distributed throughout the environment. Ubiquitous applications

can benefit by dynamically discovering services as and when they are needed, as

different sets of services may be exposed as contexts change (Baresi et al., 2004b).

This is especially true with mobile applications which move between environments,

and pervasive applications which are situated in changeable environments. These

changes in context create issues with ensuring system quality for ubiquitous com-

puting applications. For example, there are trust issues when services have to be

accepted from providers which the consumer has no prior experience of. Mobile

applications also require certain levels of qualities from the network, such as la-

tency, jitter and bandwidth, and have to consider resource-oriented qualities, such

as power consumption.

2.8 Summary

This chapter has provided the background to service-oriented systems and the

key components of a service-oriented software architecture. The chapter discussed

the nature of software composed from services, and the benefits of the service

delivery model. The chapter concluded by identifying several system domains with

particular quality assurance issues, which could benefit from a service-oriented

approach to ensuring software quality. The following chapter provides a review of

the state of the art in quality assurance solutions for service-oriented systems.

28

Chapter 3

Service Quality Assurance

This chapter begins with a discussion of software quality, and the background to

the problem of ensuring quality in software. The chapter then continues with a

discussion of software quality in the context of service characteristics, and presents

the problem of ensuring quality in service-oriented systems.

The chapter then provides a detailed survey of current quality assurance ini-

tiatives for service-oriented systems. The survey begins with an examination of

approaches that improve the characterisation of services with descriptive non-

functional and semantic information. Improved service descriptions facilitate a

variety of service-oriented processes, such as QoS advertisement and the creation

of SLAs. There follows an evaluation of approaches for improving service dis-

covery, which incorporate additional criteria, such as service quality attributes,

to discover services which are closer to meeting a consumer’s non-functional re-

quirements. The chapter then reviews reputation system initiatives, which provide

historical data on service provider performance. This reputation data provides the

consumer with additional criteria for the service selection process. The discus-

sion then assesses current service negotiation initiatives, which enable consumers

to obtain agreements for services that are closer to meeting their requirements.

The final service-oriented quality assurance domain discussed is service monitor-

ing, which provides initiatives for detecting and recovering from SLA violations,

service failures and errors.

The chapter concludes with a discussion of how initiatives from these different

service-oriented quality assurance domains can be combined into an integrated

solution for ensuring quality in service-oriented systems.

29

Chapter 3: Service Quality Assurance Software Quality

3.1 Software Quality

Quality can be defined as the degree to which a set of inherent characteristics

fulfils requirements (ISO, 2000). Software quality characteristics may be inter-

dependently related with one another, and frequently trade-offs must be made

between competing and conflicting qualities (Chung et al., 1999).

Software quality is typically identified in software requirements, which spec-

ify the quality characteristics required from software, and guide the measure-

ment methods and acceptance criteria for assessing these characteristics (Abran

& Moore, 2004). Software requirements consist of functional and non-functional

requirements. Functional software requirements specify what a system does, while

non-functional quality requirements specify how well the system satisfies these

functions (Gilb, 1988).

It is possible for software to function correctly, while not satisfying certain

non-functional requirements. For example, a software function may perform a

calculation correctly, but take an unacceptable amount of time to return the result

of the calculation. Such non-functional qualities are frequently critical to the

success of software, and an approach is required to ensure software qualities do

not fall below acceptable levels.

3.2 Ensuring Software Quality

There are two general approaches for ensuring software quality. Firstly, quality

issues can be addressed statically during the design and implementation of a sys-

tem. Secondly, quality can be addressed dynamically through runtime negotiation

of quality requirements. The static approach offers well-defined behaviour at the

sacrifice of flexibility, while the dynamic approach offers increased flexibility at the

sacrifice of well-defined behaviour (Tournier et al., 2005).

Software quality management approaches are summarised in (Heineman et al.,

2004) as static analysis and predication of quality requirements, runtime enforce-

ment of quality policies, and standards-based quality middleware extensions and

frameworks. Static quality management approaches rely on predicting the prop-

erties of a system based on the properties of its constituent components (Lüders

et al., 2005). With static approaches, emergent properties cannot be reliably pre-

dicted without extensive testing. Dynamic approaches can use prediction as a

30

Chapter 3: Service Quality Assurance Service Quality Characteristics

starting point, but are then able to measure the actual system quality at runtime,

and respond to quality issues and emergent properties. With increased agility

in systems, quality assurance testing can be reduced through the introduction of

runtime monitoring. Static prediction of resource usage can lead to systems which

don’t have the resources to function correctly at a certain level of system quality,

or end up wasting resources because a large amount of redundancy has been built

into them. Dynamic approaches allow for the allocation of resources as required.

Software specifications are not static, complete or homogeneous, but are sub-

ject to change because of quality characteristics which cannot be identified in

advance (Shaw, 1996). Because of this, a hybrid of static and dynamic approaches

can be desirable for ensuring software quality. For example, a static approach

may be used for the safety-critical parts of a system, where well-defined behaviour

is required. The safety-critical parts of the system can be implemented using

product-oriented development approaches, such as component-based or model-

driven development. The static approach can then be combined with a dynamic

approach, used for the changeable or volatile parts of the system that require

flexibility. These changeable or volatile parts can be implemented using a more

loosely-coupled development approach, such as the service-oriented model.

3.3 Service Quality Characteristics

Qualities can be considered to be constraints over the functionality of a ser-

vice (O’Sullivan et al., 2002). A characteristic of distributed systems is the volatil-

ity of service quality (Toma et al., 2006). It is therefore important that mechanisms

are in place for maintaining the overall system quality (Menascé et al., 2007).

Traditionally, the term quality of service (QoS) has been associated with tele-

phony and computer networking. QoS may be required for certain applications,

such as voice over IP (VoIP), which have requirements on the data flowing across

the network. For example, network applications may specify requirements that de-

scribe acceptable levels of latency, jitter and dropped data packets. However, qual-

ity cannot be ensured in service-oriented systems without considering application-

level QoS. Currently, there is no industry-wide accepted technology for accom-

plishing this. Application-level QoS can be considered the Achilles’ heel of internet

services, with the complexity of the multitiered architecture and dynamic nature

of service composition (Woodside & Menascé, 2006).

31

Chapter 3: Service Quality Assurance Approaches for Service Quality Assurance

Service-oriented systems are distributed and composed from numerous services

which can be discovered and replaced at runtime. It is possible for several different

service providers to offer services with common functionality, but with different

non-functional quality characteristics. These characteristics can be used by the

service consumer to distinguish the acceptability of different service providers.

3.4 Approaches for Service Quality Assurance

Initiatives are underway to enhance services with non-functional QoS and semantic

information. These initiatives enable providers to advertise the non-functional and

semantic characteristics of the services they offer. Improved service descriptions

aid the service consumer with the processes of service discovery, selection and

composition. This in turn helps to increase the quality of service-oriented software,

as software can be composed which better meets consumer requirements. The

notable service description research initiatives are discussed in Section 3.5. Service

discovery initiatives which incorporate enhanced service descriptions and selection

criteria are evaluated in Section 3.6.

Reputation systems are designed to address issues of trust between parties who

have not dealt with one another before. Common examples of reputation systems

are the feedback mechanisms used by online auction sites and marketplaces. For

the service consumer, reputation systems help to distinguish between low and high

quality service providers (Jøsang et al., 2007). The inclusion of provider reputation

as part of the service selection criteria, benefits the quality assurance process for

the service consumer. Notable service reputation system research initiatives are

reviewed in Section 3.7.

Service negotiation is an additional process that can bring software composed

from services closer to meeting consumer requirements. Through negotiation with

service providers, SLAs can be obtained for services which better meet consumer

requirements. Service providers can also benefit from negotiation, by utilising their

spare resources to provide a better QoS to those consumers who will pay for it.

The notable service negotiation research initiatives are discussed in Section 3.8.

Service monitoring is a further process used to detect service failures and SLA

violations at runtime. SLA violations detected through monitoring can prompt

renegotiation with the provider of the problematic service, or replacement of the

service through the selection of an alternate service provider. By being able to de-

32

Chapter 3: Service Quality Assurance Service Description

tect and respond to problematic services, a method of maintaining system quality

can be achieved. Notable service monitoring research is discussed in Section 3.9.

3.5 Service Description

Current industry standards for service description lack support for accurately de-

scribing the non-functional and behavioural aspects of services. The most promi-

nent standard is the Web Services Description Language (WSDL) (Christensen et

al., 2001), which provides the location of a service and a functional description of

the service’s input and output messages. With the emergence of a service mar-

ketplace where multiple providers supply functionally-equivalent services which

implement a common service type, non-functional QoS properties will be the cri-

teria which distinguish one provider from another (Tian et al., 2004). Service

providers therefore require a standard method for describing the non-functional

characteristics of the services they offer.

To reduce ambiguity, it is important that a standard method of describing

non-functional attributes is shared between the participants in a service-oriented

system (Dobson et al., 2005). A standard description method facilitates processes

such as service advertisement, discovery, selection, composition, substitution, ne-

gotiation, and runtime service monitoring (O’Sullivan et al., 2002). A common

description method, often called an ontology, helps to reduce ambiguity and con-

tradictions in SLAs between service consumers and providers (Müller et al., 2008).

The significant service description research initiatives which feature support

for QoS characterisation are summarised in Table 3.1. The attributes chosen for

the evaluation criteria are common characteristics found between the discussed

initiatives. The description initiatives either fully-support the identified evaluation

criteria, provide partial consideration of the evaluation criteria, or do not support

the evaluation criteria in any way.

The service description research initiatives listed in Table 3.1, have been se-

lected based on their support for the following identified evaluation criteria: sup-

port for the expression of service quality attributes; the inclusion of a common

service quality ontology to be shared by service consumers and providers; the

provision of service quality criteria to support enhanced service discovery and se-

lection; and the support to express SLAs over consumed and provided services.

33

Chapter 3: Service Quality Assurance Service Description

Service Description Approach Quality
Attributes

Quality
Ontology

Discovery
Support

Selection
Support

SLA
Support

Ludwig et al. (2003) X × × × X
Lamanna et al. (2003) X × × × X
Martin et al. (2004) X X X X ×
Dobson et al. (2005) X X X X X
Toma et al. (2006) X X X X X
Andrieux et al. (2006) X × X X X
Küster and König-Ries (2007) X × X × X

Key: (X) full support, (∼) partial consideration, (×) no support

Table 3.1: Service description research initatives focus on improving the charac-
terisation of non-functional service quality attributes.

3.5.1 Agreement Approaches

Some service description initiatives are primarily designed for formalising non-

functional QoS attributes in agreements between service consumers and providers.

One such example is the Web Service Level Agreement (WSLA) language specifi-

cation, developed by Ludwig et al. The WSLA specification provides an approach

for defining and monitoring flexible and individualised SLAs to service consumers

in inter-domain environments.

An example where the WSLA specification has been used is given in (Dan et

al., 2004). Dan et al. integrate the WSLA specification with a framework com-

prised of resource management, workload management and monitoring systems.

The framework provides an SLA-driven approach to support the automated man-

agement of utility computing services, and is used to offer differentiated levels of

service to service consumers. To demonstrate the approach, Dan et al. provide an

example scenario based on a financial institution that offers a suite of web services

for stock portfolio management. Rather than providing its own infrastructure for

hosting these services, the financial institution seeks out a service provider with

the resources required to host the services. The service provider is also required to

supply management services, such as data backup, backup restoration and data se-

curity. An SLA between the financial institution and the service provider describes

the characteristics of the provided infrastructure, with guarantees for quality at-

tributes such as network throughput and processor requirements.

The WSLA language specification facilitates customisable and accurate QoS

descriptions for service monitoring and control. However, as the customised QoS

34

Chapter 3: Service Quality Assurance Service Description

metrics are defined within the SLA itself, WSLA cannot be used to describe ser-

vices for the purposes of service advertisement, discovery and selection.

The SLAng language specification developed by Lamanna et al. provides a

language for defining SLAs for end-to-end QoS agreements between network, stor-

age and middleware services. The QoS agreements describe targets for quality

attributes such as performance, availability and reliability. Like the WSLA spec-

ification, SLAng provides a formal and precise language for describing SLAs, to-

gether with a set of built-in QoS metrics. Lamanna et al. evaluate the SLAng

approach using the Common Picture eXchange environment (CPXe), an architec-

ture for integrating digital devices, internet storage and print services. SLAs are

used within the architecture, to regulate the collaborations involved with activi-

ties such as using online print services from home, uploading photos from a retail

kiosk, and ordering prints from a retail photo finisher.

The primary shortcoming of the SLAng initiative is that QoS metrics are spec-

ified within the language itself. This limits the flexibility of the approach, as it is

difficult to extend its functionality with additional QoS metrics.

The Web Services Agreement Specification (WS-Agreement), developed by the

Open Grid Forum (OGF) and led by Andrieux et al., is a web service protocol

used in industry for establishing an agreement between a service provider and con-

sumer. Agreements can concern qualities such as service response time and service

availability, or may provide service resource assurances for memory, processor and

storage attributes. The WS-Agreement specification can be used in a wide va-

riety of domains, with agreement terms developed for each domain as required.

For example, the WS-Agreement specification is used for establishing agreements

concerning multimedia content and QoS negotiation in (Jouve et al., 2006).

The WS-Agreement approach allows for any language to be used for the ex-

pression of QoS attributes and constraints. This design delivers flexibility and

enables WS-Agreement to be integrated with service discovery and selection pro-

cesses. However, the flexibility of the design increases the chance of language

incompatibilities between participants in the agreement.

3.5.2 Semantic Approaches

Other service description initiatives are included within the domain of semantic

web services (McIlraith et al., 2001). These initiatives are designed to provide

machine-readable descriptions of service semantics, and aid processes such as the

35

Chapter 3: Service Quality Assurance Service Description

discovery, selection and composition of services. Semantic approaches assert that

the incorporation of service semantics into a service description model is the key

to self-describing, automated and dynamic service-oriented applications (Kritikos

& Plexousakis, 2007). Semantic approaches also assert that ontologies should be

used to formalise every term of the service description model.

The Ontology Web Language for Services (OWL-S) is a semantic service de-

scription initiative developed by Martin et al., designed to aid the automation

of service discovery, selection, composition, substitution, and invocation, through

the inclusion of rich semantic information. The approach makes use of the On-

tology Web Language (OWL) (McGuinness & Harmelen, 2004), which is designed

to facilitate machine-interpretability of information content, through the inclu-

sion of additional vocabulary and formal semantics. Martin et al. maintain that

WSDL’s lack of support for semantic descriptions makes it impossible to develop

software which can dynamically locate and use a service without human assistance.

OWL-S provides an approach for describing non-functional service properties in a

machine-readable manner, to support the automation of service discovery, selec-

tion and composition processes. OWL-S provides a service description framework

which can be exploited by matchmaking algorithms for service selection. As an

example application of OWL-S, the description initiative has been integrated with

the UDDI service registry, to enable the semantic matching of service capabili-

ties (Paolucci et al., 2002). The example application provides a simple case study

that focuses on the price quality attribute of a car sales service.

OWL-S is able to support basic service contracts with the notion that the

service interface itself is the service contract. However, OWL-S lacks support for

the creation of SLAs which contain specific quality objectives described in terms

of values, value ranges and metrics. OWL-S itself provides the general framework

for the description of non-functional properties, rather than providing an ontology

of its own. The support OWL-S provides for QoS specification is therefore limited,

and insufficient for developing QoS metrics to support service monitoring.

The Quality of Service Ontology (QoSOnt) developed by Dobson et al. utilises

the OWL approach to extend a service’s specification with the expression of non-

functional quality constraints. To demonstrate and evaluate the use of the QoSOnt

approach, Dobson et al. developed the Service QoS Requirements Matcher (SQRM)

tool. The SQRM tool supports the discovery, differentiation and selection of ser-

vices, based on the QoS requirements of the user. The user’s QoS requirements are

36

Chapter 3: Service Quality Assurance Service Description

specified using the QoSOnt ontology. Dobson et al. provide examples of supported

quality attributes including service availability and mean time to complete.

The QoSOnt initiative addresses QoS specification and includes some QoS met-

rics, which makes the approach suitable for supporting service monitoring, in ad-

dition to service discovery and selection activities. It also makes the QoSOnt

approach suitable for supporting the description and creation of individual SLAs

which specify QoS guarantees. However, QoSOnt lacks support for the expression

of QoS relationships, which is a limitation given the typical interdependencies and

competition between service qualities.

Toma et al. propose an approach for modelling QoS characteristics using the

Web Service Modeling Ontology (WSMO) (Lausen et al., 2005). The approach

is designed to describe quality attributes such as service cost, response time and

availability. The approach focuses on the goals of supporting the automation and

mediation of service provision and use. Toma et al. improve upon the basic QoS

characteristics model provided by WSMO, through the inclusion of a QoS model

for service selection. The improved QoS model is combined with a service selection

algorithm in (Wang et al., 2006), which demonstrates the model’s suitability for

supporting service selection.

Toma et al. provide a QoS model that supports the description of SLAs, and

provides limited QoS metrics to support service monitoring. However, as with the

approach proposed by Dobson et al., the model lacks the ability to express QoS

relationships between interdependent and competing service qualities.

The approach developed by Küster and König-Ries enhances service descrip-

tions with dynamically-changing information, and provides the means to obtain

this information during the service discovery process. The authors assert that the

ability to automate the contracting process is the key to automatic service usage,

as service descriptions are not static, but are dynamic and change over time.

Küster and König-Ries utilise the DIANE Service Description (DSD) (Klein

et al., 2005) language, which supports a matchmaking algorithm for service selec-

tion. Küster and König-Ries integrate an automated contracting phase with the

matchmaking algorithm, to support dynamically-changing service descriptions. To

illustrate the matchmaking approach, the authors provide a motivating scenario.

The scenario concerns a user that is seeking to purchase a notebook computer

with particular quality attributes from three potential providers. These quality

attributes include screen size, processor, memory, and cost.

37

Chapter 3: Service Quality Assurance Service Discovery and Selection

The approach for service contracting developed by Küster and König-Ries is

very general, and designed to be adapted to different domains. As such, it does

not provide QoS characteristics that support the creation of SLAs, or QoS metrics

to support the service monitoring process.

3.6 Service Discovery and Selection

The advertisement and discovery of services is a key concept of SOA (Erl, 2005).

Service providers publish descriptions of the services they provide to a service reg-

istry. The registry then advertises these services for service consumers to discover.

When initiatives for the expression of QoS characteristics are integrated with the

service discovery and selection processes, service providers have the means to dif-

ferentiate themselves from other providers of functionally-alike services, by adver-

tising the non-functional QoS attributes of the services they provide. This addi-

tional QoS information enables service consumers to discover and select providers

for services which best satisfy their non-functional requirements.

The significant service discovery and selection research initiatives are given

in Table 3.2. In addition to supporting the expression of quality characteristics,

the initiatives have been selected based on the following identified criteria: the pro-

vision of a service selection mechanism; the support for SLA creation; the provision

of an automated solution. Some of these initiatives utilise provider reputation in

the service selection process, and are discussed separately in Section 3.7.

Service Discovery Approach Quality
Attributes

Quality
Ontology

Selection
Mechanism

SLA
Creation

Automated
Solution

Paolucci et al. (2002) × × X × X
ShaikhAli et al. (2003) X × X × X
Maximilien and Singh (2004a) X X X × X
Wishart et al. (2005)∗ × × ∼ × X
Ali et al. (2006)∗ × × X × X
Oldham et al. (2006) X X X X X
Xu et al. (2007)∗ X X X × X

Key: (X) full support, (∼) partial consideration, (×) no support

Table 3.2: Service discovery and selection research initiatives focus on improving
the discovery and selection of suitable services using additional criteria
such as QoS parameters and provider reputation.

∗ reputation-based discovery approach, discussed separately in Section 3.7

38

Chapter 3: Service Quality Assurance Service Discovery and Selection

Paolucci et al. posit that web services should be able to locate other services

which provide a solution their problems, and that services should be able to in-

teroperate and form complex new services. The authors propose an approach for

the location of services on the basis of the capabilities services provide. To sup-

port the location of services, the approach offers a service profile ontology which

enables semantic descriptions of functional service capabilities. These semantic

descriptions are processed by a matching engine, which compares service requests

for similarity with service advertisements. To illustrate the approach, the authors

provide a simple example based on an automobile sales service, which reports what

automobiles can be purchased for a specified price.

Paolucci et al. integrate the OWL-S service ontology with the UDDI (Clement

et al., 2004) service registry, to provide a method for the automated discovery,

selection and interoperation of web services. However, the authors do not consider

the non-functional quality attributes of services, such as availability, reliability and

response time. As such, the approach proposed by Paolucci et al. provides no QoS

metrics and is unable to support the creation of SLAs.

ShaikhAli et al. developed the UDDIe extension to the UDDI service registry.

The extension enables the association of user-defined properties with a service’s

description. The extension then allows services to be discovered using these user-

defined properties. Such properties can include quality attributes such as cost,

bandwidth and memory usage. UDDIe also provides support for service leases,

which are used to specify a limited time period during which services are registered

with the service registry. The inclusion of a lease addresses the problem of missing

or inconsistent service references that can plague a standard UDDI registry. As an

example application, ShaikhAli et al. discuss the use of UDDIe in supporting QoS

management in the context of grid computing, with services that provide scientific

programs and mathematical routines.

The extension to UDDI proposed by ShaikhAli et al. enables the expression of

service quality attributes for the purposes of service discovery. However, UDDIe

does not itself provide a common quality ontology to be shared between users

of the system. The lack of a common ontology means that service consumers

and providers must agree upon terms for describing QoS characteristics, in order

to share a common understanding of a service’s description. This step makes it

difficult to automate service interoperability between multiple providers. UDDIe

provides an approach where the service interface acts as the contract between the

39

Chapter 3: Service Quality Assurance Service Discovery and Selection

service consumer and provider, but does not support the creation of SLAs for

specific QoS guarantees.

Maximilien and Singh provide the Web Services Agent Framework (WSAF)

approach for the dynamic selection of web services. Autonomous agents perform

the service selection processes on behalf of service consumers and providers, us-

ing the standard SOA interaction pattern (discussed in Section 2.2). The agent

framework provides a QoS ontology, and a separate policy language that enables

service consumers and providers to respectively express their QoS requirements

and advertisements. The ontology facilitates not only the expression of quality at-

tributes and QoS metrics, but supports the specification of relationships between

interdependent service qualities.

Maximilien and Singh demonstrate their discovery approach with a case study

that involves a consumer shopping for finance and insurance in order to purchase

an automobile. To support the case study, the authors provide domain-specific

ontologies for the finance and insurance domains, and a common middle ontology

that provides quality attributes such as service security and performance.

The agents provided by the Maximilien and Singh approach do not support

the selection of composite services, i.e. services which are composed from smaller

interrelated services. The agents also do not support the negotiation of individ-

ual SLAs for specific QoS guarantees. The authors investigate the integration of

provider reputation with the selection process in (Maximilien & Singh, 2004b),

which is discussed separately in Section 3.7.

Oldham et al. discuss a tool for matching service consumers and providers,

which operates on service agreements expressed using an extension of the WS-

Agreement specification. This extension enables the description and inclusion of

semantic QoS information within an agreement. A semantic QoS ontology enables

the expression of SLAs which state the respective QoS requirements and capa-

bilities of service consumers and providers. This SLA approach provides service

consumers with assurances on specific service quality attributes, such as service

response time, availability or reliability. The QoS information provides the service

selection mechanism with additional criteria when selecting service providers on

behalf of the consumer.

Oldham et al. demonstrate the matching tool with an example situated in the

agriculture domain. The authors use WS-Agreement to specify farming contracts

which contain guarantees and objectives, and conditions which must be satisfied

40

Chapter 3: Service Quality Assurance Service Reputation Systems

for the objectives to be met. In the given example, the service consumer is a

merchant and farmers act in the role of service providers. The matching tool is

used to narrow down the available farmers into a select group, that contains only

those farmers that meet the merchant’s requirements.

The semantic QoS ontology developed by Oldham et al. has the potential to

support service negotiation, and to support the description of QoS metrics for

runtime service monitoring. However, the implementation of the tool provided by

the authors does not support these features.

3.7 Service Reputation Systems

In a service marketplace, it is common for transactions to occur between parties

who haven’t previously interacted. Reputation systems are collaborative mecha-

nisms for addressing trust issues between such unfamiliar parties.

A comprehensive survey of trust and reputation systems for online service pro-

vision is given in (Jøsang et al., 2007). The survey discusses both centralised and

distributed approaches to the dissemination of reputation information, and iden-

tifies the types of systems where either a centralised or distributed approach is

better suited. The survey provides the reader with example applications for repu-

tation systems, such as peer-to-peer file sharing networks, online auction feedback

systems, and online shopping reviews. In peer-to-peer networks, nodes can share

information with one another about their interactions with other nodes. This

enables a node to limit its interaction with selfish nodes that contribute little

bandwidth, or that host malicious software such as viruses. Online auction sites

typically allow a buyer and seller to provide feedback on each other after a trans-

action, in the form of a numerical rating and text comments. This feedback is

made available for prospective buyers and sellers to view, and provides them with

an idea of how reputable a particular buyer or seller is before entering into a trans-

action. Online shopping sites often provide the ability for users to write reviews

for the products they sell. These reviews are made available alongside a prod-

uct’s listing, and form a reputation for the product’s quality. The consumers that

submit product reviews also develop a reputation for the quality and reliability of

the reviews they write, as other consumers are able to rate the helpfulness of the

product reviews.

Jøsang et al. do not propose how such reputation systems could be integrated

41

Chapter 3: Service Quality Assurance Service Reputation Systems

or adapted for use with service-oriented systems. This section provides a discussion

of significant research initiatives which integrate reputation systems with a view

to improving some quality aspect of service-oriented systems. These reputation

initiatives focus on improving the selection of services on behalf of the service

consumer. As such, they support the general description of services and service

quality attributes. The additional evaluation criteria identified are the support of

integration with the service discovery and SLA creation processes. The notable

service-oriented reputation system research efforts are summarised in Table 3.3.

Service Reputation Approach Quality
Attributes

Quality
Ontology

Discovery
Mechanism

Selection
Criteria

SLA
Creation

Maximilien and Singh (2004b) X X × X ×
Wishart et al. (2005) × × X X ×
Ali et al. (2006) X × X X ×
Jurca et al. (2007) X X × X X
Xu et al. (2007) X × X X ×

Key: (X) full support, (∼) partial consideration, (×) no support

Table 3.3: Service reputation system research initiatives focus on improving con-
sumer service selection via additional provider reputation criteria.

