Lancaster EPrints

Will subglacial rhyolite eruptions be explosive or intrusive? Some insights from analytical models

Tuffen, Hugh and McGarvie, D. W. and Gilbert, Jennifer (2007) Will subglacial rhyolite eruptions be explosive or intrusive? Some insights from analytical models. In: Papers from the International Symposium on Earth and Planetary Ice-Volcano Interactions held in Reykjavík, Iceland, on 19-23 June 2006. International Glaciological Society, Cambridge, pp. 87-94. ISBN 9780946417407

Full text not available from this repository.

Abstract

Simple analytical models of subglacial eruptions are presented, which simulate evolving subglacial cavities and volcanic edifices during rhyolitic eruptions beneath temperate glaciers. They shove that the relative sizes of cavity and edifice may strongly influence the eruption mechanisms. Intrusive eruptions will occur if the edifice fills the cavity, with rising magma quenched within the edifice and slow melting of ice. Explosive magma-water interaction may occur if a water- or steam-filled gap develops above the edifice. Meltwater is assumed to drain away continuously, but any gap above the edifice will be filled by meltwater or steam. Ductile roof closure will occur if the glacier weight exceeds the cavity pressure and is modelled here using Nye's law. The results show that the effusion rate is an important control on the eruption style, with explosive eruptions favoured by large effusion rates. The models are used to explain contrasting eruption mechanisms during various Quaternary subglacial rhyolite eruptions at Torfajokull, Iceland. Although the models are simplistic, they are first attempts to unravel the complex feedbacks between subglacial eruption mechanisms and glacier response that can lead to a variety of eruptive scenarios and associated hazards.

Item Type: Contribution in Book/Report/Proceedings
Uncontrolled Keywords: WATER ; ICELAND ; MECHANISMS ; BLAHNUKUR ; VOLCANISM ; PRESSURE ; PRODUCTS ; DYNAMICS
Subjects:
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 53484
Deposited By: ep_importer_pure
Deposited On: 13 Apr 2012 10:12
Refereed?: No
Published?: Published
Last Modified: 10 Apr 2014 00:58
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/53484

Actions (login required)

View Item