Maximilien and Singh provide a reputation-based approach to service selection,

which combines service consumer preferences with the trustworthiness of service

providers. In the approach, software agents act on behalf of service consumers

and share QoS information with one another, based on their interactions with

the services they are attached to. Initially, each service provider is assigned the

same reputation. Over time, unreliable service providers develop a poor reputation

which makes them less likely to be selected for use by the agents. The information

shared by these agents provides the basis for service consumers to establish trust

with service providers. As part of the work, the authors developed a substantial

QoS ontology for the expression of service quality attributes, QoS metrics and

relationships between interdependent qualities. The ontology provides a struc-

tured hierarchy of quality attributes from the economic, performance, availability,

reliability, stability, security, robustness, and integrity domains. The framework

also includes a semantic matchmaking algorithm that selects services based on

consumer and provider policies.

Maximilien and Singh evaluate their approach with a series of service simu-

lations. The service quality levels provided by service providers are artificially

42

Chapter 3: Service Quality Assurance Service Reputation Systems

increased or decreased, so as to simulate changes in service performance. The

authors demonstrate the impact of these changes on the reputation of the service

providers, and on the service selection decisions performed by consumer agents.

The approach developed by Maximilien and Singh improves upon standard

functional service selection, through the inclusion of semantic and reputation

matchmaking criteria. However, the approach lacks support for the creation of

SLAs between service consumers and providers. It also provides no mechanism

for service consumers and providers to negotiate agreements for services with spe-

cific QoS guarantees. The approach also does not include support for resolving

problematic services, and does not specify how service quality data is collected.

Wishart et al. put forward a reputation-enhanced service discovery protocol,

that collates customer testimonial ratings to create a global QoS score for each

available service. The protocol enables service consumers to consider QoS issues

when making service selection decisions, with fewer assumptions about the trust-

worthiness and reliability of service providers. Instead, the trustworthiness of a

provider is based on the actual performance of the services it offers.

To demonstrate the operation of the discovery protocol, Wishart et al. provide

a fictional scenario involving an online data storage facility. The facility advertises

its services on a local service discovery network, which operates using the authors’

discovery protocol. A client with online storage requirements uses the protocol

resolver to retrieve a testimonial of the online data storage facility. The client

decides to use the facility, but in practice the facility does not meet the client’s

expectations. The client submits feedback on the unsatisfactory experience to the

protocol resolver, which worsens the testimonial rating of the storage facility.

The protocol proposed by Wishart et al. is centralised, which offers the ad-

vantage of offloading all management and computation of reputation data to the

service repository. The protocol is also general and flexible enough to be integrated

with existing discovery initiatives, rather than being limited to a specific discovery

mechanism. However, the reputation data the system collates is very primitive;

customer testimonial ratings are simply a value between 0.0 and 1.0, which re-

flects the overall performance of a service. The authors do not consider rating

individual QoS attributes, such as response time and availability, which would al-

low consumers to make better informed decisions about potential service provider

suitability. While the discovery protocol provides additional selection criteria, it

leaves the actual selection decision to the consumer performing the search.

43

Chapter 3: Service Quality Assurance Service Reputation Systems

Ali et al. provide an automated reputation-enhanced service discovery and se-

lection framework for semantic grid services. The framework features a dynamic

composition algorithm which adapts to available services, and a reputation model

that forms the basis for interaction decisions. The authors illustrate the approach

with an example scenario from the automotive industry, where a consumer agent

seeks out an automobile sales service with certain reputation metrics. The repu-

tation metrics are expressed in terms of quality attributes, such as service price,

reliability and availability.

The approach from Ali et al. enables service consumers to differentiate be-

tween multiple providers of the same service, through the inclusion of reputation

information during the discovery and selection processes. However, the framework

is limited to the discovery and selection of services based on provider reputation

alone, and does not feature selection support based on the QoS attributes of ser-

vices. The framework does not include support for service negotiation and SLA

creation, and makes the assumption that service consumers and providers interact

directly with one another to achieve these processes.

Jurca et al. discuss a QoS monitoring mechanism based on service ratings sup-

plied by service consumers. The mechanism collates consumer ratings to develop

the global reputation of service providers. Service consumers are then provided

with a method for querying the reputation of specific providers. By supplying

consumers with advance notice of a provider’s reputation, the mechanism provides

an incentive for service providers to supply services in accordance with the SLAs

they have formed with consumers. The approach also features a consumer reward

payment mechanism, to provide consumers with the incentive to report honest

accounts of the services they use. The authors assert that existing SLA monitor-

ing approaches are unsuitable for monitoring QoS. They argue that monitoring

approaches based on intercepting service requests do not scale, that provider-side

monitoring approaches are untrustworthy, and that third-party probing increases

the load on service providers through the generation of additional service requests.

To illustrate their approach, Jurca et al. have implemented a prototype of the

QoS monitoring mechanism on top of the Apache Axis (Apache Software Foun-

dation, 2009) web service middleware. The prototype provides directory services

for service advertisements, reputation mechanisms for collecting client feedback

and imposing penalties on providers that do not respect the terms of SLAs, and a

banking module for handling payments between clients and service providers. The

44

Chapter 3: Service Quality Assurance Service Reputation Systems

approach is illustrated using service availability and correctness quality attributes.

Jurca et al. propose that their incentive-based reputation system negates the

need for an SLA monitoring system. However, their approach has in practice

shifted the responsibility for SLA monitoring to the service consumer, making

it unsuitable for consumers with limited resources. The approach also lacks a

common QoS ontology for consumers to describe their experiences, which makes

it difficult to automate the selection of service providers.

Xu et al. propose another reputation-enhanced discovery approach, which also

recognises the need to include QoS attributes in the discovery and selection of

services. Their proposal integrates service ratings with a QoS attribute selection

process, as a means of validating the QoS promises made by service providers. The

approach consists of a extended UDDI discovery model that incorporates QoS in-

formation, a reputation management system which collates and reports provider

reputation, and a discovery agent responsible for co-ordinating the discovery pro-

cess. Using a matching algorithm based on the algorithm proposed in (Maximilien

& Singh, 2004b), services that match consumer requirements are ranked by both

the provided QoS and reputation scores. The results of the matching process are

returned to the consumer during the service discovery request.

In order to demonstrate the effectiveness of their algorithm, Xu et al. present

two experiments. The experiments feature service consumers with the same func-

tional service requirements, but with differing QoS and reputation requirements.

The quality attributes used for the experiments are service price, response time,

availability, and throughput. The first experiment demonstrates that a consumer

is more likely to select a service that best meets its requirements, if the consumer

specifies its QoS and reputation requirements in the discovery request. The sec-

ond experiment demonstrates that services with a consistent QoS performance are

more likely to be selected over services with an unstable QoS performance.

The initiative proposed by Xu et al. offers a significant improvement upon ser-

vice discovery approaches that consider only functional and non-functional service

attributes. However, the authors do not address the negotiation of QoS parameters

or the creation of SLAs, which are processes supported by more advanced broker-

age initiatives. Their approach also requires the service consumer to undertake

QoS monitoring, which is impractical for consumers with limited resources.

45

Chapter 3: Service Quality Assurance Service Negotiation

3.8 Service Negotiation

In general, negotiation refers to communication processes that further coordination

and cooperation (Kraus, 2001). In terms of the software as a service (SaaS) model,

negotiation involves the interaction between a service consumer and one or more

service providers, that are identified either through discovery, or who are already

known to the service consumer (Turner et al., 2003).

Functional characteristics that describe what a service does can be assumed to

be non-negotiable (Elfatatry & Layzell, 2005). However, services typically have

a number of interrelated and competing non-functional quality attributes, which

describe issues such as how reliable a service is. It is important for the consumer

and provider of a service to mutually agree upon an SLA that specifies guarantees

for the values of these quality attributes (Benatallah et al., 2002). This issue has so

far not been well-addressed in existing research, particularly for the negotiation of

service compositions, where QoS agreements must be reached between the service

consumer and multiple service providers (Yan et al., 2007).

SOA does not specify service negotiation as a core principle, but research into

extending the basic architecture with the negotiation of QoS and other terms of

service usage is an active area of research (Kretzschmar, 2006). Service consumers

and providers may directly negotiate terms of service with one another, or the

SOA publish-/find-bind-execute interaction pattern may be extended with service

brokers or agents that negotiate on behalf of service consumers and providers.

Current QoS negotiation research initiatives focus on the automated negoti-

ation of QoS parameters for the formation of SLAs between service consumers

and providers. The late-binding involved with software composed from services

requires that non-functional software attributes can be automatically negotiated

and resolved (Bennett et al., 2001). When negotiation items are numerical and

their quantity fixed, a high degree of automation can be achieved (Jennings et al.,

2000). To support complex QoS negotiation, service consumers and providers must

share a common quality ontology (Elfatatry & Layzell, 2005). Current negotiation

approaches assume such an ontology is already shared between the negotiation

participants. Service consumers and providers also require a common negotiation

model, which provides rules for the exchange of service proposals (Su et al., 2001).

The most notable QoS negotiation research initiatives are summarised in Ta-

ble 3.4. The primary evaluation criteria identified are the support for the au-

tomated negotiation of QoS characteristics and SLA creation. Unlike initiatives

46

Chapter 3: Service Quality Assurance Service Negotiation

Service Negotiation Approach QoS
Negotiation

Quality
Ontology

SLA
Creation

SLA
Enforcement

Automated
Solution

Gimpel et al. (2003) X × X × X
Comuzzi and Pernici (2005) X × X ∼ X
Elfatatry and Layzell (2005) ∼ × ∼ × ∼
Menascé and Dubey (2007) X × X × X
Yan et al. (2007) X × X × X
Pouyllau and Haar (2007) X × X × ∼

Key: (X) full support, (∼) partial consideration, (×) no support

Table 3.4: Service negotiation research initiatives focus on the automated nego-
tiation of QoS parameters and the creation of SLAs.

from the service description, discovery and selection, and reputation research do-

mains, the identified negotiation initiatives lack a quality ontology to support the

negotiation process, and lack effective means of enforcing negotiated SLAs.

Gimpel et al. discuss a policy-driven automated negotiation decision-making

framework, that provides a negotiation infrastructure for negotiating service con-

tracts on the behalf of service consumers and providers. The authors developed

a hybrid negotiation model, that integrates utility-based and rule-based decision

making approaches. Service consumers and providers express their negotiation

strategies in the form of negotiation policies. These negotiation policies are repre-

sented by a combination of utility functions and rules. The negotiation framework

provides a negotiation protocol consisting of a set of negotiation message prim-

itives, and a set of rules which define legal actions. Either party may begin a

negotiation with a request for negotiation message. Follow-up messages are ac-

cept, reject, offer, withdraw, or terminate. The framework provides negotiation

agents with decision-making components, which are responsible for the negotia-

tion of service contracts. Service consumers and providers provide their agents

with negotiation policies, which provide instructions for realising their negotiation

goals. The negotiation agents exchange negotiation messages using the negotiation

protocol defined by the framework.

To illustrate their approach, Gimpel et al. provide an example scenario involv-

ing an online stock quote service, which is able to negotiate certain service quality

attributes for particular consumers. One such consumer is an online newspaper

service, which must increase its capacity to supply stock quotes due to changes in

the behaviour of its subscribers. The newspaper service looks to the stock quote

47

Chapter 3: Service Quality Assurance Service Negotiation

service to satisfy its increased capacity requirements, and negotiates a contract

that includes guarantees for service quality attributes such as throughput, response

time, availability, and price.

The framework developed by Gimpel et al. supports partially-automated ser-

vice contract negotiation. However, the framework does not provide a service

quality ontology for the negotiation participants. This requires the negotiation

participants to agree upon the semantics of quality attributes before commencing

negotiation. The framework also lacks support for the specification of relationships

between interdependent qualities, e.g. how an increase in service reliability may

affect the cost of a service. The framework provides resource management support

for service providers, to prevent them from agreeing to contracts they cannot fulfil.

However, the authors do not consider the monitoring or enforcement of negotiated

service agreements on behalf of the service consumer.

Comuzzi and Pernici extend the publish-/find-bind-execute SOA interaction

pattern with a centralised QoS negotiation broker. Service consumers and providers

supply the negotiation broker with their preferences for QoS attributes and nego-

tiation strategies. The broker is capable of fully-automated negotiation using the

consumer and provider preferences, but also offers an approach where negotiation

is only automated on behalf of the provider, leaving the consumer to manually

interact with the broker. This second approach is provided for consumers unable

to specify their preferences, or untrusting of the service provisioning platform.

Comuzzi and Pernici provide the motivation for their negotiation approach

with an example stock quote service, which provides real-time stock quotes from

stock exchanges across the world. The stock quote service has three key quality

attributes, which are service price, availability and data quality. These quality

attributes are themselves expressed as a combination of other quality attributes,

such as completeness, accuracy and timeliness. The negotiation broker developed

by the authors is used to negotiate these attributes, on behalf of the stock quote

service provider and the service consumer during invocation of the service.

The approach Comuzzi and Pernici discuss alleviates consumer trust issues,

by providing fully-automated negotiation with support for manual consumer in-

tervention. The result of the negotiation is a service contract that is suitable for

being monitored and managed. However, the approach does not actually tackle

the issue of SLA monitoring and enforcement. The centralised approach mitigates

the need for a negotiation messaging system, and greatly reduces the amount of

48

Chapter 3: Service Quality Assurance Service Negotiation

network traffic, and hence time, required to negotiate a contract. However, such

a completely centralised approach is unlikely to scale with increasing numbers of

service consumers and providers.

Elfatatry and Layzell provide a rule-based negotiation description language to

facilitate the automation of service negotiation in a service-oriented context. The

language consists of rules which drive the negotiation process, and artefacts which

result from the negotiation process. The negotiation description language pro-

vides support for a service provider to create a service profile that describes the

functional and non-functional characteristics for each service it offers. The service

consumer also creates a service profile for each service required, which contains

selection schemes for selecting combinations of non-functional service characteris-

tics. The service profile also declares the negotiation protocols supported by its

owner. The negotiation description language provides a strategy profile that con-

tains a collection of tactics for the creation and evaluation of service proposals,

and a set of rules for selecting between different tactics. The negotiation results

are formalised using a contract template, which consists of a series of service and

contract pre- and post-conditions. The language also features a meta-protocol

profile, which supports the negotiation of the negotiation protocol itself.

Elfatatry and Layzell illustrate the negotiation description language, with an

example scenario featuring a voice-enabled word-processor application composed

from multiple software services. The word-processor application comprises a text

editor service, a spell-check service and a voice-to-text service, each supplied by a

different provider. In this example, the provider of the word-processor application

is the consumer of these three different services. The authors demonstrate the role

of the negotiation description language in the negotiation and contracting of the

services which form the word-processor application.

The negotiation description language provided by Elfatatry and Layzell fa-

cilitates the automation of service negotiation between a service consumer and

provider. However, the language is merely intended to support the process of ne-

gotiation, and does not provide this functionality itself. The authors also do not

consider other areas such as service discovery and QoS monitoring.

Menascé and Dubey discuss a QoS broker architecture for service selection

based on QoS attributes. The approach applies utility functions to assign values

that indicate the usefulness of a service to the service consumer. This usefulness

is the combined utility of multiple quality attributes, such as service availability,

49

Chapter 3: Service Quality Assurance Service Negotiation

response time and throughput. Service providers register with the QoS broker,

and provide the broker with the resource demands and cost of the services they

offer. The resource information is used by the QoS broker to ensure providers

don’t commit to SLAs they cannot fulfil due to resource depletion. Consumers

register with the QoS broker, and provide the broker with utility functions for the

QoS and cost of the services they require. The QoS broker uses this information

to select services which have the highest utility to consumers.

To demonstrate the approach, Menascé and Dubey discuss a working prototype

of the service broker, which is evaluated using an online travel agent scenario. The

online travel agent makes use of airline reservation service providers, in order to

provide a travel booking service to consumers. The authors demonstrate how the

service broker maximises a utility function, to find the airline reservation service

provider with the most utility to the travel agent for a given cost.

The centralised approach proposed by Menascé and Dubey performs the service

selection process on behalf of service consumers, making it suitable for consumers

with limited resources. However, the service selection decision is based on static

QoS attributes, and does not enable service consumers and providers to negotiate

individual SLAs for bespoke QoS guarantees. The approach also does not support

the enforcement of the agreements created by the QoS broker.

Yan et al. assert that service-level QoS depends on the structure of the service

composition, as well as the characteristics of the QoS attributes. The authors

provide an agent-based approach for negotiating end-to-end quality constraints

for service compositions. The approach makes use of a utility function-based

decision-making model. The approach also provides an SLA management com-

ponent, which maintains up-to-date service profiles for all services in a service

composition. These profiles may change over the lifetime of the composition, due

to the negotiation and renegotiation of QoS attributes.

Yan et al. demonstrate their approach with a prototype implementation and

case study. The case study is situated in the tourism industry, and involves a

tourist user operating a mobile device to request the route information from the

user’s current location to a particular tourist attraction. The route information is

retrieved from a composite service, composed of a device location service, route

calculation service and route description service. The user may specify certain QoS

requirements of the route information service, such as response time and cost. The

authors demonstrate how their negotiation agents support the user in negotiating

50

Chapter 3: Service Quality Assurance Service Monitoring

these QoS requirements with multiple providers of the route information service.

The approach proposed by Yan et al. provides a comprehensive framework

for SLA negotiation and renegotiation. However, the approach does not support

measures for the enforcement of negotiated SLAs. The authors briefly mention a

component for monitoring and visualising service composition workflow, but do not

propose how the component could measure the runtime QoS of the composition.

Pouyllau and Haar discuss the problem of securing QoS guarantees for a work-

flow process composed of multiple services. Each of the services in the process is

responsible for providing some discrete functionality to the workflow, and typically

several interdependencies between the services will exist. The authors propose a

protocol for the negotiation of end-to-end QoS contracts between a chain of service

providers across multiple domains, that takes into consideration QoS issues caused

by service interdependencies.

Pouyllau and Haar provide a prototype negotiation platform, based on a web

service implementation of their negotiation protocol. The authors use this platform

to evaluate the performance of the protocol in computing multiple contract chains,

and determining the optimal chain of service providers for the required QoS. When

executed in a realistic context, the authors show the algorithm can successfully

complete within three seconds.

Pouyllau and Haar tackle an important and difficult problem, but their pro-

posal does not include support for monitoring the workflow process, enforcing

SLA compliance, and recovering from service failures. The authors’ approach is

designed to address QoS issues between service providers, and as such does not

consider the needs of the service consumer.

3.9 Service Monitoring

Service monitoring is an increasingly important research issue, as ever more num-

bers of companies conduct business over the Internet (Molina-Jimenez et al.,

2004). Service monitors can be used to determine in practice, if services meet

the terms and conditions agreed in the SLAs between service consumers and

providers (Benjamim et al., 2004). An SLA contains specific guarantees for the

QoS a consumer can expect a provider to supply. SLAs must be monitored and

audited for service provider compliance, in order to provide real QoS guarantees

to the consumer (Benjamim et al., 2004). The SLA may also contain conditions

51

Chapter 3: Service Quality Assurance Service Monitoring

of use imposed on the consumer by the service provider, and these may also be

monitored to ensure compliance.

Emergent system qualities can result from the service composition process,

and from changes in the runtime environment. These emergent qualities require a

dynamic runtime quality assurance approach, which service monitoring can facili-

tate. However, current service monitoring initiatives are largely manual and static

approaches. A system designer may annotate business processes with comments

describing the monitoring to be performed, as described in (Baresi et al., 2004b).

An aspect-oriented approach described in (Bianculli & Ghezzi, 2007), weaves moni-

toring aspects into a business process. These aspects intercept the business process

at different points in its execution, and check it for conformance. A web service

requirements monitoring approach described in (Mahbub & Spanoudakis, 2004),

focuses on the formalisation of monitoring rules at design-time. These aforemen-

tioned monitoring approaches are primarily static in nature, which makes them

unsuitable for assuring runtime and emergent system qualities. Consequently,

these static initiatives are limited in their ability to handle problematic services,

and do not support advanced recovery techniques such as service renegotiation.

Service consumers and providers may themselves take direct responsibility for

QoS measurements and SLA auditing. However, this monitoring approach is sus-

ceptible to abuse from either party making false accusations concerning service

provision or use. It is argued that the service consumer and provider should instead

utilise the services of a mutually-trusted third-party monitoring system (Benjamim

et al., 2004). One suggested approach is for the monitoring system to periodically

probe the service provider, in order to assess its current performance. However,

these probes generate additional service requests, which increase the load on the

service provider. The provider may also be able to distinguish the monitoring

system requests from those of the consumer, and provide a superior QoS to the

monitor. An alternative is for the monitoring system to implement a passive mon-

itoring mechanism. The passive approach intercepts and audits service requests

between the consumer and provider, without generating additional requests itself.

Some service monitoring initiatives are designed to support service providers in

avoiding SLA violations, rather than supporting the service consumer in detecting

and responding to problematic QoS. Examples of these include the control loop

approaches proposed in (Hoffman, 2005) and (Litoiu et al., 2008).

Other monitoring initiatives are consumer-focused, and are able to detect ser-

52

Chapter 3: Service Quality Assurance Service Monitoring

vice failures and SLA violations. However, few of the current consumer-focused

approaches include support for recovering from such failures. Additional evalua-

tion criteria identified between the monitoring initiatives include the support of

QoS metrics, integration with SLAs, and the degree of automation provided by

the monitoring approach. The notable service monitoring initiatives that provide

the service consumer with QoS support are summarised in Table 3.5.

Service Monitoring Approach QoS
Metrics

SLA
Integration

Failure
Detection

Failure
Recovery

Automated
Solution

Molina-Jimenez et al. (2004) X X X × ×
Ludwig et al. (2004) X X X × X
Lazovik et al. (2004) × × X X X
Baresi and Guinea (2005) × × X × ∼
Moser et al. (2008) X × X ∼ X
Herssens et al. (2008) × X X ∼ X

Key: (X) full support, (∼) partial consideration, (×) no support

Table 3.5: Service monitoring research initiatives focus on detecting failures in
service quality.

Molina-Jimenez et al. discuss an approach for monitoring an SLA on behalf of

the service consumer. The approach evaluates whether the service performance

provided by the service provider complies with the QoS guarantees described in

the SLA. The authors assert that it is only practical to offer guaranteed QoS to

consumers that share the same internet service provider (ISP) as the providers of

the services they use. Service consumers who connect to the Internet with a differ-

ent ISP can only be offered a best-effort QoS. The authors propose a third-party

monitoring service that is mutually-acceptable to both the service consumer and

provider. The third-party approach means that monitoring results can be trusted

equally by both parties. The monitoring service periodically probes the service

provider, measures the service performance, and compares the measured perfor-

mance with the SLA. The monitoring service then notifies the service consumer of

any SLA violations. The design of the monitoring approach is intended to support

e-commerce applications, grid computing and web services.

The monitoring approach from Molina-Jimenez et al. notifies the service con-

sumer of SLA violations, but does not provide any support for handling or resolv-

ing SLA violations and service failures. In addition, probing the provider increases

the provider’s load with additional service requests. The service provider may also

53

Chapter 3: Service Quality Assurance Service Monitoring

differentiate between the service consumer requests and the monitoring service

probes, and provide each with a different QoS. As Molina-Jimenez et al. have not

implemented or evaluated the monitoring approach they propose, it is difficult to

properly ascertain its suitability for purpose.

Ludwig et al. propose the Cremona architecture for the creation and moni-

toring of service contracts expressed using the WS-Agreement specification. WS-

Agreement itself provides a description format for service agreements, a basic

protocol for establishing agreements, and an interface specification for monitoring

agreements at runtime. Ludwig et al. argue that the traditional publish-/find-bind-

execute service interaction model is not sufficient when services with customised

quality guarantees are required. To solve this problem, the Cremona architecture

extends the traditional service interaction model by providing the service con-

sumer and provider with individual agreement management components, which

interact with the service registry. This approach means that service consumers

and providers negotiate directly, rather than via a third-party service. Once agree-

ments are established, the architecture provides monitors that map the state of

the service provider to the service guarantee status.

The role of the Cremona architecture in creating and managing agreements is

illustrated with an example of workload-sharing across distributed data centres. In

the example, agreements are used to describe guarantees for the average response

time of a set of web-based transactions, that together form a financial service

application. The agreements are used to shift transactional workload between the

distributed data centres that host the application, and Ludwig et al. describe how

the Cremona architecture supports the shifting process.

The Cremona architecture proposed by Ludwig et al. performs monitoring on

behalf of the service provider. Consequently, it offers the service consumer little

control over service quality. The approach also doesn’t support relationships be-

tween service agreements, making it unsuitable for the negotiation and monitoring

of service compositions. Lastly, the authors do not discuss how QoS measurements

are collected and audited against the QoS guarantees specified in agreements.

Lazovik et al. discuss choreography languages which support the execution of

business processes composed from services. The authors state that while choreog-

raphy languages can guarantee the static properties of business processes, such as

the consistency of service interfaces, message ordering and message invocations,

choreography languages are unable to check the runtime properties of a business

54

Chapter 3: Service Quality Assurance Service Monitoring

process. To add runtime property support, the authors propose an assertion-based

monitoring approach that associates assertions with business processes. The ap-

proach is based on a service request language, designed to create solutions for

business problems through the retrieval and aggregation of services. The authors

then extend the service request language with assertions for expressing definitions

and classifications of business rules. The language is combined with a frame-

work which automatically associates business rules with the processes involved in

a user request. The framework then prepares and monitors the execution of the

user request against the business process services. If an assertion is violated, the

framework attempts to find an alternate execution path for the business process.

Lazovik et al. provide an example to illustrate their monitoring approach. The

authors describe a travel planning business process, which integrates multiple ser-

vices in order to book a trip on behalf of a user. The business process begins with

the user requesting a trip to their desired destination, along with requirements for

details such as cost, hotel arrangements and modes of transport. Satisfying the

request requires the interaction of several autonomous service providers, including

a travel agency, hotel booking company and airline. Assertions are applied to the

travel planning process, to ensure consistency at each stage in the operation.

The monitoring approach proposed by Lazovik et al. is static in nature and not

able to address runtime quality issues. The provided assertion language operates

on the functional characteristics of the services involved in the process, and does

not support non-functional QoS attributes. The framework is designed to find an

alternate execution path for the business process, so it can complete successfully.

If a service in the process fails, the framework attempts to secure the same service

from an alternate provider with less strict assertions. If the framework cannot

devise an alternate execution path, or a particular service becomes completely

unavailable, the business process fails.

Baresi and Guinea provide a method of associating assertion-based monitoring

rules with business processes described using the Web Services Business Process

Execution Language (WS-BPEL) (Jordan & Evdemon, 2007). The approach is

designed to monitor and reorganise service compositions in response to service

faults. The types of service fault the approach addresses are given in (Baresi et

al., 2004b). The first fault type is incorrect matching during the service selection

process, which results in a service that is functionally, or semantically, incompatible

with the service consumer’s requirements. The second fault type is when a service

55

Chapter 3: Service Quality Assurance Service Monitoring

simply fails to respond to the consumer’s service request. The third fault type is

when the service request returns with an error. The final fault type the authors

discuss, is when a service’s behaviour does not match the contract imposed on it.

To illustrate their approach, Baresi and Guinea reuse an example pizza delivery

business process previously developed in (Baresi et al., 2004b). The pizza delivery

process integrates services for customer authentication, customer pizza preferences,

pizza selection, credit card validation, looking up delivery addresses, retrieving

GPS coordinates, and street maps for the delivery locations. In (Baresi & Guinea,

2005), the authors demonstrate how they associate a post-condition with the map

service aspect of the pizza delivery business process.

The approach proposed by Baresi and Guinea includes support for the dynamic

selection and execution of monitoring rules at runtime. The authors also provide

a user-oriented language for the development of monitoring rules from data acqui-

sition and analysis. The approach makes us of service monitors, which the authors

discuss separately in (Baresi et al., 2004a). These monitors observe service compo-

sitions for timeouts, runtime errors and violations of functional contracts. When

monitors detect a problem, they halt execution of the composition and signal that

a problem has been detected. However, the approach does not implement any fail-

ure recovery mechanism, such as service negotiation or service substitution. The

monitoring approach is limited to simple faults, such as service timeouts and the

monitoring of functional contracts. It is not apparent that the approach is general

enough to monitor arbitrary non-functional QoS attributes.

Moser et al. discuss a system for the monitoring and adaptation of WS-BPEL

business processes in a non-intrusive manner. The approach monitors the QoS

attributes of the services involved in a business process. Pluggable service re-

placement strategies guide the selection of syntactically or semantically equivalent

services at runtime. The authors use an aspect-oriented technique to intercept

service messages, in order to monitor service behaviour.

Moser et al. evaluate their approach with a case study based on a purchase order

web service implemented as a BPEL process. The purchase order web service

performs all activities required to place a purchase order, and is composed of

five different smaller services. The first service is used to check the stock status

of the item(s) required for the purchase order. The second service is used to

calculate the total price of the purchase order, including shipping and taxes. The

third service validates the consumer’s credit card, which if successful is charged

56

Chapter 3: Service Quality Assurance Service Monitoring

by a fourth service. The fifth service is responsible for initiating the delivery

of the purchase order to the consumer. The authors evaluate their approach by

substituting alternative credit card services used during the process, and measuring

the impact these service substitutions have on system performance.

The initiative proposed by Moser et al. supports the efficient replacement of

problematic services at runtime. However, the approach to maintaining system

quality is simplistic, and doesn’t offer the flexibility of advanced recovery strategies

and techniques such as service negotiation. The authors also do not explain how

QoS attributes are selected for monitoring. As the approach does not integrate

with a service contract or an SLA, it would be difficult to automatically derive the

QoS attributes required for monitoring.

Herssens et al. discuss the problem of revising an SLA in response to changes

in a service’s context. The authors define service context to be a combination of

several different non-functional properties. To address the problem, the authors

propose a method to autonomously monitor a service’s context at runtime, and

adapt the SLA between the service consumer and provider as required. The system

stores SLAs, and periodically receives context updates from service consumers and

providers. The system compares the consumer and provider contexts with the QoS

guarantees in the SLA. The system automatically adapts the SLA in response to

any faults detected.

Herssens et al. demonstrate their approach using a case study based in the Eu-

ropean Space Agency (ESA) program on Earth observation. The ESA provides a

large set of web services to access data captured by the medium-resolution imaging

spectrometer (MERIS) instrument installed on the Envisat satellite. The data con-

cerns observations of ocean colour and biology, earth vegetation and atmosphere.

The ESA services are subject to non-functional quality attributes, including ser-

vice latency, reliability and availability. The authors devise example SLAs for these

services, which include objectives such as the reliability must be superior to 90%.

The authors then discuss how their SLA manager is able to manage and adapt

SLAs, by acting as a third-party mediator between the service user and provider.

Rather than supporting QoS measurement and fault detection, the approach

proposed by Herssens et al. adapts SLAs at runtime in response to service faults.

Consequently, the approach does not provide a true fault recovery mechanism,

and is therefore not capable of maintaining the quality levels in a service-oriented

system. The approach also makes the assumption that the context information

57

Chapter 3: Service Quality Assurance Overview and Integration Discussion

provided to the system by consumers and providers is accurate and truthful, which

may not be the case.

3.10 Overview and Integration Discussion

This chapter has provided a discussion of several different domains for quality

assurance in service-oriented systems. Approaches from each domain offer some

quality assurance benefit, but the support is limited due to the lack of integration

with approaches from other domains. The most notable research initiatives from

each service quality assurance domain are summarised in Table 3.6.

Approaches from the service description domain improve the characterisation

of services with non-functional and semantic information. This additional infor-

mation supports the processes of service advertisement, discovery, selection, com-

position, substitution, negotiation, and monitoring. However, service description

initiatives are themselves not able to ensure quality in service-oriented systems,

and instead serve as an enabling factor in other quality assurance approaches.

Approaches from the service discovery domain can be enhanced with non-

functional and semantic service information, in order to facilitate QoS advertise-

ment and service selection. However, these enhanced discovery initiatives require

the service consumer to trust that service providers will in practice supply the

QoS levels they advertise. It is also possible that the consumer will be unable to

discover services which meet its non-functional QoS requirements.

Approaches from the reputation system domain can be used to facilitate trust

through consumer collaboration. Reputation systems collate and supply additional

provider reputation criteria for the service selection process. These systems there-

fore give service providers an incentive to provide services in accordance with the

QoS they advertise. However, the service consumer may still be left unable to find

a matching service for its non-functional QoS requirements.

Approaches from the service negotiation domain enable the consumer to secure

SLAs for QoS guarantees that are closer to meeting the consumer’s non-functional

QoS requirements. Service providers can also benefit from negotiation, by max-

imising their resources between different consumers. However, negotiation initia-

tives do not give providers an incentive to provide services in accordance with

negotiated SLAs, as current negotiation initiatives lack the ability to effectively

monitor SLAs for compliance.

58

Chapter 3: Service Quality Assurance Overview and Integration Discussion

Quality Assurance Domain S
er

vi
ce

D
es

cr
ip

ti
on

N
on

-F
u

n
ct

io
n

al
P

ro
p

er
ti

es

Q
oS

O
n

to
lo

gy

S
er

vi
ce

D
is

co
ve

ry

S
er

vi
ce

S
el

ec
ti

on

R
ep

u
ta

ti
on

C
ri

te
ri

a

S
er

vi
ce

N
eg

ot
ia

ti
on

S
L

A
C

re
at

io
n

S
L

A
E

n
fo

rc
em

en
t

S
er

vi
ce

M
on

it
or

in
g

F
ai

lu
re

R
ec

ov
er

y

Service Description

Martin et al., (2004) X X X ∼ ∼ × × × × × ×
Dobson et al. (2005) X X X ∼ ∼ × × ∼ × × ×
Toma et al. (2006) X X X ∼ ∼ × × ∼ × × ×

Service Discovery and Selection

Maximilien and Singh (2004a) X X X X X × × × × × ×
Oldham et al. (2006) X X X X X × × X × × ×
Xu et al. (2007) X X X X X × × × × × ×

Service Reputation System

Wishart et al. (2005) X × × X X X × × × × ×
Ali et al. (2006) X X × X X X × × × × ×
Jurca et al. (2007) X X X × X X × X × × ×

Service Negotiation

Comuzzi and Pernici (2005) X X × × X × X X ∼ ∼ ×
Menascé and Dubey (2007) X X × X X × X X × × ×
Yan et al. (2007) X X × X X × X X × ∼ ×

Service Monitoring

Molina-Jimenez et al. (2004) × X × × × × × × ∼ X ×
Ludwig et al. (2004) X X × ∼ X × ∼ X ∼ X ×
Moser et al. (2008) ∼ X × × X × × × × X ∼

Integrated Assurance Solution

Robinson and Kotonya (2008a, 2008b) X X X X X X X X X X X

Key: (X) full support, (∼) partial consideration, (×) no support

Table 3.6: Summary of quality assurance domains.

Approaches from the service monitoring domain can be used to determine

if services adhere to SLAs. However, existing monitoring initiatives have poor

support for handling SLA violations and service failures, and lack support for

advanced recovery techniques such as service negotiation and renegotiation. In

addition, current service monitoring initiatives generally focus on reporting past

events, and lack support for estimating future QoS based on previous observations.

59

Chapter 3: Service Quality Assurance Summary

A software framework provides a set of components which address a prob-

lem within a specific domain, and a model which specifies how these components

interact with each other. This thesis proposes an integrated service quality assur-

ance framework, that combines approaches from different service quality assurance

domains, to provide an improved method of ensuring quality in service-oriented

systems. The framework is intended to provide the consumer with increased con-

trol over service quality, provide support for the expression of quality characteris-

tics, provide a runtime solution for detecting and recovering from SLA violations

and service failures, provide a solution that supports resource-restricted systems,

and provide customisation support for the integration of different techniques from

within each service quality assurance domain.

3.11 Summary

This chapter began with an introduction to software quality, and the problem of

ensuring quality in software. The chapter then discussed software quality in the

context of service characteristics, and introduced the problem of ensuring quality

in service-oriented systems.

The chapter continued with a detailed survey of current quality assurance ap-

proaches for service-oriented systems. These approaches have been grouped into

the following service quality assurance domains: service description, service discov-

ery and selection, reputation systems, service negotiation, and service monitoring.

The significant research initiatives from each service quality assurance domain

have been examined, along with the benefits they bring to the quality assurance

process. The limitations with initiatives from each quality assurance domain have

also been discussed, and a new solution has been proposed in the form of an inte-

grated quality assurance framework, that combines approaches from each quality

assurance domain. The following chapter describes the design and implementation

of an integrated quality assurance framework for service-oriented systems.

60

Chapter 4

Quality Assurance Framework

This chapter discusses the design and implementation of an integrated quality as-

surance framework for ensuring quality in service-oriented systems. The discussion

begins with an overview of the framework, then examines each of the major quality

assurance systems provided by the framework. The brokerage system supports the

negotiation of SLAs on behalf of service consumers and providers. The monitoring

system checks services at runtime for SLA compliance. The reputation system

provides consumers with a method of sharing service experience with one another,

and adds additional criteria to the service negotiation process.

The chapter then discusses the service ontology provided by the framework.

The ontology provides a common set of terms for describing services, service con-

straints, and service strategies. The discussion then examines the specification of

consumer and provider service strategies, and the approach used to calculate the

acceptability of services. The chapter concludes with a discussion of the customi-

sation support provided by the quality assurance framework.

4.1 Framework Overview

The quality assurance framework provides three systems for brokering, monitoring

and rating services. An overview of these systems is shown in Figure 4.1.

The framework brokerage system creates service brokers for service consumers

and providers on demand. The service brokers perform QoS negotiation, SLA

creation and evaluation, and resource management activities on behalf of their

clients. The framework reputation system collates the global reputation of service

providers, from service ratings provided by service consumers. The reputation

61

Chapter 4: Quality Assurance Framework Framework Overview

Monitoring System

QoS Measurement

SLA Auditing

QoS Forecasting

Brokerage System

QoS Negotiation

SLA Creation / Evaluation

Resource Management

Reputation System

Service Rating

returns service responses

Jini
SOA

queries
reputation

Web
Services

SOA

invokes services

Connector

Java
Interfaces

Connector

WS
Interfaces

sends service
ratings

returns
negotiated SLAs

invokes
services

returns SLA
audit results

sends negotiation models and strategies

IService
Requester

IBrokerage
Service

IReputation
Service

returns
negotiated SLAs

IService
Provider

sends SLAs

IService
Monitor

IMonitoring
Service

IMonitor
Listener

sends negotiation models and strategies

returns service
responses

IService

Service
Consumer

Service
Provider

Figure 4.1: The quality assurance framework provides three primary systems for
brokering, monitoring and rating services. The framework currently
integrates with the Jini SOA.

system is queried by service brokers during service negotiation, and provides ad-

ditional criteria to the service agreement decision process. Negotiated SLAs are

supplied to the framework monitoring system, which measures runtime service

performance, audits SLAs for compliance, and forecasts future QoS estimations.

The design of the framework is intended to be independent of any specific ser-

vice technology, such as the Web Services Architecture (W3C Working Group,

2004), Jini (Sun Microsystems, Inc., 2009b), the Common Object Request Broker

Architecture (CORBA) (Object Management Group, Inc., 2004), and the OSGi

Service Platform (OSGi Alliance, 2009). However, the current framework imple-

mentation integrates with systems which utilise the Jini service platform.

The framework functionality is exposed as Java interfaces, which are published

to the Jini service registry for service consumers and providers to discover and use.

The Jini service platform was primarily chosen for its dynamic service discovery

system, and the benefits provided by the Java (Sun Microsystems, Inc., 2009a)

development platform on which it is based. The benefits of the Java platform

62

Chapter 4: Quality Assurance Framework Brokerage System

include the ubiquity of the Java virtual machine across a range of platforms, the

network-centric nature of the platform, the sophisticated security model the plat-

form provides, and Java language features, such as strong typing for guaranteeing

the runtime behaviour of software, and exception mechanisms for error handling.

4.2 Brokerage System

The quality assurance framework provides a brokerage architecture for the auto-

mated negotiation of services and service agreements. The architecture features

one or more brokerage systems, which create service brokers for consumers and

providers on demand. These brokerage systems are registered with the service

registry, for consumers and providers to discover. An overview of the service bro-

kerage architecture is shown in Figure 4.2.

Brokerage System Brokerage System

Broker

Engine

Broker

Engine

Broker

Engine

sends
negotiation
models and
strategies

sends
negotiation
models and
strategies

sends
negotiation
models and
strategies

discovers brokers

negotiates

negotiates
IBrokerage

Service

Service
Consumer

Service
Provider

Service
Provider

IBrokerage
Service

Figure 4.2: The framework brokerage architecture. Negotiation can be contained
within a single brokerage system, or span two or more distributed
brokerage systems (as shown).

The brokerage system is designed to support the integration of a variety of

different negotiation models and decision support algorithms. The service con-

sumer or provider supplies the brokerage system with templates that describe the

negotiation models to use. These templates also contain the details of decision

algorithms and service strategies, that are applied by the brokers to create and

evaluate service proposals during negotiation.

For security, a private key is shared between a broker and its consumer or

63

Chapter 4: Quality Assurance Framework Brokerage System

provider client. Tokens generated using this key are required for certain restricted

operations, to verify the identity of the client invoking the operation. Such oper-

ations include requesting the renegotiation or unleasing of a service. In addition,

all communication is performed using the Secure Sockets Layer (SSL) network

encryption protocol, to prevent eavesdropping, message tampering and forgery.

4.2.1 Broker Engine

The brokerage system features an engine builder component, which uses the con-

sumer or provider templates to assemble a bespoke service broker engine for pro-

cessing negotiation messages and service proposals. The broker engine can also

perform resource management on behalf of a service provider, if required. The

broker engine is shown in Figure 4.3.

Broker Engine

Proposal
EngineDecision

Algorithms

StrategyNegotiation
Model

Negotiation
Engine

incoming messages outgoing messages

incoming proposals
 outgoing proposals

 creates and
evaluates
proposals

Figure 4.3: The broker engine is assembled by the brokerage system, with one
negotiation engine per negotiation protocol. The proposal engine
creates and evaluates service proposals.

The broker engine contains a separate negotiation engine for each negotiation

protocol it supports. The negotiation engine concurrently negotiates with multiple

parties, and maintains a separate negotiation session for each negotiation between

itself and another party.

The negotiation engine maintains the integrity of an active negotiation session,

by performing assertions on the session’s state when processing incoming negotia-

tion messages. If the negotiation engine receives an illegal message for the current

state of a session, it signals an error to the sender of the message. For example, if

the current negotiation session state is proposal sent, the legal incoming message

types may be accept proposal, reject proposal, propose proposal and terminate. If

the incoming message is legal for the session’s current state, the negotiation engine

forwards any proposal the message contains to the proposal engine.

64

Chapter 4: Quality Assurance Framework Brokerage System

The proposal engine contains two components for the evaluation and creation

of service proposals, as shown in Figure 4.4. The proposal evaluator component

examines each incoming proposal, and provides the negotiation engine with a ne-

gotiation instruction describing the next action to take. The proposal evaluator

maintains a record of which qualities have been negotiated so far in the current

session. If an incoming proposal is acceptable but there are still qualities remain-

ing to be negotiated, the proposal evaluator instructs the negotiation engine to

propose proposal. In this case, the negotiation engine requests a new proposal

from the proposal creator component, which adjusts the next quality to negotiate.

Once all qualities have been negotiated, the proposal evaluator issues either an

accept proposal or a reject proposal instruction.

Proposal Engine

Resource
Manager

Proposal
Creator

Decision
Algorithms

Strategy

incoming
proposal

negotiation
instruction

queries
reputation
if availableProposal

Cache

request new
proposal

Proposal
Evaluator

next
proposal

Service Discovery Module

Reputation System

Rating

IReputation
Service

Figure 4.4: The proposal engine creates and evaluates service proposals.

The proposal engine is able to broker service proposals with multiple providers

of the same service type. It is also able to broker service proposals for multiple

service types, which together form a service composition. In these cases, the

proposal engine waits until negotiation is either completed or terminated with

each provider, before making the final decision to accept or reject a proposal.

The proposal engine queries the framework reputation system, if available,

for the reputation of the parties from which it receives service proposals. Provider

reputation is used by consumer proposal engines, to limit negotiation to the brokers

of providers that have a certain level of reputation, as specified in the consumer

strategy. During negotiation, the consumer proposal engine also combines the

reputation of a provider with the service proposal from the provider’s broker, in

order to determine a proposal’s overall acceptability to the consumer. Provider

proposal engines use the reputation system to avoid the brokers of consumers who

65

Chapter 4: Quality Assurance Framework Brokerage System

have previously provided them with poor or unfair ratings.

The automated negotiation messaging process relies on universally-unique iden-

tifiers (UUIDs) for the purposes of identifying the participants in the negotiation.

UUIDs are also used to identify individual negotiation messages and service pro-

posals, negotiation sessions, and previous negotiation messages which are being

responded to. Each message contains a negotiation primitive, such as propose pro-

posal, and a timestamp used for ordering the messages in a negotiation session. If

the message contains a service proposal, timestamps are provided which indicate

when the proposal was created, and when the proposal expires. The proposal ex-

piry timestamp encourages negotiation to be completed in a timely manner. The

structure of the negotiation message is shown in Figure 4.5.

Negotiation Message

Proposal
message message type / negotiation primitive

sender timestamp proposal created

previous message message timestamp

intended recipient timestamp proposal expires

UUIDs Other Attributes

negotiation session

Figure 4.5: Service brokers use negotiation messages to exchange service pro-
posals. Each negotiation message contains a series of UUIDs and
attributes to support the automated negotiation process.

4.2.2 Negotiation Protocol

The negotiation protocol currently implemented for the framework, provides a sub-

set of the negotiation message primitives and negotiation states from the protocol

proposed in (Su et al., 2001). The negotiation states specify rules for the legal

message primitives at each point in a negotiation. The protocol is sufficient to

enable the automated negotiation of a service agreement between a consumer and

provider broker. The protocol specifically supports models where negotiation is led

by the consumer service broker. The consumer and provider negotiation protocols

are respectively represented as state diagrams in Figure 4.6 and Figure 4.7.

66

Chapter 4: Quality Assurance Framework Brokerage System

CFP
Sent

send
CFP

receive ACK
& terminate

Proposal
Received

receive ACK
& proposal

Negotiation
Terminated

send ACK & accept

send ACK & reject

send ACK & propose proposal

receive ACK
& reject

Accept
Sent

Reject
Sent

Proposal
Sent

Agreement
Reached

Accept
Received

send
ACK

receive ACK & accept

evaluate
proposal

send ACK &
terminate

Reject
Received

receive ACK
& terminate

receive ACK & proposal

Figure 4.6: The consumer negotiation protocol states. A negotiation session is
created when the consumer negotiation engine sends a call for pro-
posal (CFP) message to a provider broker. The session ends with
both parties accepting a proposal, or is unilaterally-terminated.

CFP
Received

receive
CFP

send ACK &
terminate

Proposal
Sent

send ACK &
proposal

Negotiation
Terminated

receive ACK & accept

receive ACK & reject

receive ACK & proposal

send ACK
& reject

Accept
Received

Reject
Received

Proposal
Received

Agreement
Reached

send ACK & accept

receive ACK
& terminate

Reject
Sent

send ACK &
terminate

send ACK & new proposal

evaluate
proposal

Figure 4.7: The provider negotiation protocol states. The provider negotiation
engine is inactive until it receives a CFP message from a consumer
broker.

67

Chapter 4: Quality Assurance Framework Brokerage System

With this negotiation protocol, the consumer broker actively seeks out bro-

kers of providers for services that are functionally-compatible with the consumer’s

requirements. Provider brokers wait passively for negotiation requests from con-

sumer brokers.

4.2.3 Negotiation Model

There are many different possible negotiation models. Some examples include

fixed-price negotiation, auctions, reverse auctions, bargaining, and request for

quote (RFQ) models. Two different negotiation models were implemented dur-

ing the development of the quality assurance framework.

The first implemented negotiation model is a fixed-price negotiation model.

The model uses a decision algorithm which will accept an advertised service pro-

posal as is, as long as all proposed qualities are within an acceptable range. If

multiple advertisements for the same service exist, the algorithm selects the ad-

vertisement with the most acceptability. The fixed-price model does not provide

support for the negotiation of individual qualities. Instead, the model offers a

simple service selection technique, similar to the notion of catalogue shopping.

The second implemented negotiation model is a bargaining model, based on

static service strategies. With the bargaining model, consumer brokers negotiate

service qualities one at a time. The first step is for the consumer broker to issue a

call for proposal (CFP) message to the provider broker. After receiving a response

to the CFP message, the consumer broker selects the first quality to negotiate

and sends a revised proposal back to the provider broker. After reviewing the

consumer broker’s revised proposal, the provider broker counters with a proposal

that contains not only its offer for the quality change proposed by the consumer,

but revised offers for any other qualities which are related to that quality. For

example, if the consumer broker begins by negotiating a service’s response time

quality, the provider broker may counter with a revised value for the response time

quality, and also a revised value for the service’s cost quality. To avoid deadlock

during negotiation, the broker proposal engines determine which qualities have

changed since the previous proposal, and refrain from negotiating them later in

the session. An overview of this process is shown in Figure 4.8.

The consumer broker may negotiate with multiple provider brokers of the same

service type, and with multiple provider brokers of different service types when

negotiating a service composition. Once the consumer broker has finished nego-

68

Chapter 4: Quality Assurance Framework Monitoring System

select next service
to negotiate

discover brokers

select next broker

all brokers
negotiated with

open negotiation

select next
quality

store final
proposal

propose quality evaluate offer

rank all possible
compositions

all services negotiated

accept proposals of most
acceptable composition

reject remaining
proposals

update
negotiation cache

send service details
to consumer

quality offer acceptable

quality offer unacceptable

all qualities
negotiated

next broker

next service

proposal received

Figure 4.8: Overview of the bargaining negotiation process.

tiating with this set of provider brokers, the consumer broker ranks each service

proposal and each possible service composition. The consumer broker then ac-

cepts the service proposals for the most acceptable composition. The consumer

broker rejects the remaining service proposals, but stores them in ranked order in

a proposal cache (shown in Figure 4.4). The proposal cache is used to optimise

future negotiation decisions.

4.3 Monitoring System

The quality assurance framework provides a service monitoring system, which ac-

tively monitors the quality of negotiated services for SLA violations and service

failures. The primary monitoring approach adopted by the framework is a pas-

sive model, which transparently intercepts service requests and responses between

service consumers and providers. To support the passive monitoring approach,

service monitors are implemented as dynamic service proxies using the decorator

design pattern (Gamma et al., 1995). The passive service monitoring model is

shown in Figure 4.9.

The quality assurance framework also supports two additional secondary mon-

itoring models. The first additional model is an audit-only approach. With the

69

Chapter 4: Quality Assurance Framework Monitoring System

Monitoring System

Monitor

Auditor

Measurer

supplies
SLAs

Forecaster

Monitor

Auditor

Measurer

Forecaster

Service
Consumer

Service
Provider

Service
Provider

returns SLA audit results

IMonitor
Listener

IService
Monitor

invokes
service

invokes
service

returns SLA audit results

invokes
service

invokes
service

IMonitoring
Service

IService

IService

IService
Monitor

Figure 4.9: The primary framework monitoring architecture. This view shows
the primary passive monitoring approach adopted by the framework.

audit-only approach, the service consumer is responsible for collecting QoS mea-

surements itself. The consumer then sends the QoS measurements to the mon-

itoring system, which audits the measurements against the SLA for compliance.

The audit-only approach saves the consumer resources that would otherwise be

spent auditing the SLA. However, the consumer must expend valuable resources

in collecting QoS measurements, and then providing the QoS measurements to

the monitoring system. The audit-only approach enables the consumer to trust

in the measured QoS, but makes no provision for the monitoring system and ser-

vice provider to verify the consumer’s claims. As such, the audit-only approach is

susceptible to abuse from the consumer. The audit-only monitoring approach is

shown in Figure 4.10a.

The second additional monitoring model supported by the framework is an

independent probe approach. The independent probe monitoring approach uses a

monitor to periodically probe the service provider, independently of the service

requests made by the consumer. The independent probe approach reduces the

load on the consumer, but increases the load on the service provider through the

generation of additional service requests from the monitoring system. In addition,

the service provider is able to distinguish the additional monitor requests from the

consumer requests. By distinguishing requests, the service provider has the ability

to supply a better QoS level to the monitor, in order to avoid SLA violations. The

70

Chapter 4: Quality Assurance Framework Monitoring System

Monitoring System

invokes service

Monitor

Auditor
Forecasterreturns SLA audit results

sends SLA
and QoS
measurements

Service
Provider

IService
Service

Consumer

IMonitor
Listener

IService
Monitor

(a) Consumer collects QoS measurements.

Monitoring System

Monitor

Auditor
Forecaster

IService
Service

Consumer

Measurer

periodically
probes

returns SLA audit results

IMonitor
Listener

invokes service Service
Provider

(b) Monitor independently probes provider.

Figure 4.10: Alternative service monitoring approaches.

independent probe monitoring approach is shown in Figure 4.10b.

The primary passive monitoring approach adopted by the framework has two

significant advantages over the other secondary monitoring approaches. The first

advantage is that no additional load is placed on either the service consumer or

provider. Instead, the resources of the consumer and provider are left to han-

dling service requests, and do not have to be used for QoS measurement and SLA

auditing. The second advantage is that both consumers and providers can mutu-

ally trust the monitoring results. All QoS measurement and auditing is contained

within the monitoring system, and the provider is unable to distinguish monitor

requests from consumer requests.

The auditor component of the service monitor performs assertions on the mea-

sured service quality. These assertions compare the measured service performance

with the QoS guarantees specified in the SLA. This process is performed both

before and after a service is invoked. Pre-invocation audit assertions may be used

to check certain pre-conditions before invoking a service. If a pre-invocation audit

detects no violation, the service is invoked by the monitor. Post-invocation audit

assertions may be used to check the characteristics of the service response and any

post-conditions. If no violation is detected during the post-invocation audit, the

monitor waits until the consumer next invokes the service.

71

Chapter 4: Quality Assurance Framework Monitoring System

4.3.1 Service Renegotiation

If a quality’s measurement does not conform to its SLA objective, the auditor

component signals an SLA violation to the service consumer. On receiving this

notification, the consumer can elect to not invoke the service further, and instead

instruct its service broker to renegotiate the SLA. If renegotiation is unsuccess-

ful, the consumer broker will attempt to secure service from an alternate service

provider, as shown in Figure 4.11.

Monitoring System

Monitor

Brokerage System

Consumer Broker Provider Broker

invokes
service

invokes
service

renegotiates SLA

returns SLA
updates

discovers/selects alternate brokers

returns SLA
updates

requests
renegotiation

sends SLA
updates

returns SLA
audit results

Service ProviderService Consumer

IBroker

IService
Requester IMonitor

Listener

IServiceIService
Monitor

IMonitoring
Service

IService
Provider

Reputation System

Ratings

IReputation
Service

queriesqueries

sends service
ratings

Figure 4.11: Service monitoring and brokerage system integration.

When renegotiating a quality that has violated its SLA objective, the consumer

broker assumes that the provider cannot guarantee any level for that quality, better

than the level which caused the SLA violation. Instead, the consumer broker

expects an offer of improvement in other service qualities, so as to increase the

overall acceptability of the QoS guarantee for the consumer. The consumer broker

compares the renegotiated proposal, with any proposals it has received from other

provider brokers of the same service type. If the renegotiated proposal still offers

the most acceptability to the consumer, the broker accepts the renegotiated SLA

and continues using the same provider. If the renegotiated proposal no longer offers

the most acceptability, the consumer broker will attempt to switch the consumer

to an alternate provider, and will reject the renegotiated proposal if successful.

72

Chapter 4: Quality Assurance Framework Reputation System

4.3.2 Forecasting Future QoS

The monitors assembled by the monitoring system support the inclusion of a fore-

casting component to complement the auditing process. The forecasting compo-

nent estimates future QoS based on previous QoS observations. When requesting

a service monitor, the service consumer specifies which of the available forecasting

methods to use, and any additional parameters. For example, the consumer may

request a simple moving average (SMA) forecasting model, and supply a parameter

that specifies the maximum number of data points to consider.

During the auditing process, the latest QoS observations are provided to the

forecasting component, which updates its estimations of future QoS. The auditor

compares the estimations from the forecaster component with the SLA values,

giving it the potential to detect when a particular service quality is likely to fail.

If the auditor detects that a quality is likely to fail, the auditor signals to the

consumer that the quality is failing, rather than signalling an SLA violation. This

signal serves to provide the consumer with an early-warning of possible quality

issues. The forecasting component is discussed further in Section 4.7.2.

4.4 Reputation System

The reputation system provided by the quality assurance framework, supplies a

collaborative mechanism for service consumers to rate the services and providers

they have used. The role the reputation system plays in the quality assurance

process is shown in Figure 4.12.

A single service instance is defined by the duration of the lease specified in the

SLA. This service instance may be rated one time only by the service consumer.

The consumer submits the service rating to the reputation system after unleasing

the service. Services are unleased when the lease agreed between the consumer

and provider expires, or after an SLA violation where renegotiation has been per-

formed. The consumer rates the individual qualities experienced while using a

service, and provides an overall rating of the service. By rating individual service

qualities, consumers can use the reputation system to determine which providers

are particularly reputable for the specific qualities they require.

The reputation system combines service ratings for each service provider by

service type. This forms the global reputation for each provider’s ability to supply

a particular service type in accordance with an SLA. The reputation system then

73

Chapter 4: Quality Assurance Framework Service Ontology

Reputation System

Ratings

Brokerage System

Consumer Broker

Brokerage System

Provider Broker

sends service
ratings

queries how the consumer
has previously rated provider

negotiate
QoS
proposals

queries the reputation of the
provider during negotiation

integrates
reputation with
proposed QoS

Service
Consumer IReputation

Service

Figure 4.12: The reputation system provides a collaborative mechanism for ser-
vice consumers to rate the services they have used. The system is
queried by consumer and provider brokers during negotiation.

provides several query methods for accessing the reputation data. The system

provides a query method that returns the overall reputation of a provider for a

particular service type. This method is used by consumer brokers, to limit service

negotiation to those providers which meet the minimum reputation threshold spec-

ified in the consumer strategy. The consumer broker also combines any available

provider reputation data, with the QoS proposed by the provider broker during

negotiation. Another query method provided by the reputation system, returns

details of the ratings a consumer has given a particular provider. This mechanism

is used by provider brokers, to limit negotiation to consumers who have given their

clients fair ratings in the past, or who have not used their clients’ services before.

4.5 Service Ontology

The quality assurance framework incorporates a service ontology, which provides

service consumers and providers with a shared set of terms for describing services,

service constraints, and service strategies. The ontology itself is not a key re-

search contribution, but an important requirement for supporting the automation

of framework processes such as negotiation and monitoring. For this reason, a

simple service ontology to support the research goals was developed, rather than

adapting an existing ontology, such as the one proposed in (Dobson et al., 2005).

74

Chapter 4: Quality Assurance Framework Service Ontology

The service ontology is implemented with the XML Schema (World Wide

Web Consortium (W3C), 2001) language. The ontology consists of three distinct

schemas, each providing support for the expression of different service features.

The quality schema supports the description of service qualities, in terms of con-

straints, measurements and values. The quality schema is then integrated with a

service schema, that facilitates the description of services and service contracts in

terms of functional and non-functional qualities. The quality schema is also inte-

grated with a strategy schema, which enables consumers and providers to describe

service strategies for their QoS requirements and limits. An example service con-

tract and strategy which validate against these schemas are given in Appendix A.

Each of these schemas is now discussed in turn.

4.5.1 Quality Schema

The quality schema provides two key elements for describing a non-functional

service quality, as shown in Figure 4.13.

ConstraintQuality
1 1

Figure 4.13: Overview of the quality schema ontology elements, used to describe
a service quality with a constraint.

The Quality element, shown in Figure 4.14, is used to represent a service

quality, by associating a basic quality description with a non-functional quality

constraint. The quality description is provided by an instance of QualitySimple-

Type, which provides an enumeration of general quality types, such as availability,

response time and cost etc.

QualityType

e
e

Constraint [1..1] ConstraintType

QualityDescription [1..1] QualitySimpleType

QualitySimpleType

ConstraintType
e
e
e
e

ConstraintDescription [1..1] ConstraintSimpleType

Unit [1..1] UnitType

Value [1..1] string

ValueType [1..1] ValueSimpleType

e.g. availability, response time, cost
Quality Element

Figure 4.14: The Quality element is used to describe a service quality, by asso-
ciating a basic quality description with a non-functional constraint.

75

Chapter 4: Quality Assurance Framework Service Ontology

The quality constraint is described by the Constraint element, an instance

of ConstraintType. The Constraint element, shown in Figure 4.15, provides

attributes for expressing a constraint over a quality.

ConstraintType
e
e
e
e

ConstraintDescription [1..1] ConstraintSimpleType

Unit [1..1] UnitType

Value [1..1] string

ValueType [1..1] ValueSimpleType

ValueSimpleType

UnitType

e Units [1..1] string

ConstraintSimpleType e.g. <=

e.g. integer, long,
float

specific unit types
extend from this
e.g. TimeUnitType

Constraint Element

Figure 4.15: The Constraint element is used to express a non-functional con-
straint over a service quality.

For example, the constraint ≤1000 ms could be expressed over a response time

quality. The constraint descriptor (≤) is a value from ConstraintSimpleType,

which provides an enumeration of common constraint types. The constraint value

(1000) is represented as a string by the Value element. The value’s type is taken

from ValueSimpleType, which provides an enumeration of common value types,

such as integer, long and float. The measurement units for the constraint are

described by an element which extends from the base UnitType element. The

derivative unit element provides an enumeration of measurement units for a specific

measurement type. For example, TimeUnitType provides time unit descriptors

including ms, s, min and hour. An example quality which validates against the

schema is shown in Figure 4.16.

<quality:Quality>
 <quality:Constraint>
 <quality:ConstraintDescription><=</quality:ConstraintDescription>
 <quality:Unit xsi:type="quality:TimeUnitType">
 <quality:Units>ms</quality:Units>
 </quality:Unit>
 <quality:Value>1000</quality:Value>
 <quality:ValueType>LONG</quality:ValueType>
 </quality:Constraint>
 <quality:QualityDescription>response time</quality:QualityDescription>
</quality:Quality>

Figure 4.16: Quality ontology XML example of a response time service quality
specification. Note that <= is the markup language method of
representing ≤ for the constraint description.

76

Chapter 4: Quality Assurance Framework Service Ontology

The quality schema is utilised by the service schema, to integrate non-functional

service quality information with service descriptions and contracts. The quality

schema is also used by the strategy schema, to facilitate the expression of consumer

and provider strategies for non-functional QoS requirements and provisions.

4.5.2 Service Schema

The service schema is used to describe a service and a contract, in terms of both

functional and non-functional service properties. An overview of the service schema

elements and the use of the quality ontology elements is shown in Figure 4.17.

Quality

OperationContractServiceContractService
1

0..*
Constraint

0..*

11

1

0..*

1 1

1

Figure 4.17: Overview of the service ontology elements, used to describe a ser-
vice and contract in terms of functional and non-functional service
properties.

The service schema provides the Service element, shown in Figure 4.18, for

describing a service. The Service element contains a Lease element for describing

the service lease, which itself provides constraints on the binding between a service

consumer and provider. No changes that would affect either party should be

made during the period specified by the lease. The Service element also contains

UUIDs for the provider of the service and the service itself. These UUIDs are

used for identification purposes during processes such as service negotiation. The

Service element then contains the ServiceContract element, which describes

the functional and non-functional characteristics of the service.

The ServiceContract element, shown in Figure 4.19, may contain any num-

ber of ServiceQuality elements, which are used to specify quality constraints

over the service as a whole. The service lease is specified separately with the

Lease element, as a mandatory quality constraint over the service. The fully-

qualified service name, which takes a form such as com.companyname.Service, is

described by the ServiceType element. The ServiceContract element may then

77

Chapter 4: Quality Assurance Framework Service Ontology

ServiceType

e
e
e
e

Lease [1..1] LeaseType
ProviderUUID [1..1] string
ServiceContract [1..1] ServiceContractType
ServiceUUID [1..1] string

ServiceContractType
e
e
e
e
e

Lease [1..1] QualityType
OperationContract [0..*] OperationContractType
ServiceQuality [0..*] QualityType
ServiceType [1..1] string
TextualInformation [0..*] TextualInformationType

LeaseType

e
e
e

Created [1..1] long

Expires [1..1] long

Starts [1..1] long

Service Element

Figure 4.18: The Service element is used to describe a service.

contain any number of OperationContract elements, which provide functional

and non-functional descriptions for each operation provided by a service. As ser-

vice capabilities are realised as individual service operations, it is necessary to

define QoS separately at the operation-level. The ServiceContract element may

also include any number of TextualInformation elements. These information

elements are used to provide arbitrary textual descriptions of service issues, such

as legal conditions of use, business names and addresses, and technical support

details.

ServiceContractType
e
e
e
e
e

Lease [1..1] QualityType
OperationContract [0..*] OperationContractType
ServiceQuality [0..*] QualityType
ServiceType [1..1] string
TextualInformation [0..*] TextualInformationType

OperationContractType
e
e

Operation [1..1] OperationType
OperationQuality [0..*] QualityType

TextualInformationType

e
e

TextInfoType [1..1] string
TextInfoValue [1..1] string

QualityType

e
e

Constraint [1..1] ConstraintType

QualityDescription [1..1] QualitySimpleType

ServiceContract Element

Figure 4.19: The ServiceContract element is used to describe the functional
and non-functional properties of a service.

The OperationContract element, shown in Figure 4.20, is used to describe

the functional and non-functional properties of a single invokable service opera-

tion. The functional operation is described by the Operation element, which pro-

vides attributes for the operation’s name, signature, input parameters (if any), and

78

Chapter 4: Quality Assurance Framework Service Ontology

OperationContractType

e
e

Operation [1..1] OperationType

OperationQuality [0..*] QualityType

OperationType
e
e
e
e

OperationName [1..1] string

OperationSignature [1..1] string

ParameterType [0..*] string

ReturnType [0..1] string

QualityType

e
e

Constraint [1..1] ConstraintType

QualityDescription [1..1] QualitySimpleType

OperationContract Element

Figure 4.20: The OperationContract element is used to describe the functional
and non-functional properties of a single service operation.

return type (if any). The OperationContract element may then contain any num-

ber of OperationQuality elements, which are used to specify the non-functional

characteristics of the functional operation. An example operation contract which

validates against the schema is shown in Figure 4.21. This example is extracted

from the larger service contract listing in Appendix A.1.

4.5.3 Strategy Schema

The strategy schema provides elements to express the consumer strategy for a

required service or service composition. These elements are also used to describe

the provider strategy for negotiating a service and managing service resources.

The strategy schema enables both the consumer and provider to express their ideal

non-functional service quality requirements, express acceptable limits on these non-

functional qualities, and to express relationships between interdependent qualities.

An overview of the strategy schema elements is shown in Figure 4.22.

The Strategy element is used to describe the strategy for a single service,

or a composition of services. The Strategy element may contain any number of

ServiceStrategy elements, which describe individual strategies for each service

required or provided by its owner. The Strategy element is detailed in Fig-

ure 4.23. An example strategy which validates against the strategy schema is

provided in Appendix A.2.

The Strategy element then provides a series of weight elements, which denote

the relative importance of reputation information with the acceptability of a QoS

proposal. These weights are applied by the proposal engine when calculating the

79

Chapter 4: Quality Assurance Framework Service Ontology

<service:OperationContract>
 <service:Operation>
 <service:OperationName>add</service:OperationName>
 <service:OperationSignature>
 public abstract int com.xyz.CalculatorService.add(int,
 int) throws java.rmi.RemoteException
 </service:OperationSignature>
 <service:ParameterType>int</service:ParameterType>
 <service:ParameterType>int</service:ParameterType>
 <service:ReturnType>int</service:ReturnType>
 </service:Operation>
 <service:OperationQuality>
 <quality:Constraint>
 <quality:ConstraintDescription><=</quality:ConstraintDescription>
 <quality:Unit xsi:type="quality:TimeUnitType">
 <quality:Units>ms</quality:Units>
 </quality:Unit>
 <quality:Value>1000</quality:Value>
 <quality:ValueType>LONG</quality:ValueType>
 </quality:Constraint>
 <quality:QualityDescription>response time</quality:QualityDescription>
 </service:OperationQuality>
</service:OperationContract>

Figure 4.21: Service ontology XML example, demonstrating how the quality
shown in Figure 4.16 is associated with a hypothetical service op-
eration.

QualityStrategy

OperationStrategyServiceStrategyStrategy
1

0..*
ConstraintStrategy

0..*

0..*1

1

0..*

1 1

1

Figure 4.22: Overview of the strategy ontology elements, used to express a con-
sumer or provider service strategy.

80

Chapter 4: Quality Assurance Framework Service Ontology

ServiceStrategyTypeStrategyType

e
e
e
e
e
e

e
e
e
e
e
e
e

GlobalRatingWeight [1..1] double
PersonalRatingWeight [1..1] double
ProposalWeight [1..1] double
ReputationWeight [1..1] double
ReputationThreshold [1..1] double
ServiceStrategy [0..*] ServiceStrategyType

ActiveNegotiation [1..1] boolean
LeaseStrategy [1..1] QualityStrategyType
ServiceOperationStrategy [0..*] OperationStrategyType
ServiceQualityStrategy [0..*] QualityStrategyType
ServiceType [1..1] string
ServiceWeight [1..1] double
TextualInformation [1..1] TextualInformationType

e AcceptInstruction [1..1] AcceptSimpleType

Strategy Element

Figure 4.23: The Strategy element is used to express how a service or compo-
sition of services should be negotiated and managed.

acceptability of a service proposal, which is discussed separately in Section 4.6.

The GlobalRatingWeight and PersonalRatingWeight elements are both as-

signed a value between 0.0 and 1.0, so that the sum of their values equals exactly

1.0. These two weights enable the consumer to assign one level of importance to

its own experience of a provider, and assign another level to the global experience

reported by the reputation system. The overall reputation of a provider is deter-

mined by applying these weights to the respective personal and global sources of

reputation, and combining the results.

Similarly, the ProposalWeight and ReputationWeight elements are both as-

signed a value between 0.0 and 1.0, so that the sum of their values equals exactly

1.0. These two weights enable the consumer to assign one level of importance to

the reputation of a provider, and assign another level to the acceptability of the

QoS the provider proposes to the consumer. In a consumer strategy, the Reputa-

tionThreshold element indicates the minimum amount of reputation a provider

must have before the consumer will consider its services. For a provider strat-

egy, the ReputationThreshold element indicates the minimum rating a consumer

must have previously given the provider, for the provider to consider resupplying

service to the consumer.

The ServiceStrategy element, shown in Figure 4.24, is used to describe the

strategy for a single service type. The ServiceStrategy contains an AcceptIn-

struction element, which describes the condition for accepting a service proposal.

The acceptance condition is an instance of AcceptSimpleType, which provides an

enumeration of conditions for accepting a service proposal. For example, best

match means that the best service proposal received should be accepted, regard-

less of its acceptability to the service strategy. Another instruction, best acceptable

81

Chapter 4: Quality Assurance Framework Service Ontology

OperationStrategyType

e
e
e

Operation [1..1] OperationType
OperationQualityStrategy [0..*] QualityStrategyType
OperationWeight [1..1] double

TextualInformationType

e
e

TextInfoType [1..1] string
TextInfoValue [1..1] string

ServiceStrategyType

e
e
e
e
e
e
e

ActiveNegotiation [1..1] boolean
LeaseStrategy [1..1] QualityStrategyType
ServiceOperationStrategy [0..*] OperationStrategyType
ServiceQualityStrategy [0..*] QualityStrategyType
ServiceType [1..1] string
ServiceWeight [1..1] double
TextualInformation [1..1] TextualInformationType

e AcceptInstruction [1..1] AcceptSimpleType

AcceptSimpleType e.g. best match, best acceptable match

QualityStrategyType

e
e
e
e
e
e

AssignedTo [1..1] string
ConstraintStrategy [1..1] ConstraintStrategyType
QualityManagementRequired [1..1] boolean
QualityRelation [0..*] QualityRelationType
QualityType [1..1] QualitySimpleType
QualityWeight [1..1] double

ServiceStrategy Element

Figure 4.24: The ServiceStrategy element is used to describe the strategy for
a single service type.

match, means that only acceptable proposals should be considered for acceptance.

The ServiceStrategy element also contains an ActiveNegotiation element,

which holds a simple boolean value to indicate whether the strategy is active or

passive. The value for this element depends on the negotiation model used by

the service broker. Typically, the value is true for the service consumer, as the

consumer actively seeks out services to satisfy its requirements. The value is

typically false for the service provider, as providers normally wait passively for

service consumers to request their services.

The ServiceStrategy element may contain any number of ServiceOpera-

tionStrategy elements, which provide individual strategies for each invokable

operation provided by the service. The ServiceStrategy element may then con-

tain any number of ServiceQualityStrategy elements, which specify strategies

for service-level qualities, i.e. those qualities which affect the entire service. The

strategy for the service-level lease quality is specified separately by the mandatory

LeaseStrategy element. The ServiceStrategy then contains a ServiceType

element describing the fully-qualified service name the service strategy concerns.

The ServiceStrategy contains a ServiceWeight element, which reflects the

importance of the service in relation to any other services contained within the

same overall Strategy, i.e. in the case of a service composition. The service weight

is specified as a value between 0.0 and 1.0, so that the weights of all ServiceStrat-

82

Chapter 4: Quality Assurance Framework Service Ontology

egy elements contained within a single Strategy equal exactly 1.0. These service

weights enable the expression of service compositions where certain services are

assigned more strategic importance than other services.

The ServiceStrategy element may then contain any number of TextualIn-

formation elements, which provide textual descriptions of service issues, such as

terms of use. These descriptions are copied across into an instance of the Service-

Contract element, after the non-functional service qualities have been negotiated

between the brokers of the service consumer and provider.

The OperationStrategy element, shown in Figure 4.25, provides the strat-

egy for a single invokable service operation. The OperationStrategy contains

an Operation element, an instance of OperationType from the service ontology,

which provides the functional description of the service operation. The Oper-

ationStrategy may then contain any number of OperationQualityStrategy

elements, which specify strategies for each non-functional quality constraint over

the operation. The OperationWeight element holds a value between 0.0 and 1.0,

which indicates the operation’s importance to any other operations provided by

the same service. If the service only provides a single operation, this value is set

to 1.0.

QualityStrategyType

e
e
e
e
e
e

AssignedTo [1..1] string
ConstraintStrategy [1..1] ConstraintStrategyType
QualityManagementRequired [1..1] boolean
QualityRelation [0..*] QualityRelationType
QualityType [1..1] QualitySimpleType
QualityWeight [1..1] double

OperationType
e
e
e
e

OperationName [1..1] string

OperationSignature [1..1] string

ParameterType [0..*] string

ReturnType [0..1] string

OperationStrategyType
e
e
e

Operation [1..1] OperationType

OperationQualityStrategy [0..*] QualityStrategyType

OperationWeight [1..1] double

OperationStrategy Element

Figure 4.25: The OperationStrategy element is used to describe strategy for a
single service operation.

The QualityStrategy element, shown in Figure 4.26, is used to describe the

strategy for a quality associated with a service or service operation. The As-

signedTo element contains a key for the object the quality is assigned to. This

key is either a service type or an operation signature. The QualityManagemen-

tRequired element provides a flag, which is set to true if the quality is a service

83

Chapter 4: Quality Assurance Framework Service Ontology

QualityStrategyType

e
e
e
e
e
e

AssignedTo [1..1] string
ConstraintStrategy [1..1] ConstraintStrategyType
QualityManagementRequired [1..1] boolean
QualityRelation [0..*] QualityRelationType
QualityType [1..1] QualitySimpleType
QualityWeight [1..1] double

ConstraintStrategyType
e
e
e

Constraint [1..1] ConstraintType

ConstraintLimit [1..1] ConstraintType

StrategyType [1..1] BasicStrategyType

QualityRelationType
e
e
e

ProportionalityConstant [1..1] double

RelatedQualityStrategy [1..1] QualityStrategyType

Relation [1..1] RelationType

QualitySimpleType e.g. availability, cost, response time

QualityStrategy Element

Figure 4.26: The QualityStrategy element is used to describe the strategy for a
single service or operation quality, and any relationships the quality
has with other qualities of the same service or operation.

resource that should be managed by the service broker.

The QualityStrategy element includes any number of QualityRelation el-

ements, which are used to express interdependent relationships with other service

or operation qualities. The QualityType element provides a simple description of

the quality, from the enumeration provided by QualitySimpleType. The Quali-

tyWeight element contains a value between 0.0 and 1.0, and indicates the quality’s

importance relative to any other qualities assigned to the same object.

The QualityStrategy then contains a ConstraintStrategy element, shown

in Figure 4.27. The ConstraintStrategy element provides a range of acceptable

constraints for the quality, and a basic strategy for the quality’s value. The Con-

straint element describes the ideal constraint for a particular quality, and the

ConstraintLimit element describes the least acceptable constraint for the same

quality.

ConstraintStrategyType
e
e
e

Constraint [1..1] ConstraintType

ConstraintLimit [1..1] ConstraintType

StrategyType [1..1] BasicStrategyType

BasicStrategyType

ConstraintType
e
e
e
e

ConstraintDescription [1..1] ConstraintSimpleType

Unit [1..1] UnitType

Value [1..1] string

ValueType [1..1] ValueSimpleType

e.g. fixed, none, minimise, maximise

ConstraintStrategy Element

Figure 4.27: The ConstraintStrategy element is used to describe the accept-
able ranges of constraints for a particular quality.

The ConstraintStrategy element contains a StrategyType element, which

84

Chapter 4: Quality Assurance Framework Service Acceptability

describes a basic strategy for the quality, from an enumeration provided by Ba-

sicStrategyType. This enumeration includes strategy type values such as fixed,

none, minimise, and maximise. The fixed strategy means that only the ideal con-

straint is acceptable, and no limit should be used. The none strategy means that

any constraint in the range specified by the ideal constraint and constraint limit

is acceptable. The minimise strategy means that smaller values are preferred for

the quality constraint, while the maximise strategy means that larger values for

the quality constraint are preferred.

4.6 Service Acceptability

The quality assurance framework service brokers are currently configured with

utility-based methods for calculating the acceptability of service proposals and

provider reputation. These methods operate by comparing QoS proposals and

reputation, with the service strategies of consumers and providers.

The strategy template, discussed in Section 4.5.3, provides a description of a

consumer’s or provider’s QoS goals. Each service, service operation and service

quality in the strategy template is given a weighting from 0.0 to 1.0, so that

the sum of all service- and operation-level qualities is 1.0 (the ideal QoS). The

acceptability of a single quality proposal Qa is calculated as shown in Equation 4.1.

This particular formula is based on the acceptability formula given in (Lock, 2006),

but extended to factor in the weight Qw of a single quality, as the quality pertains

to the overall QoS of the service or operation to which it is assigned. Qp is the

value proposed for the quality, Ql is the least acceptable value for the quality, and

Qm is the most acceptable value for the quality.

Qa =

∣∣∣∣ Qp −Ql

Qm −Ql

∣∣∣∣×Qw (4.1)

The formula is applied to proposed values which fall within the range of ac-

ceptable values defined by the quality strategy. If a proposed value falls outside

of either side of this range, it is assigned an acceptability of 0.0. Whether high or

low values are more or less acceptable, depends on the specific quality type. For

example, with the response time quality, a greater value is usually less acceptable,

and a smaller value more acceptable.

To compute the overall reputation R of the creator of a proposed quality,

85

Chapter 4: Quality Assurance Framework Service Acceptability

any prior local experience Rl of the creator is combined with the global rating

Rg provided by the reputation service. The overall reputation of the creator of a

proposed quality is calculated as shown in Equation 4.2. Gw is the weight assigned

to global experience, and Lw is the weight assigned to local personal experience,

so that 0 ≤ Gw ≤ 1 and 0 ≤ Lw ≤ 1, and Gw + Lw = 1.0.

R = (Rg ×Gw) + (Rl × Lw) (4.2)

The total acceptability Qta of a quality is then formed by combining the pro-

posed quality acceptability Qa, with the total reputation R of the proposal’s cre-

ator, and applying weights which balance the importance between the quality pro-

posed by the creator, and the creator’s reputation. The total quality acceptability

is calculated as shown in Equation 4.3, where Pw is the weight of the proposal,

and Rw is the weight of the total reputation, so that 0 ≤ Pw ≤ 1 and 0 ≤ Rw ≤ 1,

and Pw + Rw = 1.0.

Qta = (Qa × Pw) + (R×Rw) (4.3)

However, if no reputation information is available for the proposal’s creator,

Qta is simply the same as the proposed quality acceptability Qa, and the proposal

weight Pw is not applied.

Qualities can be assigned to individual service operations. The total accept-

ability of a single service operation Ota is calculated as shown in Equation 4.4,

so that 0 ≤ Ota ≤ 1. I represents the total number of qualities assigned to the

operation.

Ota =
I∑

i=0

|Qta|i (4.4)

The total acceptability of a single service Sta, so that 0 ≤ Sta ≤ 1, is calcu-

lated as shown in Equation 4.5. First, the acceptability of each operation Ota is

multiplied by the operation’s weight Ow divided by 2. The division by 2 is so

that the summed acceptability of all operations is equal in weight to the summed

acceptability of all service-level qualities, as the service-level qualities apply across

and affect the entire service, and not just a single operation. For this formula, I

represents the total number of operations the service provides, and J represents

the total number of service-level qualities.

86

Chapter 4: Quality Assurance Framework Customisable Components

Sta =
I∑

i=0

∣∣∣∣Ota ×
Ow

2

∣∣∣∣i +
J∑

j=0

∣∣∣∣Qta

2

∣∣∣∣j (4.5)

The total acceptability of a service composition Cta, so that 0 ≤ Cta ≤ 1,

is calculated as the sum of each total service acceptability Sta, after applying

the individual service weight Sw to each service. The composition acceptability

calculation is shown in Equation 4.6. Here, I represents the total number of

services in the composition.

Cta =
I∑

i=0

|Sta × Sw|i (4.6)

Calculating the acceptability of every possible composition is an NP-hard prob-

lem, with every additional service type in a composition adding another order of

magnitude to the number of possible compositions to compare. The basic ap-

proach presented here is suitable for comparing compositions that consist of a

relatively small number of services. The approach would not scale to more com-

plex compositions, but is suitable for supporting the research objectives of this

work. Alternate approaches which specifically address the composition compari-

son problem, include those based on dynamic programming (Poladian et al., 2004)

and heuristics (Berbner et al., 2006).

4.7 Customisable Components

The quality assurance framework provides support for customising certain aspects

of the framework systems, so that different brokerage and monitoring schemes can

be integrated with one another. The customisable components and the framework

subsystems they are associated with are shown in Figure 4.28.

To illustrate how new functionality can be added to the framework, the next

section provides an example that discusses how additional forecasting support can

be added to the monitoring system. The additional forecasting support enables

the monitoring system to assemble service monitors with a forecasting method

that wasn’t previously available.

87

Chapter 4: Quality Assurance Framework Customisable Components

Brokerage System

Service
Strategies

Negotiation
Models

Decision
Algorithms

Quality
Measurers

Forecasting
Methods

Monitoring System

SLA
Auditors

Pluggable Framework Elements

Figure 4.28: The quality assurance framework supports customisable component
configurations. Here, ball-and-socket notation is used to represent
the notation of pluggability.

4.7.1 Monitor Assembly

The monitoring system provides a customisable architecture for plugging in addi-

tional quality measurement instrumentation, SLA auditors and forecasting meth-

ods. The monitoring service co-ordinates several builder components, to assemble

bespoke service monitors which meet the requirements of the service consumer.

An outline of the monitor assembly architecture is given in Figure 4.29.

A similar architecture is used for the construction of custom negotiation en-

gines for service brokers, which implement particular negotiation models, decision

algorithms and service strategies. For the purposes of demonstrating the customi-

sation support, this discussion is limited to the service monitoring system and the

assembly of service monitors.

4.7.2 Extending Forecast Support

The monitors assembled by the monitoring system support the inclusion of a fore-

casting component, used to estimate future QoS based on past service performance

observations. There are many different forecasting methods, examples of which are

discussed in (Wood, 1976) and (Wolski, 1998). For this reason, it is desirable to

provide a pluggable architecture that can support different forecasting approaches.

The experiments used to evaluate the framework, discussed in Chapter 5, make

use of an exponential moving average (EMA) forecasting model. The EMA fore-

casting method assigns more importance to recent service performance observa-

88

Chapter 4: Quality Assurance Framework Customisable Components

MonitorBuilder

builder and director

MonitoringService

director

Monitor

concrete part

MeasurerBuilder

builder and director

AuditorBuilder

builder

directs

builds

ForecasterBuilder

builder and director

Auditor

concrete part

Measurer

concrete part

Forecaster

concrete part

directs

directs

directs

builds

builds

builds

add builders for specific
quality measurers

add builders for specific
forecasting methodsadd

measurer,
auditor and
forecaster
builders

Figure 4.29: A overview of the monitor assembly components.

tions. There follows a discussion describing how support for an additional fore-

casting method based on a simple moving average (SMA), may be added to the

monitoring system. The SMA forecasting method computes a forecast based on the

median observed value from a fixed number of earlier observations. The number

of earlier observations is sometimes referred to as the window size.

Figure 4.30 shows the forecasting component architecture in relation to the

monitoring system, the abstract forecast components which are extended by the

new SMA forecast components, and the forecaster builder component which creates

the forecasting components for the service monitor assembly.

To support the assembly of service monitors with a variety of forecasting meth-

ods, the framework provides the abstract ForecastMethod class, which in turn

provides functionality common to all forecasting methods. The ForecastMethod

class also provides two abstract methods, which all concrete forecasting methods

are responsible for implementing:

+addObservedValue(value:Object):void

+getNextForecast():Object

89

Chapter 4: Quality Assurance Framework Customisable Components

MonitorBuilder

builder and
director

Monitoring
Service

director

Monitor

concrete part

directs

builds

Forecaster

concrete part

directs

builds

SMAForecastMethodBuilder
concrete builder

SMAForecast Method
concrete part

0..*
ForecastMethod

abstract part
+addObservedValue(value:Object):void
+getNextForecast():Object

ForecastMethodBuilder
abstract builder

+buildForecastMethod(config:ForecastMethodConfig):ForecastMethod
+getForecastMethodType():String

+addForecastMethodBuilder(builder:ForecastMethodBuilder):void
+buildForecaster(template:Template,serviceType:Class<?>):Forecaster
+getTemplateType():String
+removeForecastMethodBuilder(builder:ForecastMethodBuilder):void

ForecasterBuilder
builder and director

an instance of SMAForecastMethodBuilder is added to the main
forecaster builder, enabling it to provide SMA forecast methods

1

Figure 4.30: The forecaster component architecture. The SMA forecast method
functionality extends from the abstract forecasting classes provided
by the framework.

The abstract ForecastMethodBuilder class provides functionality common

to the builders of all forecast methods. The ForecastMethodBuilder class also

provides two abstract methods, which are invoked by the ForecasterBuilder

when assembling the forecasting component at runtime. These methods, which all

concrete forecast method builders are responsible for implementing, are:

+buildForecastMethod(config:ForecastMethodConfig):ForecastMethod

+getForecastMethodType():String

To implement the new SMA forecasting method, an SMAForecastMethod class

is created. The SMAForecastMethod class extends the abstract ForecastMethod

class, and implements its two abstract methods. To enable the assembly of fore-

casters which use the new SMA method, the SMAForecastMethodBuilder sup-

port class extends ForecastMethodBuilder, and implements its two abstract

methods. An instance of SMAForecastMethodBuilder is added to the general

ForecasterBuilder component, providing the builder with the support to assem-

ble a forecasting component that utilises the new SMA forecasting method.

90

Chapter 4: Quality Assurance Framework Summary

4.8 Summary

This chapter has provided a description of the design and implementation of the

integrated quality assurance framework, and the key brokerage, monitoring and

reputation systems it provides for quality assurance in service-oriented systems.

The chapter discussed the quality ontology the framework provides in order to

support the quality assurance processes implemented by the key framework sys-

tems. The chapter then provided a description of the utility-based acceptability

formulas, used in conjunction with consumer and provider service strategies, for

computing the acceptability of services and provided QoS. The chapter concluded

with an examination of the support the framework provides for customising cer-

tain system components, as a method of integrating a variety of different quality

assurance techniques. The following chapter provides a series of service-oriented

experiments, for the purposes of demonstrating and evaluating the quality assur-

ance framework.

91

Chapter 5

Evaluation

This chapter provides an evaluation of the integrated quality assurance framework,

using a series of experiments that test identified hypotheses. The experiments run

on a simulated service-oriented navigation application composed from multiple

services, and involve a series of consumer devices with differing requirements and

service strategies. Multiple service providers of each required service type are made

available, which offer functionally-equivalent services but with different QoS levels.

Service doping mechanisms are used to alter the QoS provided to the consumer

devices at runtime. These doping mechanisms enable the development of differ-

ent QoS scenarios, which highlight how the framework supports the consumer in

maintaining satisfactory quality levels while using the navigation application. The

evaluation concludes by discussing scenarios which highlight some limitations of

the support provided by the quality assurance framework.

5.1 Service Simulation

The simulated navigation application is composed of location, map, traffic, weather,

and information services. The navigation application is location-based, with the

location service first queried to obtain the location of the consumer device execut-

ing the application. The location is then passed in a request to the map service, to

retrieve a map for the current location. The location is also passed to the traffic,

weather and information services, which provide data to be visually overlaid on the

map. The size and complexity of the simulation data is summarised in Table 5.1.

The simulation system is implemented using the Jini SOA. The brokerage,

monitoring and reputation systems of the quality assurance framework are regis-

92

Chapter 5: Evaluation Service Doping

Service Type No. Providers No. Consumers No. Qualities No. Doped Qualities

Location 5 3 4 2
Map 5 3 5 3
Traffic 5 3 5 3
Weather 5 3 4 2
Information 7 3 5 3

Table 5.1: Summary of size and complexity of simulation data.

tered with the Jini service registry. Providers of simulated location, maps, traffic,

weather, and information services also register with the service registry, and each

provider establishes a relationship with a broker from the brokerage system. Each

provider offers services with different levels of QoS and reputation, making certain

providers more acceptable than others for the different consumer devices.

Three separate consumer devices are simulated for the experiments. These

devices, which are an automobile navigation system, an internet tablet and a

mobile phone, each have different resource restrictions and QoS requirements from

the navigation application. The consumer devices query the service registry to

obtain a broker from the brokerage system, obtain monitors from the monitoring

system, and provide feedback on services and providers to the reputation system.

The simulation is controlled via a software tool, which visualises different as-

pects of the system and framework processes at runtime. A walkthrough of the

software tool is provided in Appendix B. For the purposes of presenting the exper-

iments in this chapter, the data captured by the tool has been plotted separately.

5.2 Service Doping

To simulate different QoS scenarios, a service doping approach has been developed

that enables service qualities to be doped in specific ways, e.g. the availability qual-

ity of a service can be periodically doped to simulate service outages. The service

doping approach facilitates experiments which would prove difficult to perform in

the real-world, requiring a suitable service marketplace and the co-operation of

commercial service providers. Figure 5.1 shows an overview of the approach.

Each service provider supplies a service doping specification to the service doper

builder, which assembles a mechanism to dope the provider’s services in a particu-

lar manner, affecting the QoS provided to service consumers at runtime. The doper

assumes the place of a load-balancing or service resource management component.

93

Chapter 5: Evaluation Service Strategy

Service Doping Specification

Operation Doping
Specifications

Quality Doping
Specifications

Service Doper Builder

Quality Doper
Builders

Generic Quality Doper

Quality Doper

Random
Quality Doper

Fixed Quality
Doper

Trend Quality
Doper

Service Doper

Operation Dopers

Service

assembles

plugs in provided to

Concrete Quality
Doper

Concrete Quality
Doper Builderplugs in

extends

assembles

Service Provider supplies

Figure 5.1: Service doping architecture.

Generic quality dopers are provided by the doping framework, supplying com-

mon functionality for doping service qualities. Fixed quality dopers affect qualities

by a fixed level. Random quality dopers affect qualities by random levels, and by

random levels within a fixed range of values. Trend quality dopers affect qualities

in a particular direction using a fixed range of values, so as to produce a trend.

Trends can be created which have fixed or variable fluctuations in quality levels.

Individual quality doper builders supply the ability to assemble quality dopers

for specific quality types, such as response time, memory usage and availability.

These concrete quality dopers extend from the generic quality dopers described

earlier. The quality doper builders implement a common interface, which enables

them to be plugged into the extensible service doper builder. The service doper

builder is then used to assemble the final service doping mechanism for a service.

Qualities are doped in periods specified either in terms of time, or in terms of

a number of service invocations. All quality dopers are able to alter the time or

service invocation periods during which doping is active and inactive. Doping can

be performed continuously, for a fixed or random number of invocations, or for a

fixed or random period of time. When active, doping can be performed on specific

or random service invocations, and at specific or random points in time.

5.3 Service Strategy

Service consumers and providers both specify strategies for the services they re-

spectively require or provide. For the consumer, the strategy describes the ideal

94

Chapter 5: Evaluation Service Strategy

QoS requirements over the functional services it wishes to use. For the provider,

the strategy describes the ideal QoS it wishes to offer each consumer, based on

the provider’s service resource availability. Consumers and providers supply these

strategies to their respective service brokers, along with instructions describing

which negotiation models to use.

Strategies are described using the service ontology provided by the quality as-

surance framework. The ontology is shared by service consumers and providers,

and supplies a set of standard quality descriptions, constraints and measurement

units. If the framework did not provide such an ontology, service consumers and

providers would have to agree upon the description terms to use, so as to re-

duce ambiguity and misunderstandings. As the ontology enables the expression of

machine-readable service and strategy descriptions, a high degree of automation

can be achieved in processes such as service negotiation, selection and monitoring.

5.3.1 Consumer Strategy

Each consumer has an overall strategy for the service or service composition it

requires. For a composition strategy, the consumer assigns each service a weight

between 0.0 and 1.0, which indicates the service’s importance relative to other ser-

vices in the composition, so that the weights of all services in the composition add

up to 1.0. The consumer strategy also specifies a series of weights which balance

the importance of a provider’s proposed QoS, either advertised or negotiated, with

the reputation of the provider. Provider reputation is itself weighted in terms of

a provider’s global reputation, and any personal experience the consumer has of

a provider. Finally, the consumer strategy contains a reputation threshold, which

specifies the minimum level of provider reputation acceptable to the consumer. A

summarised consumer strategy for the navigation composition is given in Table 5.2.

The consumer strategy then contains further individual strategies for each ser-

vice required for the composition. Each service strategy is then broken down into

individual quality strategies, which are assigned to specific service operations, or

assigned over the service as a whole. An individual consumer strategy for the map

service aspect of the navigation composition is given in Table 5.3.

In the example shown in Table 5.3, availability, ram and response time quality

strategies are assigned to the operation used to retrieve a map for a given location.

The cost and lease quality strategies are assigned to the map service itself, and

apply across all operations the service provides. However, the map service example

95

Chapter 5: Evaluation Service Strategy

Service Type Service Weight

InformationService 0.30
LocationService 0.20
MapService 0.20
TrafficService 0.20
WeatherService 0.10

Total 1.00

(a) Service weights.

Reputation Property Weight

Global Reputation Weight 0.30
Personal Experience Weight 0.70
Proposal Weight 0.40
Reputation Weight 0.60
Reputation Threshold 0.25

(b) Reputation weights and threshold.

Table 5.2: Strategy summary for the automobile navigation system.

Quality
Type

Assigned To Quality
Weight

Quality
Ideal

Quality
Limit

Strategy
Type

Relations (with Relation
Type and Proportionality
Constant)

cost MapService 0.70a ≤0.00e ≤2.00e minimise lease (direct, 1.0)
availability (inverse, 0.25)
ram (inverse, 0.25)
response time (inverse, 0.5)

lease MapService 0.30 ==60min ≤120min minimise cost (direct, 1.0)
availability getMap(location:

Location):Map
0.40b ≥90% ≥75% maximise cost (inverse, 0.25)

ram getMap(location:
Location):Map

0.10 ≤32KB ≤48KB minimise cost (inverse, 0.25)

response
time

getMap(location:
Location):Map

0.50 ≤100ms ≤5000ms minimise cost (inverse, 0.5)

aIn relation with all service-level qualities (i.e. cost and lease).
bIn relation with all qualities of the same operation (i.e. availability, ram and response time).

Table 5.3: Map service strategy for the automobile navigation system.

in Table 5.3 features only a single service operation.

With the exception of the availability quality, the general consumer strategy is

to minimise the value of each quality within the constraints describing the ideal

quality and the limit for the least acceptable quality. The consumer strategy also

specifies any relations between interdependent qualities. For example, the strat-

egy in Table 5.3 describes the relationship between lease and cost to be directly

proportional, with a proportionality constant of 1.0. This means any increase or

decrease in the length of the service lease, respectively increases or decreases the

cost of the service by a directly proportional amount.

5.3.2 Provider Strategy

A service provider has a strategy for each service it is prepared to provide to one

or more service consumers. The strategy describes the standard QoS the provider

96

Chapter 5: Evaluation Initial Service Provider Selection

wishes to provide each consumer. If a consumer demands an alternative QoS dur-

ing negotiation, the strategy gives the provider’s broker the information required to

balance service resources among current and potential consumers. The strategies

for the set of map service providers used in the experiments are summarised in Ta-

ble 5.4. The differences between the provider strategies mean that the consumer

will usually reach service proposals of varying acceptability with each provider.

Quality Type Advertised
Constraint

Units Strategy Provider
1

Provider
2

Provider
3

Provider
4

Provider
5

cost ≤ e maximise 0.275 to
4.00

0.50 to
5.00

0.10 to
5.00

0.10 to
10.00

0.25 to
5.00

lease ≤ min maximise 5 to
240

60 to
720

60 to
120

30 to
720

10 to
480

availability ≥ % minimise 80 to
95

80 to
90

75 to
95

65 to
95

65 to
95

ram < KB maximise 4 to
128

16 to
128

2 to
32

16 to
256

16 to
256

response time < ms maximise 1000 to
5000

2500 to
10000

1000 to
5000

2500 to
10000

1000 to
5000

Table 5.4: Summarised service strategies for the map service providers.

The general provider strategy is to minimise resource usage while maximising

the price of the services provided. Provider strategies for individual qualities are

typically opposite to the consumer strategy. However, it is possible for a provider

and consumer to share a common strategy for achieving certain QoS aims, such

as completing a transaction within a certain timeframe.

5.4 Initial Service Provider Selection

The hypothesis for the initial service provider selection is that given a number

of functionally-equivalent service providers with differing non-functional qualities

and reputation, the framework will select the most acceptable provider according

to the consumer strategy.

Consumer brokers select service providers based on the service proposals they

secure from provider brokers, and the current provider reputation information.

Reputation provides additional criteria for the service negotiation and selection

processes. The reputation threshold specified in the consumer strategy also en-

ables a consumer broker to limit negotiation to a reputable subset of the available

providers for each service; if a provider’s reputation is below the acceptable reputa-

tion threshold, the consumer broker will not negotiate with the provider’s broker.

97

Chapter 5: Evaluation Initial Service Provider Selection

During negotiation with a provider broker, the consumer broker combines the

acceptability of the service proposal received from the provider broker, with the

available reputation information for the provider, to determine the overall accept-

ability of a provider. The overall provider acceptability is calculated by apply-

ing proposal and reputation weights specified in the consumer strategy, to the

provider’s service proposal and reputation, and combining the result.

5.4.1 Initial Service Provider Reputation

The initial overall map service provider reputation information stored in the repu-

tation system is shown in Figure 5.2. Providers have an overall reputation, based

on previous ratings made by service consumers to the reputation system provided

by the quality assurance framework. Providers also have separate reputations for

the individual service qualities they offer, e.g. response time.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Ac
ce

pt
ab

ili
ty

Provider Number

cost [services.MapService]
lease [services.MapService]

availability [services.MapService.getMap(services.Location)]
ram [services.MapService.getMap(services.Location)]

response time [services.MapService.getMap(services.Location)]

Figure 5.2: Initial map service provider reputation.

The historical ratings received for each map service provider are shown in Fig-

ure 5.3. These ratings have been made over a period of time, and are combined

together to form the overall reputation of each provider shown in Figure 5.2.

98

Chapter 5: Evaluation Initial Service Provider Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

Ac
ce

pt
ab

ili
ty

Reputation Updates

MapService Provider 1
MapService Provider 2
MapService Provider 3
MapService Provider 4
MapService Provider 5

failing

failing
failed

failing

failing

working

working

working

failed failing
working

Figure 5.3: Initial historical map service provider ratings.

5.4.2 Initial Service Negotiation

Service brokers discover each other via the brokerage system provided by the qual-

ity assurance framework. The consumer broker establishes a negotiation session

with the broker of each available reputable provider, for each service type required

by the consumer. The consumer specifies a maximum number of negotiation part-

ners, to avoid lengthy negotiations in the event of a multitude of providers.

Provider brokers query the reputation system before negotiating with a con-

sumer broker, to see how the consumer may have rated the provider broker’s

client in the past. The reputation threshold in the provider strategy is used by

the provider broker, to limit negotiation to consumers which have provided the

provider with a rating it considers fair, and to those consumers which have not

previously used services from the provider.

Negotiation sessions may be unilaterally terminated by either party if an ac-

ceptable service proposal is not reached during negotiation. The final service

proposal may be unilaterally rejected if another party offers a more acceptable pro-

posal, or has better reputation. Otherwise, the final service proposal is accepted

by both parties. The negotiation model is discussed in more detail in Section 4.2.3.

99

Chapter 5: Evaluation Initial Service Provider Selection

 0

 0.2

 0.4

 0.6

 0.8

 1
1

PR
O

PO
SE

 (
RE

C’
D

)

2
PR

O
PO

SE
 (

SE
N

T)

3
PR

O
PO

SE
 (

RE
C’

D
)

4
PR

O
PO

SE
 (

SE
N

T)

5
PR

O
PO

SE
 (

RE
C’

D
)

6
PR

O
PO

SE
 (

SE
N

T)

7
PR

O
PO

SE
 (

RE
C’

D
)

8
PR

O
PO

SE
 (

SE
N

T)

9
PR

O
PO

SE
 (

RE
C’

D
)

10
 A

CC
EP

T
(S

EN
T)

11
 A

CC
EP

T
(R

EC
’D

)

Ac
ce

pt
ab

ili
ty

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

Figure 5.4: Initial negotiation with broker of map service provider 1. Acknowl-
edgement messages (ACKs) are omitted for clarity.

 0

 0.2

 0.4

 0.6

 0.8

 1

Ac
ce

pt
ab

ili
ty

Message Proposal

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

==1.32 €
==60 min

>=90%
<=32 KB
<=1000 ms

Figure 5.5: Initial accepted map service proposal, corresponding to the final ac-
cept messages in the negotiation session shown in Figure 5.4.

100

Chapter 5: Evaluation Initial Service Provider Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

1
PR

O
PO

SE
 (

RE
C’

D
)

2
PR

O
PO

SE
 (

SE
N

T)

3
PR

O
PO

SE
 (

RE
C’

D
)

4
PR

O
PO

SE
 (

SE
N

T)

5
PR

O
PO

SE
 (

RE
C’

D
)

6
PR

O
PO

SE
 (

SE
N

T)

7
PR

O
PO

SE
 (

RE
C’

D
)

8
PR

O
PO

SE
 (

SE
N

T)

9
PR

O
PO

SE
 (

RE
C’

D
)

10
 R

EJ
EC

T
(S

EN
T)

Ac
ce

pt
ab

ili
ty

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

(a) Session with broker of provider 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

1
PR

O
PO

SE
 (

RE
C’

D
)

2
PR

O
PO

SE
 (

SE
N

T)

3
PR

O
PO

SE
 (

RE
C’

D
)

4
PR

O
PO

SE
 (

SE
N

T)

5
PR

O
PO

SE
 (

RE
C’

D
)

6
PR

O
PO

SE
 (

SE
N

T)

7
PR

O
PO

SE
 (

RE
C’

D
)

8
PR

O
PO

SE
 (

SE
N

T)

9
PR

O
PO

SE
 (

RE
C’

D
)

10
 R

EJ
EC

T
(S

EN
T)

Ac
ce

pt
ab

ili
ty

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

(b) Session with broker of provider 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

1
PR

O
PO

SE
 (

RE
C’

D
)

2
PR

O
PO

SE
 (

SE
N

T)

3
PR

O
PO

SE
 (

RE
C’

D
)

4
PR

O
PO

SE
 (

SE
N

T)

5
PR

O
PO

SE
 (

RE
C’

D
)

6
PR

O
PO

SE
 (

SE
N

T)

7
PR

O
PO

SE
 (

RE
C’

D
)

8
PR

O
PO

SE
 (

SE
N

T)

9
PR

O
PO

SE
 (

RE
C’

D
)

10
 R

EJ
EC

T
(S

EN
T)

Ac
ce

pt
ab

ili
ty

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

(c) Session with broker of provider 4.

 0

 0.2

 0.4

 0.6

 0.8

 1
1

PR
O

PO
SE

 (
RE

C’
D

)

2
PR

O
PO

SE
 (

SE
N

T)

3
PR

O
PO

SE
 (

RE
C’

D
)

4
PR

O
PO

SE
 (

SE
N

T)

5
PR

O
PO

SE
 (

RE
C’

D
)

6
PR

O
PO

SE
 (

SE
N

T)

7
PR

O
PO

SE
 (

RE
C’

D
)

8
PR

O
PO

SE
 (

SE
N

T)

9
PR

O
PO

SE
 (

RE
C’

D
)

10
 R

EJ
EC

T
(S

EN
T)

Ac
ce

pt
ab

ili
ty

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

(d) Session with broker of provider 5.

Figure 5.6: Initial negotiation sessions with other map service provider brokers.

The negotiation session between the consumer broker and the broker of map

service provider 1, results in an accept decision, as shown in Figure 5.4. The

acceptability and values of the accepted service proposal are shown in Figure 5.5.

The accept proposal shown in Figure 5.5 corresponds to the final proposal in the

session shown in Figure 5.4, and forms the basis of the SLA between the consumer

and provider of the map service.

Figure 5.6 shows the remaining negotiation sessions with the other map service

providers, which result in a reject from the consumer broker. Although the other

map service providers offer more acceptable service proposals than map service

provider 1, their reputation is poorer, as shown in Figure 5.2, leading to rejection.

These negotiation session examples use the bargaining negotiation model and

utility-based acceptability formulas described in Chapter 4.

101

Chapter 5: Evaluation Initial Service Provider Selection

5.4.3 Initial Service Provider Selection Results

A comparison of the map service proposals negotiated with each provider broker

is shown in Figure 5.7.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Ac
ce

pt
ab

ili
ty

Provider Number

cost [services.MapService]
lease [services.MapService]

availability [services.MapService.getMap(services.Location)]
ram [services.MapService.getMap(services.Location)]

response time [services.MapService.getMap(services.Location)]

Figure 5.7: Initial map service proposal acceptability.

Using weights specified in the consumer strategy, the consumer broker combines

each service proposal with the reputation of the proposal’s provider, to determine

the overall acceptability of each map service provider to the consumer. These

weights give map service provider 1 the highest acceptability to the consumer.

The overall acceptability of each map service provider is shown in Figure 5.8.

The selection of the map service provider is not made until acceptable service

proposals are reached for each service required for the navigation composition.

Each service is individually-weighted in terms of its importance to the consumer,

and the consumer broker computes and ranks the acceptability of each possible

composition. Once the most acceptable composition is determined, the providers of

the composition proposals are accepted, and the remaining providers are rejected.

The overall acceptability of the navigation composition is shown in Figure 5.9,

which represents the combined acceptability of the accepted service proposals, and

the reputation of the service providers.

102

Chapter 5: Evaluation Initial Service Provider Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Ac
ce

pt
ab

ili
ty

Provider Number

cost [services.MapService]
lease [services.MapService]

availability [services.MapService.getMap(services.Location)]
ram [services.MapService.getMap(services.Location)]

response time [services.MapService.getMap(services.Location)]

Figure 5.8: Initial overall map service provider acceptability. This represents
the combined acceptability of the provider service proposals in Fig-
ure 5.7, with the provider reputation in Figure 5.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

Ac
ce

pt
ab

ili
ty

Composition

services.InformationService [weight=0.3]
services.TrafficService [weight=0.2]

services.LocationService [weight=0.2]
services.WeatherService [weight=0.1]

services.MapService [weight=0.2]

Figure 5.9: Initial overall navigation composition acceptability, inclusive of ser-
vice proposal acceptability and provider reputation.

103

Chapter 5: Evaluation Service Monitoring

This initial provider selection experiment has failed to disprove the hypothesis

that given a number of functionally-equivalent service providers with differing non-

functional qualities and reputation, the framework will select the most acceptable

provider according to the consumer strategy.

5.5 Service Monitoring

After service negotiation is complete, the consumer broker provides the consumer

with invokable references to the services it has requested. The consumer supplies

a copy of these references to the monitoring system, which assembles monitors for

observing, auditing and forecasting runtime service performance. The consumer

also supplies the monitoring system with the SLA for each service to be monitored,

and a monitoring specification describing which service qualities the consumer

requires to be measured, audited and forecast.

The passive monitoring approach provided by the framework reference imple-

mentation is used for the evaluation experiments. Service monitors collect pre-

invocation and post-invocation measurement data each time a service is invoked

by the consumer. The measurement data is fed through an auditor component,

which compares the measured service performance with the SLA negotiated be-

tween the brokers of the service consumer and provider. The auditor additionally

makes use of a forecaster component, for estimating future service quality based on

past service performance, and to observe trends in service quality. The forecast-

ing approach used for the experiments is an exponential moving average (EMA)

model, which assigns more importance to recent service performance observations.

5.6 Regular Service Performance

The hypothesis for regular service performance is that given no occurrences of

service failure, the framework will not need to renegotiate or substitute services

for the consumer.

The observed and forecast service quality data received from the map service

monitor during normal service invocation, i.e. without any QoS failures, is shown

in Figure 5.10. The consumer has requested the monitor audits the runtime avail-

ability, ram usage and response time qualities. The remaining lease and cost

qualities are static properties of the SLA, and do not require monitoring.

104

Chapter 5: Evaluation Regular Service Performance

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70 80 90

Av
ai

la
bi

lit
y

(%
)

SLA
Observed
Forecast

 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50 60 70 80 90

RA
M

 U
sa

ge
 (

K
B)

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60 70 80 90Re
sp

on
se

 T
im

e
(m

s)

Monitor Events

Figure 5.10: Regular service monitor events.

Under regular service performance, the monitored service availability remains

at 100%, which exceeds the required SLA objective of ≥85% for that quality. The

amount of ram required to process the map service responses fluctuates between

approximately 1 KB and 16 KB, but remains well within the SLA objective of

≤32 KB. The response time quality fluctuates between approximately 200 ms and

800 ms, and also remains within the SLA objective of ≤1000 ms.

The monitoring data is translated into the runtime acceptability of individual

service and composition invocations, as shown in Figure 5.11 and Figure 5.12.

The acceptability of each quality is calculated by applying the weight assigned

to the quality from the consumer strategy. The monitored availability at 100% is

shown with an acceptability of 0.4, which corresponds to its weight in the consumer

105

Chapter 5: Evaluation Regular Service Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

Ac
ce

pt
ab

ili
ty

Service Invocations

lease [services.MapService]
cost [services.MapService]

response time [getMap]
availability [getMap]

ram [getMap]

Figure 5.11: Regular service invocations.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

Ac
ce

pt
ab

ili
ty

Composition Invocations

composition average
services.MapService

services.LocationService
services.TrafficService

services.WeatherService
services.InformationService

Figure 5.12: Regular composition invocations.

106

Chapter 5: Evaluation Recurring Service Failure

strategy, as shown in Table 5.3. The acceptability of the response time quality

fluctuates in line with the measurements recorded by the service monitor, which

are greater than the consumer ideal of ≤100 ms, but within the SLA objective.

The ram quality acceptability is constant at 0.1, corresponding to its weight in

the consumer strategy, as ram measurements are below both the consumer ideal

of ≤32 KB and below the SLA objective. The service lease and cost qualities are

not monitored, so the acceptability is based on the SLA values for these qualities.

This regular service performance experiment has failed to disprove the hypoth-

esis that given no occurrences of service failure, the framework will not need to

renegotiate or substitute services for the consumer.

5.7 Recurring Service Failure

The hypothesis for a recurring service failure is that given the availability of an

acceptable service provider, the framework will renegotiate and substitute the

service for the consumer as needed.

The recurring service failure scenario uses the same automobile navigation sys-

tem consumer strategy and map service providers as the previous experiment. The

observed and forecast service quality data from the map service monitor are shown

for the recurring service failure scenario in Figure 5.13.

The SLA violations observed by the service monitor are visible on the response

time plot shown in Figure 5.13. The initial SLA objective of ≤1000 ms for the

response time quality is violated on the 30th occasion the consumer invokes the

map service. The violation is so severe that after renegotiating with the map ser-

vice provider, the first provider is no longer the most acceptable provider available

for the service. The consumer broker consequently switches the consumer to a

second map service provider. The second provider also fails during the 60th ser-

vice invocation, and the consumer is switched to a third provider which maintains

acceptable QoS until the consumer unleases the service. The consumer broker

is able to maintain an SLA value of ≤1000 ms when transitioning between each

map service provider, but each subsequent provider leaves the consumer with a

noticeable decrease in overall responsiveness.

The affect of the service failures on the runtime acceptability of the service

qualities is shown in Figure 5.14. The acceptability of the cost quality increases

with the switch to the second provider, and decreases again with the third provider.

107

Chapter 5: Evaluation Recurring Service Failure

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70 80 90

Av
ai

la
bi

lit
y

(%
)

SLA
Observed
Forecast

 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50 60 70 80 90

RA
M

 U
sa

ge
 (

K
B)

 0
 500

 1000
 1500
 2000
 2500

 0 10 20 30 40 50 60 70 80 90Re
sp

on
se

 T
im

e
(m

s)

Monitor Events

Figure 5.13: Recurring map service response time failure.

The average acceptability of the response time quality decreases as the consumer

is switched between subsequent providers.

After an SLA violation, and before attempting to renegotiate the problem-

atic service, the service consumer updates the reputation system with a rating

for the service provided by the current problematic map service provider. Fig-

ure 5.15 shows the additional failed rating provided by the consumer for map

service provider 1. Figure 5.16 shows how the new rating decreases the overall

reputation of the provider. The updated reputation also affects the overall accept-

ability of map service provider 1, as shown in Figure 5.17.

108

Chapter 5: Evaluation Recurring Service Failure

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

Ac
ce

pt
ab

ili
ty

Service Invocations

service negotiated

switched provider switched provider

lease [services.MapService]
cost [services.MapService]

response time [getMap]
availability [getMap]

ram [getMap]

Figure 5.14: Recurring map service failures and switching providers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

Ac
ce

pt
ab

ili
ty

Reputation Updates

MapService Provider 1
MapService Provider 2
MapService Provider 3
MapService Provider 4
MapService Provider 5

failing

failing
failed

failing

failing

working

working

working

failed failing
workingfailed

Figure 5.15: Updated map service provider ratings.

109

Chapter 5: Evaluation Recurring Service Failure

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Ac
ce

pt
ab

ili
ty

Provider Number

cost [services.MapService]
lease [services.MapService]

availability [services.MapService.getMap(services.Location)]
ram [services.MapService.getMap(services.Location)]

response time [services.MapService.getMap(services.Location)]

Figure 5.16: Updated map service provider reputation.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Ac
ce

pt
ab

ili
ty

Provider Number

cost [services.MapService]
lease [services.MapService]

availability [services.MapService.getMap(services.Location)]
ram [services.MapService.getMap(services.Location)]

response time [services.MapService.getMap(services.Location)]

Figure 5.17: Updated overall map service provider acceptability.

110

Chapter 5: Evaluation Recurring Service Failure

The renegotiation with map service provider 1 is shown in Figure 5.18. While

the renegotiated service proposal is acceptable, and offers an overall improvement

in acceptability over the QoS measured by the map service monitor, when com-

bined with the map service provider reputation, the renegotiated service proposal

is no longer the most acceptable from the set of available map service providers.

 0

 0.2

 0.4

 0.6

 0.8

 1

1
PR

O
PO

SE
 (

RE
C’

D
)

2
PR

O
PO

SE
 (

SE
N

T)

3
PR

O
PO

SE
 (

RE
C’

D
)

4
PR

O
PO

SE
 (

SE
N

T)

5
PR

O
PO

SE
 (

RE
C’

D
)

6
PR

O
PO

SE
 (

SE
N

T)

7
PR

O
PO

SE
 (

RE
C’

D
)

8
PR

O
PO

SE
 (

SE
N

T)

9
PR

O
PO

SE
 (

RE
C’

D
)

10
 A

CC
EP

T
(S

EN
T)

11
 A

CC
EP

T
(R

EC
’D

)

12
 P

RO
PO

SE
 (

SE
N

T)

13
 P

RO
PO

SE
 (

RE
C’

D
)

14
 R

EJ
EC

T
(S

EN
T)

Ac
ce

pt
ab

ili
ty

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

Figure 5.18: Renegotiation with map service provider 1.

The consumer broker switches the consumer to a second provider, map service

provider 3, which now offers the most acceptable service. When the second map

service provider also later violates the SLA response time objective, the renego-

tiation process is repeated. As with the first provider, the severity of the SLA

violation in combination with the provider’s decrease in reputation leads the con-

sumer broker to switch the consumer to a third provider, map service provider 5.

The third map service provider continues to provide acceptable QoS without SLA

violations, until the consumer unleases the navigation services.

Figure 5.19 shows the overall acceptability of the navigation services, and the

affect of the map service failures and provider switches on the overall composition.

111

Chapter 5: Evaluation Handling SLA Violations

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

Ac
ce

pt
ab

ili
ty

Composition Invocations

composition average
services.MapService

services.LocationService
services.TrafficService

services.WeatherService
services.InformationService

Figure 5.19: Recurring map service failure impact on composition.

This experiment has failed to disprove the hypothesis that given a recurring

service failure and the availability of an acceptable service provider, the framework

will renegotiate and substitute the service for the consumer as needed.

5.8 Handling SLA Violations

When an SLA objective for a quality such as response time is violated, the con-

sumer assumes that the monitored quality level which caused the violation is the

best the provider can guarantee. If the monitored quality level is still within the

acceptable limits specified by the consumer strategy, the consumer broker will at-

tempt to renegotiate the service with the provider’s broker, using the monitored

quality level as the starting point. During renegotiation, the consumer broker ex-

pects the provider’s broker to revise and improve other service qualities, such as

cost, so as to raise the overall acceptability of the provider to the consumer.

112

Chapter 5: Evaluation Handling SLA Violations

5.8.1 Severe Violations

The hypothesis in the event of a severe SLA violation is that the current service

provider will not remain the most acceptable available provider of the service,

if its reputation has been damaged badly enough and it does not make enough

improvement to the overall acceptability of the service during renegotiation.

The SLA violations discussed in Section 5.7 are so severe that the consumer

broker switches the service consumer to another provider of the same service, as

shown in Figure 5.14. Due to the decrease in a provider’s reputation after a severe

SLA violation, the provider’s broker must substantially improve the service pro-

posal during renegotiation, in order to retain the highest acceptability out of the

available providers for the same type of service. In the recurring failure scenario

presented in Section 5.7, the provider brokers, constrained by the service strategies

of the providers they represent, are unable to sufficiently improve the service pro-

posal to maintain the highest provider acceptability. As such, the recurring failure

scenario has failed to disprove the severe SLA violation hypothesis put forward at

the beginning of this section.

5.8.2 Moderate Violations

The hypothesis in the event of a moderate SLA violation is that the current service

provider will remain the most acceptable available provider of the service, if its

reputation has not been damaged badly enough and it makes enough improvement

to the overall acceptability of the service during renegotiation.

When an SLA violation is less severe, the consumer and provider broker can

often renegotiate terms of service that preserve the provider’s acceptability to the

consumer, and enable the provider to retain the consumer’s business. This section

discusses two alternative scenarios to the recurring failure scenario, which this time

feature more moderate SLA violations.

Figure 5.20 shows a more gradual decrease in the acceptability of the response

time quality, until the SLA objective for the quality is violated. The gradual de-

crease leads to a moderate SLA violation, and after renegotiation the current map

service provider still remains the most acceptable available to the consumer. In

response to the violation, the provider broker reduces the service cost, increasing

the overall acceptability of the provider to the consumer. In this particular exam-

ple, the service provider manages to stabilise the provided response time after the

113

Chapter 5: Evaluation Service Outage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

Ac
ce

pt
ab

ili
ty

Service Invocations

service negotiated service renegotiated

lease [services.MapService]
cost [services.MapService]

response time [getMap]
availability [getMap]

ram [getMap]

Figure 5.20: Map service failure, followed by provider QoS stabilisation.

service is renegotiated, and prevents further SLA violations.

Another moderate SLA violation is shown in Figure 5.21. On this occasion, the

response time quality becomes more erratic and the response time SLA objective

is violated. Renegotiation with the map service provider succeeds, but the rene-

gotiated SLA is immediately violated by the provider a second time. The second

violation causes the provider’s reputation to fall so low that it no longer offers the

most acceptable map service to the consumer. The consumer broker consequently

switches the consumer to another provider, which offers a greater acceptability.

Both of the experiments shown in Figure 5.20 and Figure 5.21, have failed to

disprove the moderate SLA violation hypothesis put forward at the beginning of

this section.

5.9 Service Outage

The hypothesis for an SLA violation caused by a service outage is that given the

availability of an acceptable service provider, the framework will renegotiate or

substitute the problematic service as required.

114

Chapter 5: Evaluation Service Outage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

Ac
ce

pt
ab

ili
ty

Service Invocations

service negotiated service renegotiated

switched provider

lease [services.MapService]
cost [services.MapService]

response time [getMap]
availability [getMap]

ram [getMap]

Figure 5.21: Map service failure, followed by another failure after renegotiation.

For the service outage scenario, the service concerned is the weather service

element of the navigation application, and the consumer is a mobile phone device.

The consumer secures an SLA objective of≥95% for the service availability quality.

The first four weather service invocations complete successfully, but the consumer

experiences a service outage the fifth time it invokes the weather service. The

service outage causes the monitored service availability to drop to 80%, which is

a violation of the negotiated SLA objective.

Figure 5.22 shows the monitor data capturing the service outage, and the

drop in the monitored availability quality which causes the SLA violation. Due

to the service outage, the monitor is unable to measure and audit the service

response time quality during the fifth service invocation. Unlike the map service,

the weather service does not have an negotiated SLA objective for the ram quality.

The affect of the service outage on the runtime acceptability of the weather ser-

vice qualities is shown in Figure 5.23. Due to the severity of the SLA violation, the

decrease in the weather service provider’s reputation causes the consumer broker

to switch the consumer to another provider. The second weather service provider

offers a response time improvement, but its cost is moderately less acceptable

115

Chapter 5: Evaluation Off-Peak and Peak Service Performance

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14

Av
ai

la
bi

lit
y

(%
)

SLA
Observed
Forecast

 0
 500

 1000
 1500
 2000
 2500

 0 2 4 6 8 10 12 14Re
sp

on
se

 T
im

e
(m

s)

Monitor Events

Figure 5.22: Weather service outage and availability failure.

to the consumer. Figure 5.24 shows the runtime acceptability of the navigation

services, and the affect of the weather service outage on the acceptability of the

overall composition.

This experiment has failed to disprove the hypothesis that given an SLA vi-

olation caused by a service outage, and the availability of an acceptable service

provider, the framework will renegotiate or substitute the problematic service as

required.

5.10 Off-Peak and Peak Service Performance

The hypothesis for an SLA violation during a peak service usage period is that

given the availability of an acceptable service provider, the framework will rene-

gotiate or substitute the problematic service as required.

During peak usage periods, service invocations may becomes less responsive

due to the increased load on service providers. The peak usage scenario involves

the location service element of the navigation application, and the consumer is an

internet tablet device.

116

Chapter 5: Evaluation Off-Peak and Peak Service Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

Ac
ce

pt
ab

ili
ty

Service Invocations

service negotiated

switched provider

lease [services.WeatherService]
cost [services.WeatherService]

response time [getWeatherReport]
availability [getWeatherReport]

Figure 5.23: Weather service outage and switching provider.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

Ac
ce

pt
ab

ili
ty

Composition Invocations

composition average
services.MapService

services.LocationService
services.TrafficService

services.WeatherService
services.InformationService

Figure 5.24: Weather service outage impact on navigation composition.

117

Chapter 5: Evaluation Off-Peak and Peak Service Performance

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70

Av
ai

la
bi

lit
y

(%
)

SLA
Observed
Forecast

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60 70Re
sp

on
se

 T
im

e
(m

s)

Monitor Events

Figure 5.25: Location service response time failure during peak usage period.

The consumer secures an SLA objective of ≤1000 ms for the location service

response time quality. Halfway through the peak usage period, during the 40th

service invocation, the monitored service response time violates the SLA objective

and the location service is renegotiated by the consumer broker. Figure 5.25 shows

the monitor data for the peak service usage period, which is highlighted by the

location service response time measurements, and the SLA violation.

The location service response time SLA violation is moderate, and the con-

sumer and provider brokers successfully renegotiate the service. In response to the

SLA violation, the service provider makes a slight reduction to the cost of the ser-

vice, which increases the acceptability of its service to the consumer. The runtime

acceptability of the location service qualities is shown in Figure 5.26. The affect

of the peak service usage period on the runtime acceptability of the navigation

services and the overall composition is shown in Figure 5.27.

This experiment has failed to disprove the hypothesis that given an SLA vi-

olation during a peak usage period, and the availability of an acceptable service

provider, the framework will renegotiate or substitute the problematic service as

required.

118

Chapter 5: Evaluation Off-Peak and Peak Service Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

Ac
ce

pt
ab

ili
ty

Service Invocations

service negotiated service renegotiated

lease [services.LocationService]
cost [services.LocationService]

response time [getLocation]
availability [getLocation]

Figure 5.26: Location service failure and renegotiation during peak service usage
period.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

Ac
ce

pt
ab

ili
ty

Composition Invocations

composition average
services.MapService

services.LocationService
services.TrafficService

services.WeatherService
services.InformationService

Figure 5.27: Peak service performance impact on navigation composition.

119

Chapter 5: Evaluation Consumer Competition

5.11 Consumer Competition

This scenario discusses competition between service consumers. The hypothesis is

that it is possible for one consumer to be unable to secure an acceptable service

proposal, as a direct result of another consumer competing for the resources of the

same provider.

Each service provider has a finite amount of resources to support the SLA

guarantees it provides to the consumers of its services. The provider broker ne-

gotiates service agreements with an awareness of the provider’s current resources,

so as not to make SLA guarantees for QoS levels the provider cannot provide in

practice. The resource-aware negotiation requires the provider broker to allocate

and deallocate portions of the provider’s resources during the negotiation process.

An example of consumer competition is shown in Figure 5.28, where a map

service provider is unable to provide an automobile navigation system consumer

with an acceptable response time guarantee. Shortly before negotiating with the

automobile consumer, the provider broker allocates the majority of the provider’s

remaining response time resources to a mobile phone consumer. With few resources

left to support a fast response time, the provider is unable to offer an acceptable

proposal to the automobile consumer. Consequently, the broker for the automobile

terminates the negotiation on receiving the unacceptable response time offer.

The consumer competition experiment shown in Figure 5.28 has failed to dis-

prove the hypothesis put forward at the beginning of this section.

5.12 Framework Limitations

The experiments have so far shown how the quality assurance framework is able

to maintain system quality in a variety of QoS scenarios. However, there are

situations when the framework is unable to ensure system quality without some

consumer intervention.

The first such situation, discussed in Section 5.12.1, arises when the consumer

broker is unable to secure an acceptable service proposal for a particular service. If

the service is part of a composition, the consumer broker cannot accept proposals

for other services in the composition until the situation is resolved. The second

situation, discussed in Section 5.12.2, arises when one or more of the framework

quality assurance systems becomes unavailable. Depending on system availabil-

120

Chapter 5: Evaluation Framework Limitations

 0

 0.2

 0.4

 0.6

 0.8

 1
1

PR
OP

OS
E

(R
EC

’D
)

2
PR

OP
OS

E
(S

EN
T)

3
PR

OP
OS

E
(R

EC
’D

)

4
PR

OP
OS

E
(S

EN
T)

5
PR

OP
OS

E
(R

EC
’D

)

6
PR

OP
OS

E
(S

EN
T)

7
PR

OP
OS

E
(R

EC
’D

)

8
PR

OP
OS

E
(S

EN
T)

9
PR

OP
OS

E
(R

EC
’D

)

10
 A

CC
EP

T
(S

EN
T)

11
 A

CC
EP

T
(R

EC
’D

)

Ac
ce

pt
ab

ilit
y

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

15:15:00 15:15:05 15:15:10 15:15:15 15:15:20 15:15:25 time

(a) Negotiation session with mobile phone consumer completes successfully.

 0

 0.2

 0.4

 0.6

 0.8

 1

1
PR

OP
OS

E
(R

EC
’D

)

2
PR

OP
OS

E
(S

EN
T)

3
PR

OP
OS

E
(R

EC
’D

)

4
PR

OP
OS

E
(S

EN
T)

5
PR

OP
OS

E
(R

EC
’D

)

6
PR

OP
OS

E
(S

EN
T)

7
PR

OP
OS

E
(R

EC
’D

)

8
TE

RM
IN

AT
E

(S
EN

T)

Ac
ce

pt
ab

ilit
y

cost [services.MapService]
lease [services.MapService]

availability [getMap]
ram [getMap]

response time [getMap]

15:15:3015:15:20 15:15:25 15:15:35 15:15:40 15:15:45 time

(b) Negotiation session with automobile navigation system consumer fails.

Figure 5.28: Negotiation failure due to consumer competition.

121

Chapter 5: Evaluation Framework Limitations

ity, this may require the consumer to handle some parts of the quality assurance

process directly, and reduces the overall effectiveness of the framework.

5.12.1 No Acceptable Services

The framework is unable to help the consumer secure a particular service, when

no acceptable service proposals can be reached. Figure 5.29 shows an overview of

map service provider proposals, in a scenario where the consumer broker is unable

to secure a service proposal with a cost that is acceptable to the consumer.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Ac
ce

pt
ab

ili
ty

Provider Number

cost [services.MapService]
lease [services.MapService]

availability [services.MapService.getMap(services.Location)]
ram [services.MapService.getMap(services.Location)]

response time [services.MapService.getMap(services.Location)]

Figure 5.29: The consumer broker is unable to secure a map service proposal
with a cost that is acceptable to the consumer.

The map service is a required element of the navigation composition. The lack

of an acceptable map service means the consumer broker cannot accept any pro-

posal for the other four services in the composition, regardless of their acceptability,

until an acceptable proposal for the the problematic map service is secured.

The lack of acceptable services is beyond the remit of the framework, as the

framework cannot resolve the issue without intervention from the consumer. The

consumer broker can only inform the consumer that negotiation for the map service

has failed to achieve an acceptable proposal, and provide the consumer with the

details of the most acceptable proposal achieved. The consumer must then have

122

Chapter 5: Evaluation Framework Limitations

the local ability to decide whether to revise its strategy in order to secure the map

service, or go without the navigation application.

If the consumer decides to revise its strategy for the map service, it may increase

the chance of securing an acceptable service proposal in two ways. Firstly, the

consumer may increase its least acceptable value for the cost quality. Secondly,

the consumer may reduce its requirements for the other service qualities, with the

expectation that the map service providers will lower the value of the cost quality

for the service accordingly. It is the responsibility of the consumer to perform any

strategy revisions in a timely manner, so that existing negotiations between the

consumer broker and provider brokers do not expire. Once a strategy revision is

complete, the consumer supplies the revised strategy to its broker, which will then

reopen negotiation with the map service provider brokers.

5.12.2 Framework System Unavailability

The quality assurance framework consists of three primary systems, each which

may be provided as one or more services distributed over the network. It is pos-

sible that these systems may become unavailable at some period in time, e.g. due

to network problems or high demand. This leads to the possibility of different

framework configuration scenarios, as shown in Table 5.5, each providing various

levels of support for the quality assurance process.

If the brokerage system is unavailable, the consumer may use the reputation

system to secure services based purely on the reputation of the available service

providers. Alternatively, the consumer may perform the service negotiation process

directly itself, or instead wait for the brokerage system to become available again.

Once the consumer secures agreements for the services it requires, it can pass

the agreements directly to the monitoring system. While the brokerage system

is unavailable, the consumer will need to assume responsibility for resolving any

SLA violations reported by the monitoring system. If the monitoring system then

becomes unavailable, the consumer will also need to assume responsibility for

measuring service performance. Alternatively, the consumer may choose to lose

the ability to diagnose SLA violations, if it does not have the resources to dedicate

to the monitoring process.

If either of the brokerage or monitoring systems become unavailable, the frame-

work loses the ability to provide an end-to-end quality assurance solution for the

consumer. Depending on the consumer’s requirements, the absence of either sys-

123

Chapter 5: Evaluation Summary

Scenario Brokerage
System

Monitoring
System

Reputation
System

Provided Quality Assurance Support

1 × × × no quality assurance support is provided to
the service consumer or provider

2 × × X the service consumer and provider can query
each other’s reputation

3 × X × the service consumer can monitor services
for SLA violations and service failures

4 X × × the service consumer and provider can
negotiate service agreements

5 × X X the service consumer and provider can query
each other’s reputation, and the consumer
can monitor services for SLA violations and
service failures

6 X × X the service consumer and provider can
negotiate service agreements with an
awareness of each other’s reputation

7 X X × the service consumer and provider can
negotiate service agreements, and
renegotiate agreements in response to
problems detected by the monitoring system

8 X X X the service consumer and provider can
negotiate service agreements with an
awareness of each other’s reputation, and
renegotiate agreements in response to
problems detected by the monitoring system

Key: (X) available, (×) not available

Table 5.5: Different framework configuration scenarios.

tem may require the consumer to expend its own resources in implementing the

service negotiation and monitoring tasks.

Unlike the brokerage and monitoring systems, the reputation system is not

a critical part of the quality assurance solution. Instead, the reputation system

enhances the quality assurance solution by providing additional criteria for the ser-

vice selection process. The reputation system also serves as an additional incentive

for service providers to adhere to the SLAs negotiated with consumers.

5.13 Summary

This chapter identified a set of hypotheses and presented a series of experiments,

to demonstrate and evaluate the key processes performed by the integrated qual-

ity assurance framework. The set of experiments were presented in the form of

124

Chapter 5: Evaluation Summary

several service-oriented QoS scenarios, and demonstrated the quality assurance

processes employed by the framework to support the runtime quality of a service-

oriented system. However, it is also important to acknowledge the limitations of

the study (Kitchenham et al., 2002), such as the use of a simulated system and

the use of predetermined data sets for each scenario.

The chapter then discussed the possible consequences of service competition

between consumers, and presented scenarios which highlight some limitations of

the quality assurance framework.

The following chapter concludes the thesis by comparing the research achieve-

ments against the research objectives outlined in the introduction chapter, and

discusses further research directions which have arisen from the development of

the framework.

125

Chapter 6

Conclusions

This chapter begins by comparing the research achievements of the integrated

quality assurance framework, with the research objectives outlined in the intro-

duction chapter. The chapter then continues with a discussion of future research

directions, which have arisen during the development and evaluation of the frame-

work. The chapter concludes the thesis with a summary of the research problem,

the issues with existing research efforts, and the key contributions put forward in

this thesis.

6.1 Objectives Revisited

This section discusses how the integrated quality assurance framework for service-

oriented systems has addressed the research objectives stated in the thesis in-

troduction. These research objectives are to provide the consumer with increased

control over service quality, provide support for the expression of quality character-

istics, provide a runtime solution for detecting and recovering from SLA violations,

provide support for resource-restricted systems, and to provide customisation sup-

port for integrating different quality assurance techniques and facilitating experi-

mentation. How each research objective has been addressed is now discussed:

• Support for increased consumer control over service quality. The framework

components increase the consumer’s control over service quality as follows:

i. The framework’s service ontology enables the service consumer to con-

trol the specification of service requirements and strategies for realising

service requirements.

126

Chapter 6: Conclusions Objectives Revisited

ii. The framework’s brokerage system provides the consumer with the

means to achieve SLAs for services, which are closer to meeting the

consumer’s requirements. The brokerage system also provides the con-

sumer with renegotiation and recovery mechanisms, which are used to

resolve SLA violations and improve overall QoS acceptability to the

consumer.

iii. The framework’s monitoring system provides an automated approach

for detecting SLA violations, and provides the consumer with the feed-

back required to maintain the quality of a system. The forecasting

performed by service monitors offers the ability to inform the consumer

of potential service failures in advance.

iv. The framework’s reputation system enables consumers to collaborate

with one another, in order to share and receive advance notifications of

unreliable service providers. The reputation system gives the consumer

the means to reward service providers that provide services in accor-

dance with SLAs. Service providers which violate SLAs are penalised

accordingly.

• Support for the expression of quality characteristics. The framework’s service

ontology facilitates the description of service requirements, and strategies for

realising these requirements. The ontology provides a common set of quality

description terms for service consumers and providers, to reduce ambiguity

and misunderstandings. The ontology also supports the specification of re-

lationships between interdependent service qualities. The ontology is central

to facilitating and automating quality assurance processes, such as service

negotiation, selection, monitoring, and the rating of services.

• A runtime solution for quality assurance. The framework improves support

for ensuring runtime quality in service-oriented systems, through the integra-

tion of service monitoring with renegotiation and recovery techniques. The

framework provides the means to detect SLA violations at runtime, and the

means to renegotiate and recover from service failures, in order to maintain

an acceptable runtime system quality. The reputation system also provides

service consumers with up-to-date information regarding the reliability of

service providers.

127

Chapter 6: Conclusions Objectives Revisited

• Support for resource-restricted systems. The framework supports resource-

restricted systems by automatically handling complex quality assurance pro-

cesses on behalf of service consumers and providers. This support is provided

as follows:

i. Resource-restricted systems benefit from having complex service nego-

tiation processes handled on their behalf by the framework’s brokerage

system. Each service consumer and provider receives a unique ser-

vice broker, for the purpose of securing acceptable SLAs. The service

broker is supplied with service strategies which describe its client’s re-

quirements. At this point, the service broker acts autonomously and

independently from its client. The tasks of the consumer broker typi-

cally involve the discovery of provider brokers of the services required

by the consumer, concurrently negotiating SLAs with multiple provider

brokers, and performing service selection decisions. The tasks of the

provider broker typically involve processing negotiation requests, and

performing service resource management.

ii. Resource-restricted service consumers and providers benefit from the

third-party service monitoring system provided by the framework, which

independently audits the runtime performance of services. Instead of

expending resources measuring and auditing the service quality re-

ceived, the resources of the service consumer are free to be allocated

to consuming services. The consumer is only required to respond to

monitoring feedback which indicates a service problem. Providers are

also able to focus their resources on the provision of services, rather

than monitoring the service performance provided to consumers.

iii. The framework’s reputation system offers an efficient method for ser-

vice consumers to collaborate and share experience concerning the per-

formance of service providers. The centralised collation of historical

provider reputation information performed by the reputation system

saves the consumer time and resources, by facilitating the reputation

information’s efficient dissemination. The reputation system also sup-

plies service providers with the feedback history of specific consumers,

so providers can avoid consumers which they deem over-demanding or

unreasonable with their feedback.

128

Chapter 6: Conclusions Future Research Directions

• Support for solution integration and customisation. The quality assurance

framework is designed to integrate approaches from different service qual-

ity assurance domains. For example, the framework integrates techniques

from the service negotiation and monitoring domains, to produce a recovery

mechanism for handling SLA violations and service failures. The framework

also provides support for customising certain aspects of the framework com-

ponents, rather than be limited to specific techniques within each quality

assurance domain. For example, support for different forecasting models can

be added to the monitoring system as required. The integration and cus-

tomisation support provided by the framework facilitates experimentation

with the quality assurance solution.

The framework development also included the design and implementation of

a service doping approach, used to simulate different QoS scenarios in service-

oriented systems. The approach facilitates significantly complex experiments (see

Table 5.1), which would prove difficult to perform in the real-world, requiring a

suitable service marketplace and the co-operation of commercial service providers.

6.2 Future Research Directions

This section provides ideas for future research stemming from the development

and evaluation of the integrated quality assurance framework for service-oriented

systems. Each research direction is now discussed in turn:

• Experiment with quality assurance techniques. While the current framework

provides support for customising the quality assurance solution, little work

has been done in experimenting with different approaches from each of the

quality assurance domains discussed in the literature review. As a proof

of concept, the reference framework implementation has integrated a service

ontology with brokerage, monitoring and reputation systems. An experimen-

tal approach would integrate multiple techniques from within each quality

assurance domain. The experimental approach would then have the ability

to switch between techniques at runtime, in response to changes in service

requirements and the system runtime environment.

• Explore and address monitoring concerns. The monitoring approach cur-

rently provided by the framework does not consider problems external to the

129

Chapter 6: Conclusions Future Research Directions

system. However, it is possible for problems outside of the service provider’s

control to cause an SLA violation. For example, complications below the

application-level QoS monitored by the framework, such as network conges-

tion and high latency, may lead to an SLA violation. It is argued that QoS

cannot be guaranteed when the provider’s network connection is supplied by

a different ISP to the consumer (Molina-Jimenez et al., 2004). Future re-

search could investigate the distribution and installation of monitors to the

same network as the service provider, to mitigate these issues.

The service monitors provided by the framework’s monitoring system lack

communication between themselves for detecting emergent issues between

interdependent services. Future research could investigate the development

of a super monitor, that is capable of observing a service composition and

the interactions between services.

• Improve forecasting support. The forecasting models used by the framework’s

monitoring system are currently weak at detecting trends in service quality.

The weakness of the current forecasting models is due to the substantial

variability of quality experienced in service-oriented systems. The forecast-

ing model used by a service monitor is currently fixed in-place at the time

the monitor is assembled. To provide more accurate QoS estimations, service

monitors could be assembled with multiple forecasting models. The monitors

would then be provided with the ability to switch between different forecast-

ing models at runtime, in order to determine and use the most accurate

model for the current system conditions. In addition, the forecasting models

themselves could be more dynamic. For example, a simple moving average

(SMA) model could implement a self-adjusting window size. Similarly, an

exponential moving average (EMA) model could implement a self-adjusting

smoothing factor.

• Explore and improve upon framework trust issues. The framework provides

security and privacy throughout the domain it oversees, through the use

of keys, tokens and SSL encryption. However, on a more general level the

framework provides no reason why consumers and providers should trust the

results of the framework’s brokerage, monitoring and reputation processes.

As such, the framework requires that service consumers and providers trust

the quality assurance components supplied by the framework.

130

Chapter 6: Conclusions Future Research Directions

• Enhance the framework’s reputation system. The reputation system pro-

vided by the framework only considers the reputation of the service provider

in terms of the QoS provided to a consumer. The provider reputation can

also be extended to incorporate additional criteria, such as communication

and negotiation behaviour. For example, a consumer may use communica-

tion and negotiation criteria, to avoid a provider that requires an unusually

high number of negotiation rounds in order to secure an agreement, when

compared to other providers of the same service.

The framework’s reputation system could also provide the consumer with a

service selection mechanism, enabling the consumer to alternatively secure

service from a provider without the aid of the brokerage system. The reputa-

tion selection mechanism could then be used in the event that the brokerage

system is unavailable. The service selection decision would be based on the

reputation of a provider and its service advertisement.

• Incorporate fallback mechanisms and dynamic strategies. The quality assur-

ance solution provided by the framework works on the assumption that the

framework’s brokerage, monitoring and reputation systems are always avail-

able and functional. The service consumers and providers do not currently

have an explicit fallback mechanism or self-adapting strategy, in the event

that any of the framework systems become unavailable.

• Provide support for other SOAs, e.g. those based on web services. The frame-

work has been evaluated using the Jini service technology platform, but other

SOA implementations are available. For example, service-oriented systems

in industry are commonly realised using web services. It is therefore im-

portant to validate the framework’s ability to support systems implemented

with alternative service platforms, such as those based on web services.

• Integrate framework with product line engineering. There is growing research

interest in integrating service-oriented techniques to promote agility and flex-

ibility in product line engineering. However, this integration presents chal-

lenges such as ensuring the correct runtime quality of product-specific service

compositions, maintaining the integrity of systems which use dynamically-

composed services, and evaluating runtime service quality levels to provide

information for future service selections. The potential of using the quality

assurance framework to address these challenges can be explored.

131

Chapter 6: Conclusions Concluding Remarks

6.3 Concluding Remarks

Ensuring quality in service-oriented systems is a challenging problem, due to the

dynamic and complex nature of systems composed from services. Service quality is

a combination of the QoS supplied by a service provider, interdependencies between

services, constraints imposed by the runtime environment, and other events such as

network failures. It is difficult to anticipate the impact of these factors on system

behaviour. In addition, the third-party nature of services restricts the consumer’s

control over quality issues in service-oriented systems.

Traditional software quality assurance approaches are primarily static in na-

ture, and are unable to adequately satisfy the needs of dynamic service-oriented

systems. Current service-oriented quality assurance approaches are unsatisfac-

tory, as they fail to provide an end-to-end solution for the consumer. In addition,

current solutions offer the consumer little control over service quality, afford lim-

ited support for the expression of quality characteristics, lack adequate support

for runtime quality assurance, provide limited support for resource-restricted sys-

tems, and lack support for integration and experimentation with approaches from

different service quality assurance domains.

This thesis has explored the issue of ensuring quality in service-oriented sys-

tems, and the particular quality issues which plague such systems. The software

as a service development model is still in its early stages, and as such there remain

many challenges in realising the service-oriented software vision. This thesis has

identified these challenges through an extensive literature review, which documents

the state of the art in quality assurance solutions for service-oriented systems. The

thesis then addresses some of these challenges, with the contribution of a solution

that integrates different service-oriented quality assurance approaches, in the form

of a software framework, with the potential for future research and development.

132

Appendix A

Ontology XML Examples

This appendix provides example service contract and strategy XML templates,

that validate against the quality, service and strategy schemas of the service on-

tology provided by the quality assurance framework. The service ontology and

schemas are discussed in Section 4.5 of the thesis.

Appendix A.1 provides a basic service contract description, which validates

against the service XML schema. The contract provides a functional description

of a fictional calculator service, which provides a single add operation for returning

the product of two integers. The service contract specifies service-wide lease and

cost quality constraints. The service contract then specifies the functional descrip-

tion of the add operation, and associates a response time quality constraint with

the operation. The service contract ends with some additional textual information,

which provides the email address of the service’s technical support team.

Appendix A.2 provides a basic consumer service strategy example for the same

fictional calculator service, which validates against the strategy XML schema. The

service strategy first provides values for a series of weights, which are used to

balance the acceptability of the service proposals made by providers, with the

providers’ reputation. The strategy then provides individual strategies for the

service lease, cost and response time qualities. A quality relationship is specified

between the service lease and cost qualities, so that any increase or decrease in

the service lease value, respectively increases or decreases the value of the service

cost directly by the same proportion.

133

Appendix A: Ontology XML Examples Example Service Contract

A.1 Example Service Contract

1 <?xml version="1.0" encoding="UTF-8"?>

2 <service:ServiceContract

3 xmlns:quality="http://www.lancs.ac.uk/~robinsdb/Quality"

4 xmlns:service="http://www.lancs.ac.uk/~robinsdb/Service"

5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6 xsi:schemaLocation="http://www.lancs.ac.uk/~robinsdb/Service Service.xsd ">

7 <service:Lease>

8 <quality:Constraint>

9 <quality:ConstraintDescription>==</quality:ConstraintDescription>

10 <quality:Unit xsi:type="quality:TimeUnitType">

11 <quality:Units>min</quality:Units>

12 </quality:Unit>

13 <quality:Value>60</quality:Value>

14 <quality:ValueType>LONG</quality:ValueType>

15 </quality:Constraint>

16 <quality:QualityDescription>lease</quality:QualityDescription>

17 </service:Lease>

18 <service:ServiceQuality>

19 <quality:Constraint>

20 <quality:ConstraintDescription>==</quality:ConstraintDescription>

21 <quality:Unit xsi:type="quality:CurrencyUnitType">

22 <quality:Units>EUR</quality:Units>

23 </quality:Unit>

24 <quality:Value>1.00</quality:Value>

25 <quality:ValueType>BIGDECIMAL</quality:ValueType>

26 </quality:Constraint>

27 <quality:QualityDescription>availability</quality:QualityDescription>

28 </service:ServiceQuality>

29 <service:OperationContract>

30 <service:Operation>

31 <service:OperationName>add</service:OperationName>

32 <service:OperationSignature>

33 public abstract int com.xyz.CalculatorService.add(int,

34 int) throws java.rmi.RemoteException

35 </service:OperationSignature>

36 <service:ParameterType>int</service:ParameterType>

37 <service:ParameterType>int</service:ParameterType>

38 <service:ReturnType>int</service:ReturnType>

39 </service:Operation>

40 <service:OperationQuality>

41 <quality:Constraint>

134

Appendix A: Ontology XML Examples Example Service Strategy

42 <quality:ConstraintDescription><=</quality:ConstraintDescription>

43 <quality:Unit xsi:type="quality:TimeUnitType">

44 <quality:Units>ms</quality:Units>

45 </quality:Unit>

46 <quality:Value>1000</quality:Value>

47 <quality:ValueType>LONG</quality:ValueType>

48 </quality:Constraint>

49 <quality:QualityDescription>response time</quality:QualityDescription>

50 </service:OperationQuality>

51 </service:OperationContract>

52 <service:ServiceType>com.xyz.CalculatorService</service:ServiceType>

53 <service:TextualInformation>

54 <service:TextInfoType>Technical Support</service:TextInfoType>

55 <service:TextInfoValue>support@xyz.com</service:TextInfoValue>

56 </service:TextualInformation>

57 </service:ServiceContract>

A.2 Example Service Strategy

1 <?xml version="1.0" encoding="UTF-8"?>

2 <strategy:Strategy

3 xmlns:quality="http://www.lancs.ac.uk/~robinsdb/Quality"

4 xmlns:service="http://www.lancs.ac.uk/~robinsdb/Service"

5 xmlns:strategy="http://www.lancs.ac.uk/~robinsdb/Strategy"

6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

7 xsi:schemaLocation="http://www.lancs.ac.uk/~robinsdb/Strategy.xsd ">

8 <strategy:GlobalRatingWeight>0.3</strategy:GlobalRatingWeight>

9 <strategy:PersonalRatingWeight>0.7</strategy:PersonalRatingWeight>

10 <strategy:ProposalWeight>0.3</strategy:ProposalWeight>

11 <strategy:ReputationWeight>0.7</strategy:ReputationWeight>

12 <strategy:ReputationThreshold>0.5</strategy:ReputationThreshold>

13 <strategy:ServiceStrategy>

14 <strategy:AcceptInstruction>

15 BEST_ACCEPTABLE_MATCH

16 </strategy:AcceptInstruction>

17 <strategy:ActiveNegotiation>true</strategy:ActiveNegotiation>

18 <strategy:LeaseStrategy>

19 <strategy:AssignedTo>com.xyz.CalculatorService</strategy:AssignedTo>

20 <strategy:ConstraintStrategy>

21 <strategy:Constraint>

22 <quality:ConstraintDescription>==</quality:ConstraintDescription>

23 <quality:Unit xsi:type="quality:TimeUnitType">

135

Appendix A: Ontology XML Examples Example Service Strategy

24 <quality:Units>min</quality:Units>

25 </quality:Unit>

26 <quality:Value>60</quality:Value>

27 <quality:ValueType>LONG</quality:ValueType>

28 </strategy:Constraint>

29 <strategy:ConstraintLimit>

30 <quality:ConstraintDescription>>=</quality:ConstraintDescription>

31 <quality:Unit xsi:type="quality:UnitType">

32 <quality:Units>min</quality:Units>

33 </quality:Unit>

34 <quality:Value>30</quality:Value>

35 <quality:ValueType>LONG</quality:ValueType>

36 </strategy:ConstraintLimit>

37 <strategy:StrategyType>MAXIMISE</strategy:StrategyType>

38 </strategy:ConstraintStrategy>

39 <strategy:QualityManagementRequired>

40 false

41 </strategy:QualityManagementRequired>

42 <strategy:QualityRelation>

43 <strategy:ProportionalityConstant>1.0</strategy:ProportionalityConstant>

44 <strategy:RelatedQualityStrategy>

45 <strategy:AssignedTo>com.xyz.CalculatorService</strategy:AssignedTo>

46 <strategy:ConstraintStrategy>

47 <strategy:Constraint>

48 <quality:ConstraintDescription>==</quality:ConstraintDescription>

49 <quality:Unit xsi:type="quality:CurrencyUnitType">

50 <quality:Units>EUR</quality:Units>

51 </quality:Unit>

52 <quality:Value>1.00</quality:Value>

53 <quality:ValueType>BIGDECIMAL</quality:ValueType>

54 </strategy:Constraint>

55 <strategy:ConstraintLimit>

56 <quality:ConstraintDescription>

57 <=

58 </quality:ConstraintDescription>

59 <quality:Unit xsi:type="quality:CurrencyUnitType">

60 <quality:Units>EUR</quality:Units>

61 </quality:Unit>

62 <quality:Value>5.00</quality:Value>

63 <quality:ValueType>BIGDECIMAL</quality:ValueType>

64 </strategy:ConstraintLimit>

65 <strategy:StrategyType>MINIMISE</strategy:StrategyType>

136

Appendix A: Ontology XML Examples Example Service Strategy

66 </strategy:ConstraintStrategy>

67 <strategy:QualityManagementRequired>

68 false

69 </strategy:QualityManagementRequired>

70 <strategy:QualityType>cost</strategy:QualityType>

71 <strategy:QualityWeight>0.5</strategy:QualityWeight>

72 </strategy:RelatedQualityStrategy>

73 <strategy:Relation>DIRECT</strategy:Relation>

74 </strategy:QualityRelation>

75 <strategy:QualityType>lease</strategy:QualityType>

76 <strategy:QualityWeight>0.5</strategy:QualityWeight>

77 </strategy:LeaseStrategy>

78 <strategy:ServiceType>com.xyz.CalculatorService</strategy:ServiceType>

79 <strategy:ServiceWeight>1.0</strategy:ServiceWeight>

80 </strategy:ServiceStrategy>

81 </strategy:Strategy>

137

Appendix B

System Visualisation Tool

This appendix presents a walkthrough of the system visualisation tool, used for

capturing and visualising system behaviour at runtime. The system visualisa-

tion tool was used in the development of the evaluation experiments discussed

in Chapter 5, and makes extensive use of the JFreeChart (Gilbert, 2009) applica-

tion programming interface (API) for chart generation.

B.1 Initial State

Before a simulation can be started, a series of command-line scripts are used to

launch the Jini service registry, to launch and register the core brokerage, moni-

toring and reputation framework services, and to launch and register the service

providers required for the simulation. Each different experiment has its own set

of service provider scripts, which configure the providers with particular service

doping mechanisms.

Once the service providers are registered with the Jini service registry, the

system visualisation tool is used to load the consumer service strategies. Before

starting the simulation, the only data available to the visualisation tool is the

initial reputation data, obtained by discovering and querying the service provided

by the framework reputation system. The negotiation and monitoring process

viewers provided by the tool contain no data at this point. When ready, the user

of the tool is able to launch the simulation from the menu, and may later pause

and resume the simulation from the same menu, in order to take snapshots of the

system. The initial state of the visualisation tool is shown in Figure B.1.

138

Appendix B: System Visualisation Tool Initial State

Figure B.1: When visualisation tool is initialised, only reputation data is avail-
able; the negotiation and monitoring views are empty. The tool
provides a menu to start, pause and resume the current simulation.

139

Appendix B: System Visualisation Tool Negotiation Visualisation

B.2 Negotiation Visualisation

The system visualisation tool provides several views of the framework negotiation

process. The tool first provides a negotiation session list viewer, which shows the

current state of each negotiation session for each service consumer. The negotiation

session list viewer is shown in Figure B.2.

Figure B.2: The negotiation session list viewer shows the latest state of each
negotiation session for each consumer.

Using the negotiation session list viewer, the user can select and view any

active or terminated negotiation session. The contents of a negotiation session

are presented by the negotiation session viewer, as shown in Figure B.3. From

the negotiation session viewer, the user is able to view the contents and service

proposal of any negotiation message, as shown in Figure B.4. In the example shown

in Figure B.4, the negotiation message corresponds to the final accept message from

the negotiation session shown in Figure B.3.

For each service consumer, the visualisation tool provides views of the current

acceptability of the available providers for the services required by the consumer.

Figure B.5 shows a service proposal viewer, which compares the latest proposals

from each service provider for a particular service type. The example shows the

acceptability of the available map service providers to the automobile consumer.

The user of the visualisation tool is also able to view the reputation of the

available providers for the services required by each consumer. Figure B.6 shows

the service provider reputation viewer, which compares the reputation of each

140

Appendix B: System Visualisation Tool Negotiation Visualisation

Figure B.3: The negotiation session viewer provided by the visualisation tool, is
used to display the contents of a negotiation session between any
consumer and provider.

service provider for a particular service type. The example shows the reputation

of the same set of map service providers, whose proposals are shown in Figure B.5.

The user is then able to view the overall acceptability of the available providers

for the services required by each consumer. The overall provider acceptability is

the combination of the proposed acceptability data, shown in Figure B.5, with

the reputation data shown in Figure B.6. The reputation and proposal data is

combined according to the weights in the consumer strategy (see Appendix A.2).

The overall acceptability viewer is shown in Figure B.7, for the same set of map

service providers and the automobile consumer already discussed.

Once a service composition has been negotiated for a service consumer, the user

is able to view the acceptability of the service composition proposals, as shown

in Figure B.8. Figure B.9 provides a similar overview of the composition, but

reflects the combination of the service composition proposal acceptability, with

the reputation of the providers for each service in the composition.

141

Appendix B: System Visualisation Tool Negotiation Visualisation

Figure B.4: The negotiation message viewer provided by the visualisation tool.
The example message shown corresponds to the final negotiation
message from the session in Figure B.3.

Figure B.5: The visualisation tool provides an overview of the current service
proposals received for each service consumer and service type. This
example shows the current map service proposals received by the
broker of the automobile consumer.

142

Appendix B: System Visualisation Tool Negotiation Visualisation

Figure B.6: The visualisation tool provides an overview of the current reputation
for each service provider of each service type. This example shows
the current reputation of the available map service providers.

Figure B.7: The visualisation tool provides an overview of the overall provider
acceptability for each service consumer and service type. This ac-
ceptability is a combination of the provider’s proposal acceptability
and reputation. This example shows the current overall acceptability
of the available map service providers to the automobile consumer.

143

Appendix B: System Visualisation Tool Negotiation Visualisation

Figure B.8: The visualisation tool provides an overview of the negotiated com-
position acceptability.

Figure B.9: The visualisation tool provides an overview of the overall composi-
tion acceptability, which incorporates the acceptability of the nego-
tiated service proposals and the reputation of the service providers.

144

Appendix B: System Visualisation Tool Service Performance Visualisation

B.3 Service Performance Visualisation

The system visualisation tool provides views which show the runtime performance

of the services involved in the system. The tool provides a monitor event viewer,

shown in Figure B.10, which displays the data received from the monitors attached

to the services invoked by each consumer. The monitor event viewer logs the

monitor event data in a table, and provides individual charts which display the

observed and forecast values for each monitored service quality. In the example

shown in Figure B.10, the monitor event viewer is displaying the map service

performance for the automobile consumer.

Figure B.10: The visualisation tool provides a monitor event viewer for each
active consumer and service that is invoked in the simulation.

The monitor event data is combined with the service consumer strategies, to

produce views which show the runtime acceptability of the services for each con-

sumer. The visualisation tool provides a service invocation viewer, shown in Fig-

ure B.11, that shows the individual acceptability of monitored qualities for each

service invocation. The tool also provides a composition invocation viewer, shown

in Figure B.12, that shows the overall acceptability of each service in the compo-

sition, and also shows the overall acceptability of the composition itself.

145

Appendix B: System Visualisation Tool Service Performance Visualisation

Figure B.11: The visualisation tool provides a service invocation acceptability
viewer for each active consumer and service that is invoked in the
simulation.

Figure B.12: The visualisation tool provides a composition invocation accept-
ability viewer for each active consumer invoked in the simulation.

146

References

Abran, A., & Moore, J. W. (Eds.). (2004). Guide to the software engineering body

of knowledge, 2004 version. IEEE Computer Society.

Ali, A. S., Majithia, S., Rana, O. F., & Walker, D. W. (2006). Reputation-

based semantic service discovery. Concurrency and Computation: Practice

& Experience, 18 (8), 817–826.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., et

al. (2006). Web services agreement specification (WS-Agreement), version

2006-09-07 (Tech. Rep.). Global Grid Forum.

Apache Software Foundation. (2009). Apache Axis. Retrieved March 17th, 2009,

from http://ws.apache.org/axis/

Baresi, L., Ghezzi, C., & Guinea, S. (2004a). Smart monitors for composed

services. In ICSOC ’04: Proceedings of the 2nd international conference on

service oriented computing (pp. 193–202). New York, NY, USA: ACM Press.

Baresi, L., Ghezzi, C., & Guinea, S. (2004b). Towards self-healing service com-

positions. In PRISE ’04, first conference on the principles of software engi-

neering. Buenos Aires, Argentina.

Baresi, L., & Guinea, S. (2005). Towards dynamic monitoring of WS-BPEL

processes. In ICSOC 2005, third international conference of service-oriented

computing, volume 3826 of lecture notes in computer science (pp. 269–282).

Springer.

Benatallah, B., Dumas, M., Fauvet, M.-C., Rabhi, F. A., & Sheng, Q. Z. (2002).

Overview of some patterns for architecting and managing composite web

services. SIGecom Exchanges , 3 (3), 9–16.

Benjamim, A. C., Sauvé, J., Cirne, W., & Carelli, M. (2004). Independently

auditing service level agreements in the grid. In Proceedings of the 11th HP

OpenView university association workshop, HPOVUA 2004.

Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., & Munro, M.

147

http://ws.apache.org/axis/

References

(2000). Service-based software: the future for flexible software. Asia-Pacific

Software Engineering Conference, 0 , 214.

Bennett, K., Munro, M. C., Gold, N., Layzell, P. J., Budgen, D., & Brereton, P.

(2001). An architectural model for service-based software with ultra rapid

evolution. In ICSM ’01: Proceedings of the IEEE international conference

on software maintenance (ICSM ’01) (p. 292). Washington, DC, USA: IEEE

Computer Society.

Berbner, R., Spahn, M., Repp, N., Heckmann, O., & Steinmetz, R. (2006). Heuris-

tics for QoS-aware web service composition. In ICWS ’06: Proceedings of

the IEEE international conference on web services (pp. 72–82). Washington,

DC, USA: IEEE Computer Society.

Bianculli, D., & Ghezzi, C. (2007). Monitoring conversational web services. In

IW-SOSWE ’07: 2nd international workshop on service oriented software

engineering (pp. 15–21). New York, NY, USA: ACM.

Brereton, P., Budgen, D., Bennnett, K., Munro, M., Layzell, P., MaCaulay, L., et

al. (1999). The future of software. Communications of the ACM , 42 (12),

78–84.

Brogi, A., Corfini, S., & Popescu, R. (2008). Semantics-based composition-

oriented discovery of web services. ACM Transactions on Internet Technology

(TOIT), 8 (4), 1–39.

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web

services description language (WSDL). Retrieved 4th February, 2009, from

http://www.w3.org/TR/wsdl

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (1999). Non-functional require-

ments in software engineering (Vol. 5). Springer.

Clement, L., Hately, A., Riegen, C. von, & Rogers, T. (2004). UDDI spec tech-

nical committee draft 3.0.2 (OASIS Committee Draft). OASIS. Retrieved

February 9th, 2009, from http://uddi.org/pubs/uddi v3.htm

Comuzzi, M., & Pernici, B. (2005). An architecture for flexible web service QoS

negotiation. In EDOC (p. 70-82). IEEE Computer Society.

Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., et al. (2004).

Web services on demand: WSLA-driven automated management. IBM Sys-

tems Journal , 43 (1), 136–158.

Dobson, G., Lock, R., & Sommerville, I. (2005). QoSOnt: a QoS ontology for

service-centric systems. In EUROMICRO-SEAA (p. 80-87). IEEE Computer

148

http://www.w3.org/TR/wsdl
http://uddi.org/pubs/uddi_v3.htm

References

Society.

Elfatatry, A., & Layzell, P. (2005). A negotiation description language. Software:

Practice and Experience, 35 (4), 323–343.

Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design.

Upper Saddle River, NJ, USA: Prentice Hall PTR.

Erl, T. (2007). SOA: Principles of service design. Upper Saddle River, NJ, USA:

Prentice Hall PTR.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:

Elements of reusable object-oriented software. Addison-Wesley Professional.

Gilb, T. (1988). Principles of software engineering management. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc.

Gilbert, D. (2009). JFreeChart Java chart library. Retrieved 13th April, 2009,

from http://www.jfree.org/jfreechart/

Gimpel, H., Ludwig, H., Dan, A., & Kearney, R. (2003). PANDA: Specifying

policies for automated negotiations of service contracts. In M. E. Orlowska,

S. Weerawarana, M. P. Papazoglou, & J. Yang (Eds.), ICSOC (Vol. 2910,

p. 287-302). Springer.

Grassi, V., & Patella, S. (2006). Reliability prediction for service-oriented com-

puting environments. Internet Computing, IEEE , 10 (3), 43-49.

Heineman, G. T., Loyall, J. P., & Schantz, R. E. (2004). Component technology

and QoS management. In I. Crnkovic, J. A. Stafford, H. W. Schmidt, &

K. C. Wallnau (Eds.), CBSE (Vol. 3054, p. 249-263). Springer.

Herssens, C., Faulkner, S., & Jureta, I. (2008). Context-driven autonomic adap-

tation of SLA. In A. Bouguettaya, I. Krüger, & T. Margaria (Eds.), ICSOC

(Vol. 5364, p. 362-377).

Hoffman, B. (2005). Monitoring, at your service. ACM Queue, 3 (10), 34–43.

ISO. (2000). ISO 9001:2000, quality management systems – requirements.

Jennings, N. R., Norman, T. J., Faratin, P., & Odgers, B. (2000). Autonomous

agents for business process management. Journal of Applied Artificial Intel-

ligence, 14 , 145–189.

Jordan, D., & Evdemon, J. (2007). Web services business process execu-

tion language version 2.0. Retrieved February 11th, 2009, from http://

docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Jøsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems

for online service provision. Decision Support Systems , 43 (2), 618–644.

149

http://www.jfree.org/jfreechart/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

References

Josuttis, N. M. (2007). SOA in practice: The art of distributed system design.

Sebastopol, CA, USA: O’Reilly.

Jouve, W., Lancia, J., Consel, C., & Pu, C. (2006). A multimedia-specific approach

to WS-Agreement. In ECOWS ’06: Proceedings of the European conference

on web services (pp. 44–52). Washington, DC, USA: IEEE Computer Soci-

ety.

Jurca, R., Faltings, B., & Binder, W. (2007). Reliable QoS monitoring based

on client feedback. In WWW ’07: Proceedings of the 16th international

conference on world wide web (pp. 1003–1012). New York, NY, USA: ACM

Press.

Kitchenham, B., Pfleeger, S. L., Pickard, L., Jones, P., Hoaglin, D., Emam, K. E.,

et al. (2002). Preliminary guidelines for empirical research in software engi-

neering. IEEE Transactions on Software Engineering , 28 , 721–734.

Klein, M., König-Ries, B., & Müssig, M. (2005). What is needed for semantic ser-

vice descriptions? A proposal for suitable language constructs. International

Journal of Web and Grid Services , 1 (3/4), 328–364.

Kraus, S. (2001). Automated negotiation and decision making in multiagent

environments. In M. Luck, V. Maŕık, O. Stepánková, & R. Trappl (Eds.),

Easss (Vol. 2086, p. 150-172). Springer.

Kretzschmar, F. (2006). Negotiations in service-oriented architectures. IBIS -

International Journal of Interoperability in Business Information Systems ,

1 (3), 73-84.

Kritikos, K., & Plexousakis, D. (2007). Requirements for QoS-based web service

description and discovery. 31st Annual International Computer Software and

Applications Conference, 2007 (COMPSAC 2007), 2 , 467-472.

Küster, U., & König-Ries, B. (2007). Supporting dynamics in service descriptions

– the key to automatic service usage. In Proceedings of the fifth international

conference on service oriented computing (ICSOC ’07). Vienna, Austria.

Lamanna, D. D., Skene, J., & Emmerich, W. (2003). SLAng: A language for defin-

ing service level agreements. In Proceedings of the the ninth IEEE workshop

on future trends of distributed computing systems (FTDCS ’03) (p. 100).

Washington, DC, USA: IEEE Computer Society.

Lausen, H., Polleres, A., & Roman, D. (2005). Web service modeling ontol-

ogy (WSMO). Retrieved 6th February, 2009, from http://www.w3.org/

Submission/WSMO/

150

http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/

References

Lazovik, A., Aiello, M., & Papazoglou, M. (2004). Associating assertions with

business processes and monitoring their execution. In ICSOC ’04: Proceed-

ings of the 2nd international conference on service oriented computing (pp.

94–104). New York, NY, USA: ACM Press.

Litoiu, M., Mihaescu, M., Ionescu, D., & Solomon, B. (2008). Scalable adaptive

web services. In SDSOA ’08: Proceedings of the 2nd international workshop

on systems development in SOA environments (pp. 47–52). New York, NY,

USA: ACM.

Lock, R. (2006). Automated negotiation for service contracts. 30th Annual Inter-

national Computer Software and Applications Conference, 2006 (COMPSAC

’06), 2 , 127-134.

Lüders, F., Flemström, D., & Wall, A. (2005). Software component services

for embedded real-time systems. In Proceedings of the fifth conference on

software engineering research and practice in Sweden (p. 123-128). Väster̊as,

Sweden: Mälardalen University.

Ludwig, H., Dan, A., & Kearney, R. (2004). Cremona: an architecture and library

for creation and monitoring of WS-Agreements. In ICSOC ’04: Proceedings

of the 2nd international conference on service oriented computing (pp. 65–

74). New York, NY, USA: ACM Press.

Ludwig, H., Keller, A., Dan, A., King, R. P., & Franck, R. (2003). Web service level

agreement (WSLA) language specification. Retrieved 31st January, 2009,

from http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

Mahbub, K., & Spanoudakis, G. (2004). A framework for requirements monitoring

of service based systems. In ICSOC ’04: Proceedings of the 2nd international

conference on service oriented computing (pp. 84–93). New York, NY, USA:

ACM Press.

Martin, D. L., Paolucci, M., McIlraith, S. A., Burstein, M. H., McDermott, D. V.,

McGuinness, D. L., et al. (2004). Bringing semantics to web services: The

OWL-S approach. In J. Cardoso & A. P. Sheth (Eds.), SWSWPC (Vol.

3387, p. 26-42). Springer.

Maximilien, E. M., & Singh, M. P. (2004a). A framework and ontology for dynamic

web services selection. IEEE Internet Computing , 08 (5), 84-93.

Maximilien, E. M., & Singh, M. P. (2004b). Toward autonomic web services trust

and selection. In ICSOC ’04: Proceedings of the 2nd international conference

on service oriented computing (pp. 212–221). New York, NY, USA: ACM

151

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

References

Press.

McGuinness, D. L., & Harmelen, F. van. (2004). OWL web ontology language

overview. Retrieved 6th February, 2009, from http://www.w3.org/TR/owl

-features/

McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web services. IEEE

Intelligent Systems , 16 (2), 46–53.

Menascé, D. A. (2002). QoS issues in Web services. Internet Computing, IEEE ,

6 (6), 72–75.

Menascé, D. A., & Casalicchio, E. (2004). QoS in grid computing. IEEE Internet

Computing , 08 (4), 85-87.

Menascé, D. A., & Dubey, V. (2007). Utility-based QoS brokering in service

oriented architectures. ICWS , 0 , 422-430.

Menascé, D. A., Ruan, H., & Gomaa, H. (2007). QoS management in service-

oriented architectures. Performance Evaluation, 64 (7-8), 646–663.

Milanovic, N., Richling, J., & Malek, M. (2004). Lightweight services for embedded

systems. In Workshop on software technologies for embedded and ubiquitous

computing systems (WSTFEUS) (Vol. 00, p. 40). Los Alamitos, CA, USA:

IEEE Computer Society.

Milanovic, N., Stantchev, V., Richling, J., & Malek, M. (2003). Towards adaptive

and composable services. In S. Stefan (Ed.), Proceedings of the international

IPSI conference (IPSI 2003). Montenegro.

Molina-Jimenez, C., Shrivastava, S., Crowcroft, J., & Gevros, P. (2004). On the

monitoring of contractual service level agreements. In WEC ’04: Proceedings

of the first IEEE international workshop on electronic contracting (pp. 1–8).

Washington, DC, USA: IEEE Computer Society.

Moser, O., Rosenberg, F., & Dustdar, S. (2008). Non-intrusive monitoring and

service adaptation for WS-BPEL. In WWW ’08: Proceedings of the 17th

international conference on world wide web (pp. 815–824). New York, NY,

USA: ACM.

Müller, C., Cortés, A. R., & Resinas, M. (2008). An initial approach to explaining

SLA inconsistencies. In A. Bouguettaya, I. Krüger, & T. Margaria (Eds.),

ICSOC (Vol. 5364, p. 394-406).

Object Management Group, Inc. (2004). Common object request broker ar-

chitecture: Core specification. Retrieved May 20th, 2009, from http://

www.omg.org/docs/formal/04-03-12.pdf

152

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.omg.org/docs/formal/04-03-12.pdf
http://www.omg.org/docs/formal/04-03-12.pdf

References

Oldham, N., Verma, K., Sheth, A., & Hakimpour, F. (2006). Semantic WS-

Agreement partner selection. In WWW ’06: Proceedings of the 15th inter-

national conference on world wide web (pp. 697–706). New York, NY, USA:

ACM Press.

OSGi Alliance. (2009). OSGi Alliance specifications. Retrieved January 28th,

2009, from http://www.osgi.org/Specifications/HomePage

O’Sullivan, J., Edmond, D., & Hofstede, A. T. (2002). What’s in a service? To-

wards accurate description of non-functional service properties. Distributed

and Parallel Databases , 12 (2-3), 117–133.

Paolucci, M., Kawamura, T., Payne, T. R., & Sycara, K. (2002). Semantic match-

ing of web services capabilities. In First international semantic web confer-

ence Sardinia, Italy, June 9–12, 2002 (Vol. 2342/2002, p. 333-347). Springer

Berlin / Heidelberg.

Poladian, V., Sousa, J. P., Garlan, D., & Shaw, M. (2004). Dynamic configuration

of resource-aware services. In ICSE ’04: Proceedings of the 26th international

conference on software engineering (pp. 604–613). Washington, DC, USA:

IEEE Computer Society.

Pouyllau, H., & Haar, S. (2007). A protocol for QoS contract negotiation and its

implementation using web services. In 2007 IEEE international conference

on web services (ICWS 2007) (p. 168-175). Salt Lake City, Utah, USA.

Robinson, D., & Kotonya, G. (2008a). A runtime quality architecture for service-

oriented systems. In A. Bouguettaya, I. Krüger, & T. Margaria (Eds.), In-

ternational conference on service-oriented computing (ICSOC) (Vol. 5364,

p. 468-482).

Robinson, D., & Kotonya, G. (2008b). A self-managing brokerage model for quality

assurance in service-oriented systems. In X. Li, C. S. Smidts, & J. Xu (Eds.),

High assurance systems engineering (HASE) (p. 424-433). IEEE Computer

Society.

Saunders, S., Ross, M., Staples, G., & Wellington, S. (2006). The software quality

challenges of service oriented architectures in e-commerce. Software Quality

Control , 14 (1), 65–75.

ShaikhAli, A., Rana, O., Al-Ali, R., & Walker, D. (2003). UDDIe: an extended

registry for web services. Proceedings of the Symposium on Applications and

the Internet Workshops, 2003 , 85-89.

Shaw, M. (1996). Truth vs knowledge: The difference between what a component

153

http://www.osgi.org/Specifications/HomePage

References

does and what we know it does. In IWSSD ’96: Proceedings of the 8th inter-

national workshop on software specification and design (p. 181). Washington,

DC, USA: IEEE Computer Society.

Skene, J., Skene, A., Crampton, J., & Emmerich, W. (2007). The monitorability

of service-level agreements for application-service provision. In WOSP ’07:

Proceedings of the 6th international workshop on software and performance

(pp. 3–14). New York, NY, USA: ACM.

Sommerville, I. (2006). Software engineering (8th edition). In (pp. 743–769).

Addison Wesley.

Su, S. Y. W., Huang, C., Hammer, J., Huang, Y., Li, H., Wang, L., et al. (2001).

An internet-based negotiation server for e-commerce. Very Large Databases

(VLDB) Journal , 10 (1), 72-90.

Sun Microsystems, Inc. (2009a). The Java language specification. Retrieved

February 20th, 2009, from http://java.sun.com/docs/books/jls/index.html

Sun Microsystems, Inc. (2009b). Jini specifications and API archive. Retrieved

January 28th, 2009, from http://java.sun.com/products/jini/

Tian, M., Gramm, A., Ritter, H., Schiller, J., & Winter, R. (2004). A survey of cur-

rent approaches towards specification and management of quality of service

for web services. Praxis der Informationsverarbeitung und Kommunikation,

3 (4).

Toma, I., Foxvog, D., & Jaeger, M. C. (2006). Modeling QoS characteristics in

WSMO. In MW4SOC ’06: Proceedings of the 1st workshop on middleware

for service oriented computing (pp. 42–47). New York, NY, USA: ACM

Press.

Tournier, J.-C., Babau, J.-P., & Olive, V. (2005). An evaluation of Qinna, a

component-based QoS architecture for embedded systems. In SAC ’05: Pro-

ceedings of the 2005 ACM symposium on applied computing (pp. 998–1002).

New York, NY, USA: ACM Press.

Truex, D. P., Baskerville, R., & Klein, H. (1999). Growing systems in emergent

organizations. Communications of the ACM , 42 (8), 117–123.

Turner, M., Budgen, D., & Brereton, P. (2003). Turning software into a service.

Computer , 36 (10), 38-44.

W3C Working Group. (2004). Web services architecture. Retrieved May 20th,

2009, from http://www.w3.org/TR/ws-arch/

Wang, X., Vitvar, T., Kerrigan, M., & Toma, I. (2006). A QoS-aware selection

154

http://java.sun.com/docs/books/jls/index.html
http://java.sun.com/products/jini/
http://www.w3.org/TR/ws-arch/

References

model for semantic web services. In A. Dan & W. Lamersdorf (Eds.), ICSOC

(Vol. 4294, p. 390-401). Springer.

Weiser, M. (1991). The computer for the 21st century. Scientific American,

265 (3), 66-75.

Wishart, R., Robinson, R., Indulska, J., & Jøsang, A. (2005). SuperstringRep:

reputation-enhanced service discovery. In ACSC ’05: Proceedings of the

twenty-eighth Australasian conference on computer science (pp. 49–57). Dar-

linghurst, Australia: Australian Computer Society, Inc.

Wolf, W. (2001). Computers as components: principles of embedded computing

system design. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Wolski, R. (1998). Dynamically forecasting network performance using the network

weather service. Cluster Computing , 1 (1), 119–132.

Wood, D. (1976). Forecasting for business. New York: Longman.

Woodside, C. M., & Menascé, D. A. (2006). Guest editors’ introduction:

Application-level QoS. IEEE Internet Computing , 10 (3), 13-15.

World Wide Web Consortium (W3C). (2001). XML Schema. Retrieved March

19th, 2009, from http://www.w3.org/XML/Schema

Xu, Z., Martin, P., Powley, W., & Zulkernine, F. (2007). Reputation-enhanced

QoS-based web services discovery. In 2007 IEEE international conference on

web services (ICWS 2007) (p. 249-256). Salt Lake City, Utah, USA.

Yan, J., Kowalczyk, R., Lin, J., Chhetri, M. B., Goh, S. K., & Zhang, J. (2007).

Autonomous service level agreement negotiation for service composition pro-

vision. Future Generation Computer Systems , 23 (6), 748–759.

155

http://www.w3.org/XML/Schema

	Abstract
	Declaration
	Acknowledgements
	Related Publications
	Contents
	Introduction
	Problem Statement
	Key Issues with Existing Work
	Research Objectives
	Research Contributions
	Thesis Structure

	Service-Oriented Systems
	Software as a Service (SaaS)
	Service-Oriented Architecture (SOA)
	Service Description
	Service Discovery and Selection
	Service-Level Agreement (SLA)
	Service Composition
	Orchestration
	Choreography

	System Domains
	Business and Enterprise
	Grid and Utility Computing
	Embedded Systems
	Ubiquitous and Mobile Computing

	Summary

	Service Quality Assurance
	Software Quality
	Ensuring Software Quality
	Service Quality Characteristics
	Approaches for Service Quality Assurance
	Service Description
	Agreement Approaches
	Semantic Approaches

	Service Discovery and Selection
	Service Reputation Systems
	Service Negotiation
	Service Monitoring
	Overview and Integration Discussion
	Summary

	Quality Assurance Framework
	Framework Overview
	Brokerage System
	Broker Engine
	Negotiation Protocol
	Negotiation Model

	Monitoring System
	Service Renegotiation
	Forecasting Future QoS

	Reputation System
	Service Ontology
	Quality Schema
	Service Schema
	Strategy Schema

	Service Acceptability
	Customisable Components
	Monitor Assembly
	Extending Forecast Support

	Summary

	Evaluation
	Service Simulation
	Service Doping
	Service Strategy
	Consumer Strategy
	Provider Strategy

	Initial Service Provider Selection
	Initial Service Provider Reputation
	Initial Service Negotiation
	Initial Service Provider Selection Results

	Service Monitoring
	Regular Service Performance
	Recurring Service Failure
	Handling SLA Violations
	Severe Violations
	Moderate Violations

	Service Outage
	Off-Peak and Peak Service Performance
	Consumer Competition
	Framework Limitations
	No Acceptable Services
	Framework System Unavailability

	Summary

	Conclusions
	Objectives Revisited
	Future Research Directions
	Concluding Remarks

	Ontology XML Examples
	Example Service Contract
	Example Service Strategy

	System Visualisation Tool
	Initial State
	Negotiation Visualisation
	Service Performance Visualisation

	References

